Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Jun 6;65(Pt 7):o1467. doi: 10.1107/S1600536809020480

4-Acetyl­pyridine–fumaric acid (2/1)

Kan Xu a, Bing-Yu Zhang b, Jing-Jing Nie b, Duan-Jun Xu b,*
PMCID: PMC2969508  PMID: 21582770

Abstract

In the crystal structure of the title cocrystal, 2C7H7NO·C4H4O4, the complete fumaric acid mol­ecule is generated by a crystallographic inversion centre. The two components of the cocrystal are linked by an O—H⋯N hydrogen bond.

Related literature

For biological and medicinal applications of 4-acetyl­pyridine and fumaric acid, see: Fidler et al. (2003); Thomas et al. (2007). For mol­ecular complexes of neutral pyridine derivatives and neutral fumaric acid, see: Bowes et al. (2003); Aakeroy et al. (2002, 2006, 2007); Haynes et al. (2006); Bu et al. (2007). For literature on C—O bond distances in fumaric acid, see: Liu et al. (2003). For metal complexes of 4-acetyl­pyridine, see: Steffen & Palenik (1977); Pang et al. (1994). For a 4-acetyl­pyridinium salt, see: Kochel (2005).graphic file with name e-65-o1467-scheme1.jpg

Experimental

Crystal data

  • 2C7H7NO·C4H4O4

  • M r = 358.34

  • Triclinic, Inline graphic

  • a = 3.9062 (5) Å

  • b = 8.6809 (13) Å

  • c = 13.0909 (18) Å

  • α = 87.925 (4)°

  • β = 89.941 (3)°

  • γ = 83.141 (4)°

  • V = 440.44 (11) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 294 K

  • 0.30 × 0.11 × 0.08 mm

Data collection

  • Rigaku R-AXIS RAPID IP diffractometer

  • Absorption correction: none

  • 3600 measured reflections

  • 1589 independent reflections

  • 798 reflections with I > 2σ(I)

  • R int = 0.030

Refinement

  • R[F 2 > 2σ(F 2)] = 0.040

  • wR(F 2) = 0.143

  • S = 1.18

  • 1589 reflections

  • 124 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.20 e Å−3

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809020480/ng2588sup1.cif

e-65-o1467-sup1.cif (13.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809020480/ng2588Isup2.hkl

e-65-o1467-Isup2.hkl (76.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3A⋯N1 0.98 (4) 1.64 (4) 2.599 (3) 166 (4)

Acknowledgments

The work was supported by the Scientific Foundation of the Department of Education of Zhejiang Province, China (grant No. Y200700867).

supplementary crystallographic information

Comment

The fumaric acid and acetylpyridine have been widely used in the biological and medicine fileds (Thomas et al. 2007; Fidler et al. 2003). In the medicine composition the carboxyl group of the fumaric acid is usually deprotonated while the pyridine derivatives are protonated. But some crystal structure determinations showed the neutral pyridine derivatives and fumaric acid in the crystal structures, i.e. the pyridine derivatives are not protonated while the fumaric acid is also not deprotonated in these crystal structures (Bowes et al. 2003; Aakeroy et al., 2002, 2006, 2007; Haynes et al. 2006; Bu et al. 2007). Herein we report the crystal structure of the new compound containing pyridine derivative and fumaric acid components.

The crystal structure of the title compond consists of fumaric acid and 4-acetylpyridine molecules (Fig. 1). The planar fumaric acid molecule is centrosymmetric with the mid-point of the C═C double bond located at an inversion center. The C8—O2 bond distance of 1.204 (3) Å is much shorter than the C8—O3 bond distance of 1.297 (3) Å, it suggests that the carboxyl group is not deprotonated in the crystal structure (Liu et al. 2003).

The acetylpyridine molecule is not protonated in the crystal structure, which contrasts with that found in the crystal structure of the 4-acetylpyridinium chloride (Kochel, 2005). The geometry data of the acetylpyridine is consistent with those found in metal complexes of acetylpyridine (Steffen & Palenik, 1977; Pang et al., 1994). The planar acetylpyridine molecule is twisted to the fumaric acid with a dihedral angle of 25.97 (11)° in the crystal structure.

The intermolecular classic O—H···N hydrogen bonding and weak C—H···O hydrogen bonding help to stabilize the crystal structure (Table 1).

Experimental

Reagents and solvent were used as purchased without further purification. 4-Acetylpyridine (2 mmol) and fumaric acid (1 mmol) were dissolved in water–ethanol (6 ml, 1:5) at room temperature. The single crystals were obtained from the solution after 3 d.

Refinement

The carboxyl H atom was located in a difference Fourier map and refined isotropically. Methyl H atoms were placed in calculated positions with C—H = 0.96 Å and the torsion angle was refined to fit the electron density, Uiso(H) = 1.5Ueq(C). Other H atoms were placed in calculated positions with C—H = 0.93 Å and refined in riding mode with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with 40% probability displacement (arbitrary spheres for H atoms). Dashed lines indicate hydrogen bonding.

Crystal data

2C7H7NO·C4H4O4 Z = 1
Mr = 358.34 F(000) = 188
Triclinic, P1 Dx = 1.351 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 3.9062 (5) Å Cell parameters from 2308 reflections
b = 8.6809 (13) Å θ = 3.2–24.6°
c = 13.0909 (18) Å µ = 0.10 mm1
α = 87.925 (4)° T = 294 K
β = 89.941 (3)° Needle, colourless
γ = 83.141 (4)° 0.30 × 0.11 × 0.08 mm
V = 440.44 (11) Å3

Data collection

Rigaku R-AXIS RAPID IP diffractometer 798 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.030
graphite θmax = 25.2°, θmin = 3.1°
ω scans h = −4→4
3600 measured reflections k = −10→10
1589 independent reflections l = −15→15

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.143 w = 1/[σ2(Fo2) + (0.0527P)2 + 0.048P] where P = (Fo2 + 2Fc2)/3
S = 1.18 (Δ/σ)max = 0.001
1589 reflections Δρmax = 0.19 e Å3
124 parameters Δρmin = −0.20 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.032 (8)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.4491 (6) 0.4588 (3) 0.69775 (18) 0.0630 (7)
O1 0.8832 (6) 0.7499 (3) 0.98158 (16) 0.0900 (8)
O2 0.1660 (6) 0.1037 (2) 0.67034 (15) 0.0775 (7)
O3 0.2584 (6) 0.2870 (3) 0.55473 (16) 0.0764 (7)
C1 0.5832 (8) 0.4178 (4) 0.7899 (2) 0.0733 (9)
H1 0.6122 0.3130 0.8097 0.088*
C2 0.6807 (7) 0.5230 (3) 0.8573 (2) 0.0651 (9)
H2 0.7765 0.4894 0.9204 0.078*
C3 0.6342 (6) 0.6786 (3) 0.82954 (19) 0.0494 (7)
C4 0.4891 (6) 0.7228 (3) 0.73526 (19) 0.0546 (7)
H4 0.4508 0.8270 0.7145 0.065*
C5 0.4019 (7) 0.6088 (4) 0.6724 (2) 0.0612 (8)
H5 0.3048 0.6391 0.6089 0.073*
C6 0.7453 (7) 0.7954 (3) 0.9018 (2) 0.0562 (8)
C7 0.6902 (7) 0.9624 (3) 0.8712 (2) 0.0653 (9)
H7A 0.7914 1.0212 0.9215 0.098*
H7B 0.4474 0.9961 0.8664 0.098*
H7C 0.7961 0.9784 0.8061 0.098*
C8 0.1658 (7) 0.1535 (3) 0.5833 (2) 0.0539 (7)
C9 0.0643 (7) 0.0651 (3) 0.4951 (2) 0.0561 (8)
H9 0.0951 0.1057 0.4295 0.067*
H3A 0.335 (9) 0.337 (5) 0.615 (3) 0.131 (14)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0771 (16) 0.0500 (17) 0.0641 (16) −0.0142 (12) −0.0009 (13) −0.0083 (13)
O1 0.1244 (18) 0.0731 (17) 0.0703 (14) −0.0004 (13) −0.0407 (14) −0.0077 (12)
O2 0.1167 (18) 0.0640 (15) 0.0548 (13) −0.0234 (12) −0.0138 (12) 0.0004 (11)
O3 0.1198 (18) 0.0541 (15) 0.0607 (13) −0.0313 (13) −0.0048 (12) −0.0076 (11)
C1 0.096 (2) 0.046 (2) 0.077 (2) −0.0096 (17) −0.0064 (19) 0.0019 (17)
C2 0.082 (2) 0.052 (2) 0.0610 (19) −0.0053 (15) −0.0123 (16) 0.0030 (15)
C3 0.0523 (15) 0.0448 (18) 0.0513 (16) −0.0058 (12) −0.0004 (13) −0.0030 (13)
C4 0.0682 (17) 0.0451 (17) 0.0512 (16) −0.0100 (13) −0.0046 (14) −0.0014 (13)
C5 0.0704 (18) 0.057 (2) 0.0566 (18) −0.0100 (15) −0.0086 (15) −0.0024 (15)
C6 0.0577 (16) 0.057 (2) 0.0541 (18) −0.0048 (13) −0.0047 (14) −0.0051 (14)
C7 0.0738 (19) 0.054 (2) 0.070 (2) −0.0163 (15) −0.0083 (16) −0.0077 (16)
C8 0.0604 (16) 0.0446 (18) 0.0567 (18) −0.0048 (13) −0.0084 (14) −0.0063 (14)
C9 0.0680 (17) 0.0469 (18) 0.0534 (16) −0.0063 (13) −0.0072 (14) −0.0016 (14)

Geometric parameters (Å, °)

N1—C5 1.323 (4) C3—C6 1.512 (4)
N1—C1 1.335 (4) C4—C5 1.383 (4)
O1—C6 1.207 (3) C4—H4 0.9300
O2—C8 1.204 (3) C5—H5 0.9300
O3—C8 1.297 (3) C6—C7 1.481 (4)
O3—H3A 0.97 (4) C7—H7A 0.9600
C1—C2 1.378 (4) C7—H7B 0.9600
C1—H1 0.9300 C7—H7C 0.9600
C2—C3 1.377 (4) C8—C9 1.488 (4)
C2—H2 0.9300 C9—C9i 1.293 (5)
C3—C4 1.381 (3) C9—H9 0.9300
C5—N1—C1 117.3 (3) C4—C5—H5 118.2
C8—O3—H3A 108 (2) O1—C6—C7 121.8 (3)
N1—C1—C2 123.2 (3) O1—C6—C3 119.3 (3)
N1—C1—H1 118.4 C7—C6—C3 118.9 (2)
C2—C1—H1 118.4 C6—C7—H7A 109.5
C3—C2—C1 118.9 (3) C6—C7—H7B 109.5
C3—C2—H2 120.5 H7A—C7—H7B 109.5
C1—C2—H2 120.5 C6—C7—H7C 109.5
C2—C3—C4 118.4 (2) H7A—C7—H7C 109.5
C2—C3—C6 119.6 (2) H7B—C7—H7C 109.5
C4—C3—C6 122.0 (3) O2—C8—O3 124.8 (3)
C3—C4—C5 118.6 (3) O2—C8—C9 123.1 (3)
C3—C4—H4 120.7 O3—C8—C9 112.2 (3)
C5—C4—H4 120.7 C9i—C9—C8 123.6 (3)
N1—C5—C4 123.5 (3) C9i—C9—H9 118.2
N1—C5—H5 118.2 C8—C9—H9 118.2

Symmetry codes: (i) −x, −y, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O3—H3A···N1 0.98 (4) 1.64 (4) 2.599 (3) 166 (4)
C4—H4···O2ii 0.93 2.57 3.471 (3) 164
C7—H7C···O2iii 0.96 2.58 3.489 (3) 158

Symmetry codes: (ii) x, y+1, z; (iii) x+1, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2588).

References

  1. Aakeroy, C. B., Beatty, A. M. & Helfrich, B. A. (2002). J. Am. Chem. Soc.124, 14425–14432. [DOI] [PubMed]
  2. Aakeroy, C. B., Hussain, I. & Desper, J. (2006). Cryst. Growth Des.6, 474–480.
  3. Aakeroy, C. B., Hussain, I., Forbes, S. & Desper, J. (2007). CrystEngComm, 9, 46–54.
  4. Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst.26, 343–350.
  5. Bowes, K. F., Ferguson, G., Lough, A. J. & Glidewell, C. (2003). Acta Cryst. B59, 100–117. [DOI] [PubMed]
  6. Bu, T.-J., Li, B. & Wu, L.-X. (2007). Acta Cryst. E63, o3466.
  7. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  8. Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  9. Fidler, M. C., Davidsson, L., Zeder, C., Walczyk, T. & Hurrell, R. F. (2003). Br. J. Nutr.90, 1081–1085. [DOI] [PubMed]
  10. Haynes, D. A., Jones, W. & Motherwell, W. D. S. (2006). CrystEngComm, 8, 830–840.
  11. Kochel, A. (2005). Acta Cryst. E61, o926–o927.
  12. Liu, Y., Xu, D.-J. & Hung, C.-H. (2003). Acta Cryst. E59, m297–m299.
  13. Pang, L., Whitehead, M. A., Bermardinelli, G. & Lucken, E. A. C. (1994). J. Chem. Crystallogr.24, 203–211.
  14. Rigaku (1998). PROCESS-AUTO Rigaku Corporation, Tokyo, Japan.
  15. Rigaku/MSC (2002). CrystalStructure Rigaku/MSC, The Woodlands, Texas, USA.
  16. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  17. Steffen, W. L. & Palenik, G. L. (1977). Inorg. Chem.16, 1119–1128.
  18. Thomas, J. S., Muharrem, A. K. & Ulrich, M. (2007). Bioorg. Med. Chem.15, 333–342.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809020480/ng2588sup1.cif

e-65-o1467-sup1.cif (13.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809020480/ng2588Isup2.hkl

e-65-o1467-Isup2.hkl (76.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES