Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Jun 27;65(Pt 7):o1682–o1683. doi: 10.1107/S1600536809023873

(1α,8β)-6β-Benzo­yloxy-6-dehydroxy­heteratisine from Aconitum zeravschanicum

Bakhodir Tashkhodjaev a,*, Bakhodir T Salimov a
PMCID: PMC2969503  PMID: 21582940

Abstract

The title compound, C29H37NO6, was isolated from Aconitum zeravschanicum and exhibits anti­arhythmic activity. It is a derivative of the diterpenoid alkaloid heteratisine and as such the core framework of the mol­ecule contains four six-membered, three seven-membered and one five-membered ring. The chair conformation of one of the meth­oxy-substituted six-membered rings is different from that observed in heteratisine hydro­bromide monohydrate. In the latter case, this ring adopts a boat conformation due to a stabilizing intra­molecular N—H⋯O hydrogen bond. In the crystal structure of the title compound, there is only one acidic H atom. This hydroxyl group forms an inter­molecular O—H⋯O hydrogen bond that links mol­ecules into infinite chains along the b axis.

Related literature

For the isolation and idenfication of 6-benzoyl­heteratisine, see: Aneja et al. (1973), Jacobs et al. (1947), Nigmatullaev et al. (2000). For anti­arhythmic activity, see: Salimov et al. (1996). For the structure of heteratisine hydro­bromide monohydrate, see: Przybylska (1965).graphic file with name e-65-o1682-scheme1.jpg

Experimental

Crystal data

  • C29H37NO6

  • M r = 495.60

  • Orthorhombic, Inline graphic

  • a = 10.039 (5) Å

  • b = 14.107 (8) Å

  • c = 17.512 (6) Å

  • V = 2480 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 300 K

  • 0.50 × 0.30 × 0.15 mm

Data collection

  • Stoe Stadi-4 four-circle diffractometer

  • Absorption correction: none

  • 2481 measured reflections

  • 2481 independent reflections

  • 1667 reflections with I > 2σ(I)

  • 3 standard reflections every 200 reflections intensity decay: 6.8%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.067

  • wR(F 2) = 0.142

  • S = 1.22

  • 2481 reflections

  • 330 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.21 e Å−3

Data collection: STADI4 (Stoe & Cie, 1997); cell refinement: STADI4; data reduction: X-RED (Stoe & Cie, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809023873/zl2222sup1.cif

e-65-o1682-sup1.cif (23.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809023873/zl2222Isup2.hkl

e-65-o1682-Isup2.hkl (121.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O1i 0.82 2.25 3.056 (8) 166

Symmetry code: (i) Inline graphic.

Acknowledgments

We thank the Academy of Sciences of Uzbekistan for supporting this study.

supplementary crystallographic information

Comment

The title compound of this study, 6-benzoylheteratisine, C29H37NO6, was first obtained synthetically in 1973 (Aneja et al., 1973) and found to be a derivative of a naturally occuring compound (Jacobs et al. 1947). Later it was isolated from Aconitum zeravschanicum Steinb (Nigmatullaev et al. 2000). 6-Benzoylheteratisine exibits antiarhythmic activity that exceeds other antiarrhythmic drugs of the quinidine groups (Salimov et al. 1996). The crystal structure of the parent compound was previously established as a salt in the form of heteratisine hydrobromide monohydrate (Przbylslka, 1965).

The molecular structure of the title compound is shown in Fig. 1. The heteratisine skeleton contains four six-membered rings, (A, C, D and F), one five-membered ring (B), and three seven-membered rings (e.g. E, others not labeled for clarity) (Fig. 2). Ring B has an envelope and ring Ca more or less regular chair conformation. Ring F shows a significant distortion and rings D and E adopt a boat conformations. The chair conformation of ring A in the title molecule is different from that observed in heteratisine hydrobromide monohydrate (Przybylska, 1965). For the salt of the parent compound ring A adopts a boat conformation due to a stabilizing intramolecular N—H···O hydrogen bond between the protonated amine towards the oxygen atom, an interaction not present in the title compound.

The aromatic ring and the acyl-group are rotated against each other, the dihedral angle of their respective planes is 32.6 (9)°. There is only one acidic hydrogen atom in the crystal structure of the title compound. This hydroxyl group forms an intermolecular O—H···O hydrogen bond that links the molecules into infinite chains along the b-axis. (Table 1; Fig.3)

Experimental

The title compound was isolated from the chloroform fraction of the leaves of Aconitum zeravschanicum by a known method (Nigmatullaev et al., 2000). Crystals suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution at room temperature (m.p. 485–487 K).

Refinement

The hydroxyl H atom was located in a difference Fourier map but was ultimately placed geometrically (with an O—H distance of 0.82 Å). The H atoms bonded to C atoms were placed geometrically (with C—H distances of 0.98 Å for CH; 0.97 Å for CH2; 0.96 Å for CH3; and 0.93 Å for Car) and included in the refinement in a riding motion approximation with Uiso=1.2Ueq(C) [Uiso=1.5Ueq(C,O) for methyl and hydroxyl H atoms].

Figures

Fig. 1.

Fig. 1.

The molecular structure of 6-benzoylheteratisine, showing the atomic numbering scheme and displacement ellipsoids drawn at the 30% probability level.

Fig. 2.

Fig. 2.

Ring assigments in 6-benzoylheteratisine.

Fig. 3.

Fig. 3.

View along the c direction of the crystal packing of 6-benzoylheteratisine, showing the formation of hydrogen bonds (dashed lines). H-atoms not involved in hydrogen bonding have been removed for clarity.

Crystal data

C29H37NO6 Dx = 1.327 Mg m3
Mr = 495.60 Melting point: 486(2) K
Orthorhombic, P212121 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2ab Cell parameters from 30 reflections
a = 10.039 (5) Å θ = 10–20°
b = 14.107 (8) Å µ = 0.09 mm1
c = 17.512 (6) Å T = 300 K
V = 2480 (2) Å3 Prizmatic, colourless
Z = 4 0.50 × 0.30 × 0.15 mm
F(000) = 1064

Data collection

Stoe Stadi-4 four-circle diffractometer Rint = 0.0000
Radiation source: fine-focus sealed tube θmax = 25.0°, θmin = 1.9°
graphite h = 0→11
Scan width (ω) = 1.56 – 1.68, scan ratio 2θ:ω = 1.00 I(Net) and sigma(I) calculated according to Blessing (1987) k = 0→16
2481 measured reflections l = 0→20
2481 independent reflections 3 standard reflections every 200 reflections
1667 reflections with I > 2σ(I) intensity decay: 6.8%

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.067 H-atom parameters constrained
wR(F2) = 0.142 w = 1/[σ2(Fo2) + (0.0342P)2 + 1.8083P] where P = (Fo2 + 2Fc2)/3
S = 1.22 (Δ/σ)max = 0.001
2481 reflections Δρmax = 0.22 e Å3
330 parameters Δρmin = −0.20 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0056 (10)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.6593 (4) 0.5430 (3) 0.3119 (3) 0.0562 (12)
O2 0.6307 (4) 0.1410 (3) 0.4078 (2) 0.0416 (10)
O3 0.6046 (4) 0.1087 (3) 0.2572 (2) 0.0520 (12)
H3 0.5411 0.0905 0.2317 0.062*
O4 0.8674 (5) 0.2617 (4) 0.1608 (3) 0.0634 (13)
O5 0.9303 (5) 0.1410 (4) 0.2317 (3) 0.0797 (17)
O6 0.4463 (5) 0.0591 (4) 0.4323 (4) 0.099 (2)
N1 0.4096 (5) 0.4035 (4) 0.3632 (3) 0.0437 (13)
C1 0.6830 (6) 0.4820 (4) 0.3766 (4) 0.0473 (17)
H1A 0.7785 0.4850 0.3879 0.057*
C2 0.6104 (7) 0.5245 (5) 0.4445 (4) 0.062 (2)
H2A 0.6567 0.5813 0.4609 0.075*
H2B 0.5212 0.5426 0.4290 0.075*
C3 0.6020 (7) 0.4566 (5) 0.5099 (4) 0.062 (2)
H3A 0.5491 0.4844 0.5505 0.074*
H3B 0.6906 0.4446 0.5297 0.074*
C4 0.5388 (6) 0.3628 (5) 0.4847 (3) 0.0456 (16)
C5 0.6284 (6) 0.3133 (4) 0.4264 (3) 0.0413 (15)
H5A 0.7135 0.2947 0.4495 0.050*
C6 0.5531 (6) 0.2269 (4) 0.3963 (3) 0.0416 (15)
H6A 0.4708 0.2207 0.4259 0.050*
C7 0.5146 (6) 0.2506 (4) 0.3142 (3) 0.0385 (14)
H7A 0.4242 0.2279 0.3037 0.046*
C8 0.6122 (6) 0.2102 (4) 0.2542 (3) 0.0420 (15)
C9 0.7520 (6) 0.2353 (4) 0.2812 (3) 0.0417 (15)
H9A 0.7690 0.1973 0.3271 0.050*
C10 0.7671 (6) 0.3403 (4) 0.3048 (3) 0.0436 (16)
H10A 0.8465 0.3426 0.3373 0.052*
C11 0.6509 (6) 0.3782 (4) 0.3553 (3) 0.0373 (14)
C12 0.8015 (8) 0.3998 (5) 0.2341 (4) 0.068 (2)
H12A 0.7441 0.4551 0.2330 0.082*
H12B 0.8926 0.4220 0.2387 0.082*
C13 0.7873 (7) 0.3479 (6) 0.1600 (4) 0.067 (2)
H13A 0.8244 0.3890 0.1202 0.080*
C14 0.8569 (7) 0.2086 (5) 0.2239 (4) 0.0540 (18)
C15 0.5827 (7) 0.2387 (5) 0.1723 (4) 0.0566 (19)
H15A 0.4868 0.2451 0.1678 0.068*
H15B 0.6085 0.1859 0.1400 0.068*
C16 0.6447 (7) 0.3279 (5) 0.1382 (4) 0.070 (2)
H16A 0.6399 0.3232 0.0830 0.084*
H16B 0.5909 0.3819 0.1533 0.084*
C17 0.5155 (5) 0.3605 (4) 0.3181 (3) 0.0377 (14)
H17A 0.5149 0.3869 0.2664 0.045*
C18 0.5181 (7) 0.3020 (5) 0.5555 (3) 0.066 (2)
H18C 0.6006 0.2968 0.5829 0.098*
H18D 0.4886 0.2400 0.5406 0.098*
H18E 0.4522 0.3309 0.5877 0.098*
C19 0.4026 (6) 0.3801 (5) 0.4445 (3) 0.0461 (16)
H19A 0.3485 0.3235 0.4504 0.055*
H19B 0.3572 0.4313 0.4708 0.055*
C20 0.2808 (6) 0.3924 (5) 0.3252 (4) 0.061 (2)
H20A 0.2541 0.3264 0.3277 0.073*
H20B 0.2904 0.4091 0.2718 0.073*
C21 0.1728 (7) 0.4528 (6) 0.3602 (5) 0.081 (3)
H21A 0.0972 0.4544 0.3267 0.122*
H21B 0.2057 0.5161 0.3676 0.122*
H21C 0.1470 0.4265 0.4085 0.122*
C22 0.7553 (7) 0.6160 (5) 0.3047 (5) 0.082 (3)
H22A 0.7518 0.6418 0.2540 0.123*
H22B 0.8425 0.5905 0.3140 0.123*
H22C 0.7368 0.6651 0.3411 0.123*
C23 0.5638 (7) 0.0621 (5) 0.4222 (4) 0.0532 (18)
C24 0.6515 (7) −0.0215 (4) 0.4266 (4) 0.0470 (16)
C25 0.6195 (8) −0.0936 (5) 0.4745 (4) 0.065 (2)
H25A 0.5420 −0.0897 0.5034 0.078*
C26 0.7004 (10) −0.1734 (6) 0.4811 (5) 0.083 (3)
H26A 0.6796 −0.2213 0.5156 0.100*
C27 0.8113 (10) −0.1796 (5) 0.4357 (5) 0.082 (3)
H27A 0.8664 −0.2325 0.4388 0.099*
C28 0.8405 (8) −0.1089 (5) 0.3865 (5) 0.073 (2)
H28A 0.9148 −0.1147 0.3551 0.087*
C29 0.7625 (7) −0.0279 (5) 0.3814 (4) 0.0565 (18)
H29A 0.7851 0.0209 0.3481 0.068*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.046 (3) 0.045 (2) 0.077 (3) −0.004 (2) −0.001 (3) 0.009 (2)
O2 0.040 (2) 0.036 (2) 0.050 (3) 0.002 (2) 0.005 (2) 0.008 (2)
O3 0.057 (3) 0.043 (2) 0.056 (3) 0.003 (2) −0.005 (2) −0.008 (2)
O4 0.062 (3) 0.075 (3) 0.053 (3) −0.001 (3) 0.014 (3) −0.005 (3)
O5 0.058 (3) 0.093 (4) 0.088 (4) 0.023 (3) 0.005 (3) −0.024 (4)
O6 0.051 (3) 0.059 (3) 0.187 (6) −0.004 (3) 0.018 (4) 0.014 (4)
N1 0.039 (3) 0.049 (3) 0.043 (3) 0.009 (3) 0.000 (3) −0.003 (3)
C1 0.038 (3) 0.043 (4) 0.061 (4) −0.003 (3) −0.005 (3) 0.002 (4)
C2 0.058 (4) 0.049 (4) 0.080 (5) 0.009 (4) −0.005 (4) −0.023 (4)
C3 0.063 (5) 0.072 (5) 0.050 (4) 0.011 (4) −0.003 (4) −0.022 (4)
C4 0.039 (3) 0.057 (4) 0.041 (4) 0.013 (3) 0.002 (3) −0.007 (3)
C5 0.036 (3) 0.044 (3) 0.044 (4) 0.004 (3) 0.003 (3) 0.001 (3)
C6 0.036 (3) 0.043 (4) 0.046 (4) 0.006 (3) 0.004 (3) 0.000 (3)
C7 0.038 (3) 0.038 (3) 0.040 (3) −0.004 (3) −0.003 (3) 0.000 (3)
C8 0.045 (4) 0.037 (3) 0.044 (4) 0.002 (3) 0.000 (3) −0.005 (3)
C9 0.042 (3) 0.047 (4) 0.036 (3) 0.003 (3) 0.001 (3) −0.008 (3)
C10 0.033 (3) 0.054 (4) 0.044 (4) −0.003 (3) −0.002 (3) 0.003 (3)
C11 0.033 (3) 0.039 (3) 0.040 (3) 0.003 (3) 0.003 (3) −0.003 (3)
C12 0.078 (5) 0.068 (5) 0.058 (5) −0.013 (4) 0.023 (4) 0.001 (4)
C13 0.066 (5) 0.082 (6) 0.053 (5) −0.005 (5) 0.011 (4) 0.012 (4)
C14 0.038 (4) 0.062 (5) 0.062 (5) 0.002 (4) −0.005 (4) −0.013 (4)
C15 0.056 (4) 0.062 (4) 0.052 (4) 0.002 (4) −0.007 (4) 0.005 (4)
C16 0.066 (5) 0.093 (6) 0.050 (4) 0.000 (5) 0.005 (4) 0.006 (4)
C17 0.033 (3) 0.045 (3) 0.036 (3) 0.003 (3) 0.001 (3) 0.000 (3)
C18 0.070 (5) 0.089 (6) 0.038 (4) 0.010 (5) 0.011 (4) 0.002 (4)
C19 0.040 (3) 0.049 (4) 0.049 (4) 0.006 (3) 0.007 (3) 0.002 (3)
C20 0.041 (4) 0.087 (6) 0.053 (4) 0.012 (4) −0.005 (4) 0.000 (4)
C21 0.053 (5) 0.094 (6) 0.097 (7) 0.024 (5) 0.001 (5) 0.004 (6)
C22 0.061 (5) 0.050 (4) 0.136 (8) −0.014 (4) 0.012 (6) 0.010 (5)
C23 0.049 (4) 0.046 (4) 0.064 (5) −0.006 (4) −0.002 (4) 0.006 (4)
C24 0.056 (4) 0.036 (3) 0.050 (4) −0.006 (3) −0.009 (4) 0.005 (3)
C25 0.076 (5) 0.051 (4) 0.068 (5) −0.004 (5) 0.004 (5) 0.004 (4)
C26 0.106 (7) 0.063 (6) 0.081 (6) 0.002 (5) −0.017 (6) 0.021 (5)
C27 0.108 (7) 0.041 (4) 0.099 (7) 0.023 (5) −0.042 (6) 0.003 (5)
C28 0.073 (5) 0.066 (5) 0.079 (5) 0.028 (5) −0.021 (5) −0.017 (5)
C29 0.068 (5) 0.043 (4) 0.059 (4) −0.003 (4) −0.013 (4) −0.004 (4)

Geometric parameters (Å, °)

O1—C22 1.416 (7) C10—H10A 0.9800
O1—C1 1.443 (7) C11—C17 1.528 (8)
O2—C23 1.325 (7) C12—C13 1.496 (9)
O2—C6 1.454 (7) C12—H12A 0.9700
O3—C8 1.434 (7) C12—H12B 0.9700
O3—H3 0.8200 C13—C16 1.509 (10)
O4—C14 1.339 (8) C13—H13A 0.9800
O4—C13 1.458 (9) C15—C16 1.527 (9)
O5—C14 1.213 (8) C15—H15A 0.9700
O6—C23 1.194 (8) C15—H15B 0.9700
N1—C17 1.457 (7) C16—H16A 0.9700
N1—C20 1.463 (7) C16—H16B 0.9700
N1—C19 1.463 (7) C17—H17A 0.9800
C1—C2 1.518 (8) C18—H18C 0.9600
C1—C11 1.544 (8) C18—H18D 0.9600
C1—H1A 0.9800 C18—H18E 0.9600
C2—C3 1.495 (9) C19—H19A 0.9700
C2—H2A 0.9700 C19—H19B 0.9700
C2—H2B 0.9700 C20—C21 1.509 (9)
C3—C4 1.532 (9) C20—H20A 0.9700
C3—H3A 0.9700 C20—H20B 0.9700
C3—H3B 0.9700 C21—H21A 0.9600
C4—C18 1.523 (8) C21—H21B 0.9600
C4—C5 1.529 (8) C21—H21C 0.9600
C4—C19 1.556 (8) C22—H22A 0.9600
C5—C6 1.529 (8) C22—H22B 0.9600
C5—C11 1.562 (8) C22—H22C 0.9600
C5—H5A 0.9800 C23—C24 1.473 (9)
C6—C7 1.526 (8) C24—C25 1.357 (9)
C6—H6A 0.9800 C24—C29 1.370 (9)
C7—C8 1.546 (8) C25—C26 1.392 (10)
C7—C17 1.552 (8) C25—H25A 0.9300
C7—H7A 0.9800 C26—C27 1.372 (12)
C8—C15 1.518 (8) C26—H26A 0.9300
C8—C9 1.523 (8) C27—C28 1.351 (10)
C9—C14 1.504 (8) C27—H27A 0.9300
C9—C10 1.545 (8) C28—C29 1.388 (9)
C9—H9A 0.9800 C28—H28A 0.9300
C10—C12 1.536 (8) C29—H29A 0.9300
C10—C11 1.559 (8)
C22—O1—C1 113.0 (5) O4—C13—C12 110.3 (6)
C23—O2—C6 117.1 (4) O4—C13—C16 111.7 (6)
C8—O3—H3 109.5 C12—C13—C16 113.7 (7)
C14—O4—C13 115.6 (5) O4—C13—H13A 106.9
C17—N1—C20 110.7 (5) C12—C13—H13A 106.9
C17—N1—C19 117.9 (5) C16—C13—H13A 106.9
C20—N1—C19 112.1 (5) O5—C14—O4 119.0 (7)
O1—C1—C2 107.5 (5) O5—C14—C9 123.2 (7)
O1—C1—C11 110.0 (5) O4—C14—C9 117.7 (6)
C2—C1—C11 117.6 (5) C8—C15—C16 120.6 (6)
O1—C1—H1A 107.1 C8—C15—H15A 107.2
C2—C1—H1A 107.1 C16—C15—H15A 107.2
C11—C1—H1A 107.1 C8—C15—H15B 107.2
C3—C2—C1 111.9 (5) C16—C15—H15B 107.2
C3—C2—H2A 109.2 H15A—C15—H15B 106.8
C1—C2—H2A 109.2 C13—C16—C15 116.3 (6)
C3—C2—H2B 109.2 C13—C16—H16A 108.2
C1—C2—H2B 109.2 C15—C16—H16A 108.2
H2A—C2—H2B 107.9 C13—C16—H16B 108.2
C2—C3—C4 110.9 (5) C15—C16—H16B 108.2
C2—C3—H3A 109.5 H16A—C16—H16B 107.4
C4—C3—H3A 109.5 N1—C17—C11 110.5 (4)
C2—C3—H3B 109.5 N1—C17—C7 115.8 (5)
C4—C3—H3B 109.5 C11—C17—C7 100.8 (5)
H3A—C3—H3B 108.1 N1—C17—H17A 109.8
C18—C4—C5 111.5 (5) C11—C17—H17A 109.8
C18—C4—C3 107.9 (5) C7—C17—H17A 109.8
C5—C4—C3 110.0 (5) C4—C18—H18C 109.5
C18—C4—C19 109.7 (5) C4—C18—H18D 109.5
C5—C4—C19 106.7 (5) H18C—C18—H18D 109.5
C3—C4—C19 111.0 (5) C4—C18—H18E 109.5
C4—C5—C6 107.7 (5) H18C—C18—H18E 109.5
C4—C5—C11 110.4 (5) H18D—C18—H18E 109.5
C6—C5—C11 105.3 (5) N1—C19—C4 115.6 (5)
C4—C5—H5A 111.1 N1—C19—H19A 108.4
C6—C5—H5A 111.1 C4—C19—H19A 108.4
C11—C5—H5A 111.1 N1—C19—H19B 108.4
O2—C6—C7 116.6 (5) C4—C19—H19B 108.4
O2—C6—C5 110.6 (5) H19A—C19—H19B 107.4
C7—C6—C5 106.0 (5) N1—C20—C21 112.9 (6)
O2—C6—H6A 107.8 N1—C20—H20A 109.0
C7—C6—H6A 107.8 C21—C20—H20A 109.0
C5—C6—H6A 107.8 N1—C20—H20B 109.0
C6—C7—C8 113.6 (5) C21—C20—H20B 109.0
C6—C7—C17 100.1 (5) H20A—C20—H20B 107.8
C8—C7—C17 113.3 (5) C20—C21—H21A 109.5
C6—C7—H7A 109.8 C20—C21—H21B 109.5
C8—C7—H7A 109.8 H21A—C21—H21B 109.5
C17—C7—H7A 109.8 C20—C21—H21C 109.5
O3—C8—C15 106.8 (5) H21A—C21—H21C 109.5
O3—C8—C9 105.6 (5) H21B—C21—H21C 109.5
C15—C8—C9 114.3 (5) O1—C22—H22A 109.5
O3—C8—C7 108.0 (5) O1—C22—H22B 109.5
C15—C8—C7 114.9 (5) H22A—C22—H22B 109.5
C9—C8—C7 106.6 (5) O1—C22—H22C 109.5
C14—C9—C8 112.3 (5) H22A—C22—H22C 109.5
C14—C9—C10 110.5 (5) H22B—C22—H22C 109.5
C8—C9—C10 113.4 (5) O6—C23—O2 123.9 (7)
C14—C9—H9A 106.7 O6—C23—C24 123.7 (7)
C8—C9—H9A 106.7 O2—C23—C24 112.3 (6)
C10—C9—H9A 106.7 C25—C24—C29 120.0 (7)
C12—C10—C9 109.3 (5) C25—C24—C23 119.3 (7)
C12—C10—C11 116.0 (5) C29—C24—C23 120.6 (6)
C9—C10—C11 114.0 (5) C24—C25—C26 121.3 (8)
C12—C10—H10A 105.5 C24—C25—H25A 119.4
C9—C10—H10A 105.5 C26—C25—H25A 119.4
C11—C10—H10A 105.5 C27—C26—C25 118.5 (8)
C17—C11—C1 116.3 (5) C27—C26—H26A 120.8
C17—C11—C10 111.6 (5) C25—C26—H26A 120.8
C1—C11—C10 107.8 (5) C28—C27—C26 119.9 (8)
C17—C11—C5 96.6 (5) C28—C27—H27A 120.0
C1—C11—C5 113.2 (5) C26—C27—H27A 120.0
C10—C11—C5 111.1 (5) C27—C28—C29 121.8 (8)
C13—C12—C10 114.3 (6) C27—C28—H28A 119.1
C13—C12—H12A 108.7 C29—C28—H28A 119.1
C10—C12—H12A 108.7 C24—C29—C28 118.4 (7)
C13—C12—H12B 108.7 C24—C29—H29A 120.8
C10—C12—H12B 108.7 C28—C29—H29A 120.8
H12A—C12—H12B 107.6

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O3—H3···O1i 0.82 2.25 3.056 (8) 166

Symmetry codes: (i) −x+1, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZL2222).

References

  1. Aneja, R., Locke, D. M. & Pelletier, S. W. (1973). Tetrahedron, 29, 3297–3308.
  2. Jacobs, W. A. & Heubner, C. F. (1947). J. Biol. Chem.170, 515–520.
  3. Nigmatullaev, A. M. & Salimov, B. T. (2000). Rastit. Resur. pp. 118–121.
  4. Przybylska, M. (1965). Acta Cryst.18, 536–540.
  5. Salimov, B. T., Kuzibaeva, J. Kh. & Dzhakhangirov, F. N. (1996). Khim. Prir. Soedin. pp. 384–387.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Stoe & Cie (1997). STADI4 and X-RED Stoe & Cie, Darmstadt, Germany.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809023873/zl2222sup1.cif

e-65-o1682-sup1.cif (23.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809023873/zl2222Isup2.hkl

e-65-o1682-Isup2.hkl (121.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES