Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Jun 13;65(Pt 7):o1562. doi: 10.1107/S1600536809021904

(E)-3-(4-Chloro­phen­yl)-2-phenyl­prop-2-enoic acid

Sadiq-ur-Rehman a, Saqib Ali b,*, Saira Shahzadi c, Masood Parvez d
PMCID: PMC2969502  PMID: 21582844

Abstract

In the title mol­ecule, C15H11ClO2, the mean planes of the benzene and phenyl rings are inclined at 69.06 (11)° with respect to each other. The crystal structure is stablized by strong inter­molecular O—H⋯O hydrogen bonds between the acid groups of pairs of mol­ecules related by inversion centers.

Related literature

For background information, see: Canty & Van Koten (1995). For a related structure, see: Sadiq-ur-Rehman et al. (2006). For a description of the Cambridge Structural Database, see: Allen (2002).graphic file with name e-65-o1562-scheme1.jpg

Experimental

Crystal data

  • C15H11ClO2

  • M r = 258.69

  • Monoclinic, Inline graphic

  • a = 14.405 (3) Å

  • b = 5.733 (9) Å

  • c = 15.416 (9) Å

  • β = 100.72 (3)°

  • V = 1251 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.30 mm−1

  • T = 173 K

  • 0.16 × 0.10 × 0.04 mm

Data collection

  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SORTAV; Blessing, 1997) T min = 0.954, T max = 0.988

  • 10074 measured reflections

  • 2860 independent reflections

  • 1431 reflections with I > 2σ(I)

  • R int = 0.100

Refinement

  • R[F 2 > 2σ(F 2)] = 0.047

  • wR(F 2) = 0.130

  • S = 0.96

  • 2860 reflections

  • 164 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.33 e Å−3

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997); data reduction: SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809021904/lh2835sup1.cif

e-65-o1562-sup1.cif (16.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809021904/lh2835Isup2.hkl

e-65-o1562-Isup2.hkl (137.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2i 0.84 1.82 2.658 (3) 177

Symmetry code: (i) Inline graphic.

Acknowledgments

Quaid-i-Azam University, Islamabad is gratefully acknowledged for financial support.

supplementary crystallographic information

Comment

Effort has been devoted to self assembly of organic and inorganic molecules in solid state because it extends a range of new solids with desirable physical and chemical properties (Canty & Van Koten, 1995). We report in this paper the crystal structure of the title compound (I) which has been synthesized in our laboratory.

The molecular structure of (I) is presented in Fig. 1. The benzene and phenyl rings are oriented at 69.06 (11)° with respect to each other. Molecules related by inversion ceneters form dimers via hydrogen bonds (Fig. 2); details of hydrogen bonding geometry have been given in Table 1. The molecular dimensions are normal (Allen, 2002). The cystal structure of a closely related compound has been previously reported from our laboratory (Sadiq-ur-Rehman et al., 2006).

Experimental

A mixture of the phenylacetic acid (0.15 mol), p-chlorobenzaldehyde (0.15 mol), anhydrous K2CO3 (0.095 mol) and acetic anhydride (0.38 mol) was slowly raised to the temperature 353–373 K and maintained for 24 h. To a hot solution were added, 200 ml of H2O and 100 ml of 10% HCl. The mixture was stirred at room temperature for 2 h and filtered. The solid mass obtained was recrystallized from commercial ethanol. Colorless crystals suitable for crystallographic study were obtained after three weeks.

Refinement

All the H-atoms were visible in the difference Fourier maps, they were included in the refinements at geometrically idealized positions with C—H and O—H distances = 0.95 and 0.84 Å, respectively, and Uiso = 1.5 and 1.2 times Ueq of the parent O and C-atoms respectively. The final difference map was free of chemically significant features.

Figures

Fig. 1.

Fig. 1.

ORTEP-3 (Farrugia, 1997) drawing of (I) with displacement ellipsoids plotted at 50% probability level.

Fig. 2.

Fig. 2.

Unit cell packing of (I) showing hydrogen bonding (dashed lines); H-atoms not involved in hydrogen bonding have been excluded for clarity.

Crystal data

C15H11ClO2 F(000) = 536
Mr = 258.69 Dx = 1.374 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 10074 reflections
a = 14.405 (3) Å θ = 1.8–27.5°
b = 5.733 (9) Å µ = 0.30 mm1
c = 15.416 (9) Å T = 173 K
β = 100.72 (3)° Block, colourless
V = 1251 (2) Å3 0.16 × 0.10 × 0.04 mm
Z = 4

Data collection

Nonius KappaCCD diffractometer 2860 independent reflections
Radiation source: fine-focus sealed tube 1431 reflections with I > 2σ(I)
graphite Rint = 0.100
φ and ω scans θmax = 27.5°, θmin = 1.8°
Absorption correction: multi-scan (SORTAV; Blessing, 1997) h = −18→18
Tmin = 0.954, Tmax = 0.988 k = −7→7
10074 measured reflections l = −19→19

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.130 H-atom parameters constrained
S = 0.96 w = 1/[σ2(Fo2) + (0.06P)2] where P = (Fo2 + 2Fc2)/3
2860 reflections (Δ/σ)max < 0.001
164 parameters Δρmax = 0.22 e Å3
0 restraints Δρmin = −0.33 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.44668 (5) 0.75005 (11) −0.15436 (5) 0.0494 (2)
O1 0.01817 (12) −0.2417 (3) −0.06692 (11) 0.0418 (5)
H1 −0.0181 −0.3550 −0.0639 0.063*
O2 0.09332 (13) −0.3917 (3) 0.06070 (11) 0.0464 (5)
C1 0.24216 (16) −0.0735 (4) 0.07913 (14) 0.0301 (6)
C2 0.25291 (17) 0.1160 (4) 0.13702 (15) 0.0331 (6)
H2 0.2109 0.2448 0.1257 0.040*
C3 0.32420 (18) 0.1175 (4) 0.21066 (16) 0.0390 (6)
H3 0.3305 0.2456 0.2504 0.047*
C4 0.38652 (18) −0.0687 (5) 0.22627 (16) 0.0406 (7)
H4 0.4364 −0.0668 0.2762 0.049*
C5 0.37624 (18) −0.2559 (5) 0.16958 (17) 0.0400 (6)
H5 0.4191 −0.3830 0.1806 0.048*
C6 0.30376 (17) −0.2607 (4) 0.09650 (16) 0.0337 (6)
H6 0.2963 −0.3922 0.0583 0.040*
C7 0.16421 (16) −0.0712 (4) 0.00023 (15) 0.0306 (6)
C8 0.15911 (17) 0.0761 (4) −0.06802 (15) 0.0339 (6)
H8 0.1017 0.0727 −0.1100 0.041*
C9 0.08865 (17) −0.2473 (4) 0.00101 (16) 0.0339 (6)
C10 0.23076 (17) 0.2420 (4) −0.08639 (15) 0.0323 (6)
C11 0.32781 (18) 0.2055 (4) −0.05820 (17) 0.0373 (6)
H11 0.3488 0.0719 −0.0236 0.045*
C12 0.39343 (19) 0.3591 (4) −0.07955 (17) 0.0390 (6)
H12 0.4590 0.3313 −0.0602 0.047*
C13 0.36306 (18) 0.5541 (4) −0.12935 (16) 0.0370 (6)
C14 0.26819 (18) 0.5965 (4) −0.15954 (16) 0.0388 (6)
H14 0.2480 0.7306 −0.1941 0.047*
C15 0.20296 (18) 0.4382 (4) −0.13813 (15) 0.0363 (6)
H15 0.1376 0.4644 −0.1594 0.044*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0473 (4) 0.0393 (4) 0.0664 (5) −0.0059 (3) 0.0232 (3) 0.0088 (4)
O1 0.0376 (11) 0.0454 (11) 0.0395 (10) −0.0145 (9) −0.0006 (8) 0.0038 (9)
O2 0.0481 (12) 0.0473 (12) 0.0414 (11) −0.0173 (9) 0.0016 (8) 0.0092 (10)
C1 0.0326 (14) 0.0279 (13) 0.0315 (13) −0.0053 (11) 0.0109 (11) 0.0003 (11)
C2 0.0369 (15) 0.0277 (14) 0.0361 (14) −0.0018 (11) 0.0101 (12) 0.0001 (11)
C3 0.0445 (17) 0.0379 (15) 0.0346 (15) −0.0090 (13) 0.0076 (13) −0.0065 (12)
C4 0.0342 (15) 0.0536 (17) 0.0336 (14) −0.0064 (13) 0.0052 (12) 0.0052 (14)
C5 0.0358 (16) 0.0398 (15) 0.0465 (16) 0.0048 (13) 0.0130 (13) 0.0108 (14)
C6 0.0370 (15) 0.0295 (13) 0.0365 (14) −0.0043 (12) 0.0118 (12) −0.0020 (12)
C7 0.0293 (14) 0.0312 (14) 0.0315 (13) −0.0035 (11) 0.0063 (11) −0.0043 (12)
C8 0.0320 (15) 0.0350 (14) 0.0345 (14) −0.0015 (11) 0.0053 (11) −0.0045 (12)
C9 0.0332 (14) 0.0351 (14) 0.0329 (14) −0.0051 (12) 0.0052 (11) −0.0046 (13)
C10 0.0383 (15) 0.0309 (13) 0.0287 (13) −0.0054 (12) 0.0091 (11) −0.0039 (11)
C11 0.0404 (16) 0.0316 (15) 0.0423 (15) 0.0012 (11) 0.0141 (12) 0.0038 (11)
C12 0.0360 (16) 0.0362 (14) 0.0472 (16) −0.0005 (12) 0.0143 (12) 0.0036 (13)
C13 0.0440 (17) 0.0283 (13) 0.0425 (15) −0.0059 (12) 0.0178 (12) −0.0019 (12)
C14 0.0455 (18) 0.0338 (15) 0.0401 (14) 0.0008 (12) 0.0157 (13) 0.0052 (12)
C15 0.0369 (15) 0.0389 (15) 0.0339 (14) 0.0030 (12) 0.0090 (11) −0.0002 (12)

Geometric parameters (Å, °)

Cl1—C13 1.742 (3) C6—H6 0.9500
O1—C9 1.316 (3) C7—C8 1.340 (3)
O1—H1 0.8400 C7—C9 1.486 (3)
O2—C9 1.230 (3) C8—C10 1.469 (3)
C1—C6 1.386 (3) C8—H8 0.9500
C1—C2 1.396 (3) C10—C15 1.393 (4)
C1—C7 1.494 (3) C10—C11 1.400 (4)
C2—C3 1.382 (3) C11—C12 1.376 (4)
C2—H2 0.9500 C11—H11 0.9500
C3—C4 1.387 (4) C12—C13 1.380 (4)
C3—H3 0.9500 C12—H12 0.9500
C4—C5 1.375 (4) C13—C14 1.381 (3)
C4—H4 0.9500 C14—C15 1.390 (4)
C5—C6 1.387 (4) C14—H14 0.9500
C5—H5 0.9500 C15—H15 0.9500
C9—O1—H1 109.5 C7—C8—H8 115.8
C6—C1—C2 119.2 (2) C10—C8—H8 115.8
C6—C1—C7 121.4 (2) O2—C9—O1 122.5 (2)
C2—C1—C7 119.4 (2) O2—C9—C7 121.7 (2)
C3—C2—C1 120.5 (2) O1—C9—C7 115.8 (2)
C3—C2—H2 119.8 C15—C10—C11 117.5 (2)
C1—C2—H2 119.8 C15—C10—C8 119.7 (2)
C2—C3—C4 119.7 (2) C11—C10—C8 122.7 (2)
C2—C3—H3 120.1 C12—C11—C10 121.4 (2)
C4—C3—H3 120.1 C12—C11—H11 119.3
C5—C4—C3 120.1 (2) C10—C11—H11 119.3
C5—C4—H4 120.0 C11—C12—C13 119.4 (3)
C3—C4—H4 120.0 C11—C12—H12 120.3
C4—C5—C6 120.5 (2) C13—C12—H12 120.3
C4—C5—H5 119.7 C14—C13—C12 121.4 (2)
C6—C5—H5 119.7 C14—C13—Cl1 119.59 (19)
C1—C6—C5 120.0 (2) C12—C13—Cl1 119.0 (2)
C1—C6—H6 120.0 C13—C14—C15 118.4 (2)
C5—C6—H6 120.0 C13—C14—H14 120.8
C8—C7—C9 120.1 (2) C15—C14—H14 120.8
C8—C7—C1 124.6 (2) C10—C15—C14 121.9 (2)
C9—C7—C1 115.3 (2) C10—C15—H15 119.1
C7—C8—C10 128.4 (2) C14—C15—H15 119.1
C6—C1—C2—C3 0.2 (3) C1—C7—C9—O2 −3.6 (3)
C7—C1—C2—C3 179.7 (2) C8—C7—C9—O1 −1.8 (3)
C1—C2—C3—C4 1.2 (4) C1—C7—C9—O1 178.0 (2)
C2—C3—C4—C5 −1.2 (4) C7—C8—C10—C15 −155.2 (3)
C3—C4—C5—C6 0.0 (4) C7—C8—C10—C11 28.7 (4)
C2—C1—C6—C5 −1.4 (3) C15—C10—C11—C12 1.0 (3)
C7—C1—C6—C5 179.0 (2) C8—C10—C11—C12 177.2 (2)
C4—C5—C6—C1 1.3 (4) C10—C11—C12—C13 0.4 (4)
C6—C1—C7—C8 −113.7 (3) C11—C12—C13—C14 −1.1 (4)
C2—C1—C7—C8 66.7 (3) C11—C12—C13—Cl1 178.89 (19)
C6—C1—C7—C9 66.6 (3) C12—C13—C14—C15 0.4 (4)
C2—C1—C7—C9 −113.0 (3) Cl1—C13—C14—C15 −179.57 (18)
C9—C7—C8—C10 −172.1 (2) C11—C10—C15—C14 −1.7 (3)
C1—C7—C8—C10 8.1 (4) C8—C10—C15—C14 −178.1 (2)
C8—C7—C9—O2 176.7 (2) C13—C14—C15—C10 1.0 (4)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1—H1···O2i 0.84 1.82 2.658 (3) 177

Symmetry codes: (i) −x, −y−1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2835).

References

  1. Allen, F. H. (2002). Acta Cryst. B58, 380–388. [DOI] [PubMed]
  2. Blessing, R. H. (1997). J. Appl. Cryst.30, 421–426.
  3. Canty, A. J. & Van Koten, G. (1995). Acc. Chem. Res. 28, 406–413.
  4. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  5. Hooft, R. (1998). COLLECT Nonius BV, Delft, The Netherlands.
  6. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  7. Sadiq-ur-Rehman, Ali, S., Shahzadi, S. & Parvez, M. (2006). Acta Cryst. E62, o3313–o3315. [DOI] [PMC free article] [PubMed]
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809021904/lh2835sup1.cif

e-65-o1562-sup1.cif (16.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809021904/lh2835Isup2.hkl

e-65-o1562-Isup2.hkl (137.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES