Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Jun 20;65(Pt 7):o1633. doi: 10.1107/S1600536809022776

N-Phenyl­formamide

B Thimme Gowda a,*, Sabine Foro b, Hartmut Fuess b
PMCID: PMC2969504  PMID: 21582899

Abstract

There are two independent mol­ecules in the asymmetric unit of the title compound, C7H7NO. The conformation of the N—H bond in the structure is syn to the C=O bond in one of the mol­ecules and anti in the other. In the crystal, mol­ecules are packed into chains diagonally in the ac plane via N—H⋯O hydrogen bonds.

Related literature

For related structures, see: Gowda et al. (2006); Brown (1966). For our study of the effect of ring and side chain substitutions on the crystal structures of aromatic amides, see: Gowda et al. (2000, 2007, 2009). graphic file with name e-65-o1633-scheme1.jpg

Experimental

Crystal data

  • C7H7NO

  • M r = 121.14

  • Monoclinic, Inline graphic

  • a = 30.923 (3) Å

  • b = 6.1737 (6) Å

  • c = 14.814 (1) Å

  • β = 113.14 (1)°

  • V = 2600.6 (4) Å3

  • Z = 16

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 298 K

  • 0.48 × 0.44 × 0.40 mm

Data collection

  • Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) T min = 0.966, T max = 0.969

  • 8394 measured reflections

  • 2383 independent reflections

  • 1679 reflections with I > 2σ(I)

  • R int = 0.016

Refinement

  • R[F 2 > 2σ(F 2)] = 0.037

  • wR(F 2) = 0.115

  • S = 1.12

  • 2383 reflections

  • 170 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.11 e Å−3

  • Δρmin = −0.10 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809022776/rk2151sup1.cif

e-65-o1633-sup1.cif (17KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809022776/rk2151Isup2.hkl

e-65-o1633-Isup2.hkl (117.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O2i 0.888 (16) 1.936 (16) 2.8239 (17) 178.1 (14)
N2—H2N⋯O1ii 0.857 (16) 2.007 (16) 2.8637 (17) 177.0 (14)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

BTG thanks the Alexander von Humboldt Foundation, Bonn, Germany for the resumption of his research fellowship.

supplementary crystallographic information

Comment

As part of a study of the effect of ring and side chain substitutions on the crystal structures of aromatic amides (Gowda et al., 2000; 2007; 2009), the structure of N–(phenyl)–formamide (I) has been determined. The asymmetric unit contains two independent molecules (Fig. 1). The conformation of the N—H bond is syn to the C═O bond in the side chain, in one of the molecules and is anti in the other, in contrast to the anti conformation observed in N–(2,6–dichlorophenyl)–formamide (Gowda et al., 2000 and N–(phenyl)–acetamide (Brown et al., 1966). The molecules in (I) are linked through intermolecular N—H···O hydrogen bonding (Tab. 1) and the chains formed diagonally as viewed in the ac plane (Fig. 2).

Experimental

The purity of the commmercial sample (Aldrich Chemicals) was checked by determining its melting point and characterized by recording its infrared and NMR spectra (Gowda et al., 2006). The single crystals used in X–ray diffraction studies were grown in ethanol solution by slow evaporation at room temperature.

Refinement

The H atoms were located in difference map and their positional parameters were refined with C—H = 0.9300 Å with Uiso(H) = 1.2Ueq(C). The N–bonded H atoms refined freely.

Figures

Fig. 1.

Fig. 1.

Molecular structure of (I), showing the atom labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as a small spheres of arbitrary radii.

Fig. 2.

Fig. 2.

Molecular packing of (I) with hydrogen bonding shown as dashed lines.

Crystal data

C7H7NO F(000) = 1024
Mr = 121.14 Dx = 1.238 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yc Cell parameters from 2475 reflections
a = 30.923 (3) Å θ = 2.7–28.2°
b = 6.1737 (6) Å µ = 0.08 mm1
c = 14.814 (1) Å T = 298 K
β = 113.14 (1)° Needle, colourless
V = 2600.6 (4) Å3 0.48 × 0.44 × 0.40 mm
Z = 16

Data collection

Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector 2383 independent reflections
Radiation source: Fine–focus sealed tube 1679 reflections with I > 2σ(I)
Graphite Rint = 0.016
ω and φ scans θmax = 25.4°, θmin = 2.8°
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) h = −37→36
Tmin = 0.966, Tmax = 0.969 k = −7→7
8394 measured reflections l = −17→17

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.115 w = 1/[σ2(Fo2) + (0.0651P)2] where P = (Fo2 + 2Fc2)/3
S = 1.12 (Δ/σ)max < 0.001
2383 reflections Δρmax = 0.11 e Å3
170 parameters Δρmin = −0.10 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0028 (7)

Special details

Experimental. Absorption correction: CrysAlis RED (Oxford Diffraction, 2009); empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R–factor wR and goodness of fit S are based on F2, conventional R–factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R–factors(gt) etc. and is not relevant to the choice of reflections for refinement. R–factors based on F2 are statistically about twice as large as those based on F, and R–factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.09999 (4) 0.21410 (18) 0.62537 (8) 0.0921 (4)
N1 0.04841 (4) 0.34831 (19) 0.47961 (9) 0.0694 (4)
H1N 0.0202 (6) 0.322 (2) 0.4332 (11) 0.083*
C1 0.07229 (4) 0.5289 (2) 0.46365 (9) 0.0561 (3)
C2 0.04734 (5) 0.6657 (3) 0.38753 (10) 0.0727 (4)
H2 0.0159 0.6367 0.3491 0.087*
C3 0.06857 (6) 0.8441 (3) 0.36825 (12) 0.0893 (5)
H3 0.0515 0.9351 0.3164 0.107*
C4 0.11462 (6) 0.8895 (3) 0.42461 (12) 0.0890 (5)
H4 0.1289 1.0119 0.4119 0.107*
C5 0.13948 (6) 0.7535 (3) 0.49972 (12) 0.0828 (5)
H5 0.1709 0.7834 0.5378 0.099*
C6 0.11890 (5) 0.5734 (2) 0.51989 (11) 0.0687 (4)
H6 0.1363 0.4818 0.5712 0.082*
C7 0.06296 (6) 0.2094 (2) 0.55435 (12) 0.0792 (5)
H7 0.0426 0.0966 0.5518 0.095*
O2 0.04140 (4) 0.2563 (2) 0.16582 (9) 0.0996 (4)
N2 0.11861 (4) 0.1904 (2) 0.22825 (8) 0.0628 (3)
H2N 0.1131 (5) 0.067 (3) 0.1994 (10) 0.075*
C8 0.16640 (5) 0.2389 (2) 0.28235 (9) 0.0565 (3)
C9 0.18179 (6) 0.4299 (3) 0.33258 (13) 0.0862 (5)
H9 0.1603 0.5369 0.3309 0.103*
C10 0.22921 (7) 0.4618 (3) 0.38543 (14) 0.1024 (6)
H10 0.2394 0.5901 0.4202 0.123*
C11 0.26131 (6) 0.3093 (3) 0.38760 (14) 0.0963 (6)
H11 0.2932 0.3324 0.4235 0.116*
C12 0.24605 (6) 0.1230 (3) 0.33668 (13) 0.0919 (5)
H12 0.2678 0.0184 0.3371 0.110*
C13 0.19895 (5) 0.0867 (2) 0.28451 (11) 0.0750 (4)
H13 0.1891 −0.0425 0.2503 0.090*
C14 0.08175 (6) 0.3109 (3) 0.21441 (12) 0.0771 (4)
H14 0.0867 0.4471 0.2436 0.093*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0813 (8) 0.0791 (7) 0.0881 (8) −0.0120 (6) 0.0032 (6) 0.0215 (5)
N1 0.0527 (7) 0.0658 (8) 0.0743 (8) −0.0096 (6) 0.0082 (6) 0.0067 (6)
C1 0.0522 (8) 0.0564 (8) 0.0570 (7) −0.0001 (6) 0.0186 (6) −0.0032 (6)
C2 0.0644 (9) 0.0780 (10) 0.0644 (9) −0.0023 (7) 0.0131 (7) 0.0049 (7)
C3 0.1006 (14) 0.0823 (11) 0.0750 (10) −0.0058 (10) 0.0236 (9) 0.0207 (9)
C4 0.0993 (14) 0.0849 (12) 0.0826 (11) −0.0263 (10) 0.0355 (10) 0.0063 (9)
C5 0.0682 (10) 0.0902 (12) 0.0847 (11) −0.0210 (9) 0.0242 (8) 0.0026 (9)
C6 0.0555 (8) 0.0699 (9) 0.0742 (9) −0.0033 (7) 0.0184 (7) 0.0063 (7)
C7 0.0714 (10) 0.0648 (9) 0.0897 (11) −0.0116 (8) 0.0189 (9) 0.0098 (8)
O2 0.0556 (7) 0.1164 (10) 0.1092 (9) 0.0152 (6) 0.0132 (6) 0.0123 (7)
N2 0.0567 (7) 0.0615 (7) 0.0645 (7) 0.0048 (6) 0.0175 (6) −0.0040 (5)
C8 0.0557 (8) 0.0602 (8) 0.0522 (7) −0.0013 (6) 0.0197 (6) 0.0026 (6)
C9 0.0790 (12) 0.0746 (10) 0.1005 (12) −0.0037 (8) 0.0303 (9) −0.0202 (9)
C10 0.0939 (14) 0.0939 (13) 0.1047 (13) −0.0311 (11) 0.0233 (11) −0.0271 (10)
C11 0.0647 (11) 0.1055 (15) 0.0999 (13) −0.0158 (11) 0.0122 (9) 0.0068 (11)
C12 0.0601 (10) 0.0924 (12) 0.1119 (13) 0.0070 (9) 0.0218 (9) 0.0067 (10)
C13 0.0618 (9) 0.0680 (9) 0.0873 (10) 0.0029 (7) 0.0209 (8) −0.0064 (7)
C14 0.0667 (11) 0.0739 (10) 0.0865 (11) 0.0132 (8) 0.0256 (9) 0.0104 (8)

Geometric parameters (Å, °)

O1—C7 1.2132 (17) O2—C14 1.2178 (18)
N1—C7 1.3314 (19) N2—C14 1.3082 (19)
N1—C1 1.4076 (17) N2—C8 1.4089 (17)
N1—H1N 0.888 (16) N2—H2N 0.857 (16)
C1—C2 1.3771 (19) C8—C13 1.3684 (19)
C1—C6 1.3797 (18) C8—C9 1.375 (2)
C2—C3 1.369 (2) C9—C10 1.378 (2)
C2—H2 0.9300 C9—H9 0.9300
C3—C4 1.367 (2) C10—C11 1.359 (3)
C3—H3 0.9300 C10—H10 0.9300
C4—C5 1.365 (2) C11—C12 1.354 (3)
C4—H4 0.9300 C11—H11 0.9300
C5—C6 1.371 (2) C12—C13 1.373 (2)
C5—H5 0.9300 C12—H12 0.9300
C6—H6 0.9300 C13—H13 0.9300
C7—H7 0.9300 C14—H14 0.9300
C7—N1—C1 128.45 (13) C14—N2—C8 128.51 (14)
C7—N1—H1N 115.8 (10) C14—N2—H2N 115.9 (10)
C1—N1—H1N 115.7 (10) C8—N2—H2N 115.6 (10)
C2—C1—C6 119.24 (13) C13—C8—C9 118.76 (14)
C2—C1—N1 117.46 (12) C13—C8—N2 117.69 (12)
C6—C1—N1 123.29 (12) C9—C8—N2 123.55 (13)
C3—C2—C1 120.27 (14) C8—C9—C10 119.64 (16)
C3—C2—H2 119.9 C8—C9—H9 120.2
C1—C2—H2 119.9 C10—C9—H9 120.2
C4—C3—C2 120.51 (15) C11—C10—C9 121.22 (17)
C4—C3—H3 119.7 C11—C10—H10 119.4
C2—C3—H3 119.7 C9—C10—H10 119.4
C5—C4—C3 119.30 (15) C12—C11—C10 118.93 (17)
C5—C4—H4 120.4 C12—C11—H11 120.5
C3—C4—H4 120.4 C10—C11—H11 120.5
C4—C5—C6 121.06 (15) C11—C12—C13 120.85 (17)
C4—C5—H5 119.5 C11—C12—H12 119.6
C6—C5—H5 119.5 C13—C12—H12 119.6
C5—C6—C1 119.62 (14) C8—C13—C12 120.59 (15)
C5—C6—H6 120.2 C8—C13—H13 119.7
C1—C6—H6 120.2 C12—C13—H13 119.7
O1—C7—N1 126.94 (14) O2—C14—N2 124.22 (16)
O1—C7—H7 116.5 O2—C14—H14 117.9
N1—C7—H7 116.5 N2—C14—H14 117.9
C7—N1—C1—C2 −171.26 (15) C14—N2—C8—C13 −178.73 (14)
C7—N1—C1—C6 9.0 (2) C14—N2—C8—C9 1.3 (2)
C6—C1—C2—C3 −0.2 (2) C13—C8—C9—C10 −1.4 (2)
N1—C1—C2—C3 180.00 (14) N2—C8—C9—C10 178.58 (15)
C1—C2—C3—C4 −0.5 (3) C8—C9—C10—C11 1.1 (3)
C2—C3—C4—C5 0.8 (3) C9—C10—C11—C12 0.0 (3)
C3—C4—C5—C6 −0.5 (3) C10—C11—C12—C13 −0.8 (3)
C4—C5—C6—C1 −0.2 (2) C9—C8—C13—C12 0.7 (2)
C2—C1—C6—C5 0.5 (2) N2—C8—C13—C12 −179.34 (13)
N1—C1—C6—C5 −179.70 (14) C11—C12—C13—C8 0.4 (3)
C1—N1—C7—O1 1.5 (3) C8—N2—C14—O2 179.62 (13)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1N···O2i 0.888 (16) 1.936 (16) 2.8239 (17) 178.1 (14)
N2—H2N···O1ii 0.857 (16) 2.007 (16) 2.8637 (17) 177.0 (14)

Symmetry codes: (i) −x, y, −z+1/2; (ii) x, −y, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RK2151).

References

  1. Brown, C. J. (1966). Acta Cryst.21, 442–445.
  2. Gowda, B. T., Foro, S., Terao, H. & Fuess, H. (2009). Acta Cryst. E65, o1039. [DOI] [PMC free article] [PubMed]
  3. Gowda, B. T., Paulus, H. & Fuess, H. (2000). Z. Naturforsch. Teil A, 55, 791–800.
  4. Gowda, B. T., Paulus, H., Svoboda, I. & Fuess, H. (2007). Z. Naturforsch. Teil A, 62, 331–337.
  5. Gowda, B. T., Shilpa & Lakshmipathy, J. K. (2006). Z. Naturforsch. Teil A, 61, 595–599.
  6. Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Yarnton, England.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809022776/rk2151sup1.cif

e-65-o1633-sup1.cif (17KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809022776/rk2151Isup2.hkl

e-65-o1633-Isup2.hkl (117.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES