Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Jun 17;65(Pt 7):o1612. doi: 10.1107/S1600536809022648

N-(2,6-Dimethyl­phen­yl)-4-methyl­benzamide

B Thimme Gowda a,*, Miroslav Tokarčík b, Jozef Kožíšek b, B P Sowmya a, Hartmut Fuess c
PMCID: PMC2969511  PMID: 21582884

Abstract

In the mol­ecular structure of the title compound, C16H17NO, the two aromatic rings are close to orthogonal to each other [dihedral angle 78.8 (1)°], while the central –NH—C(=O)– amide core is nearly coplanar with the benzoyl ring, forming a dihedral angle of 3.5 (2)°. Inter­molecular N—H⋯O hydrogen bonds in the crystal structure link the mol­ecules into infinite chains running along the c axis of the crystal, and a C—H⋯O interaction also occurs.

Related literature

For the preparation of the title compound, see: Gowda et al. (2003). For related structures, see: Gowda, Foro et al. (2008, 2009); Gowda, Tokarčík et al. (2008).graphic file with name e-65-o1612-scheme1.jpg

Experimental

Crystal data

  • C16H17NO

  • M r = 239.31

  • Tetragonal, Inline graphic

  • a = 16.6224 (5) Å

  • c = 19.9508 (7) Å

  • V = 5512.5 (3) Å3

  • Z = 16

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 295 K

  • 0.48 × 0.07 × 0.07 mm

Data collection

  • Oxford Diffraction Xcalibur diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2008) T min = 0.977, T max = 0.992

  • 17659 measured reflections

  • 2649 independent reflections

  • 1250 reflections with I > 2σ(I)

  • R int = 0.039

Refinement

  • R[F 2 > 2σ(F 2)] = 0.038

  • wR(F 2) = 0.108

  • S = 0.99

  • 2649 reflections

  • 169 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.09 e Å−3

  • Δρmin = −0.12 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell refinement: CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2002); software used to prepare material for publication: SHELXL97, PLATON (Spek, 2009) and WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809022648/dn2462sup1.cif

e-65-o1612-sup1.cif (18.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809022648/dn2462Isup2.hkl

e-65-o1612-Isup2.hkl (127.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.892 (13) 2.025 (14) 2.8814 (16) 160.6 (15)
C7—H7⋯O1i 0.93 2.48 3.385 (2) 165

Symmetry code: (i) Inline graphic.

Acknowledgments

BTG thanks the Alexander von Humboldt Foundation, Bonn, Germany, for an extension of his research fellowship. MT and JK thank the Grant Agency of the Slovak Republic (VEGA 1/0817/08) and Structural Funds, Interreg IIIA, for financial support in purchasing the diffractometer.

supplementary crystallographic information

Comment

As part of a study of the substituent effects on the crystal structures of benzanilides (Gowda, Foro et al., 2008, 2009; Gowda, Tokarčík et al., 2008), in the present work, the structure of 4-methyl-N-(2,6-dimethylphenyl)benzamide (I) has been determined. The conformations of the N—H and C═O bonds in the amide segment of the structure are anti to each other (Fig.1), similar to that observed in 4-methyl-N-(phenyl)benzamide (Gowda, Foro et al., 2009), N-(2,6-dimethylphenyl)benzamide (Gowda, Tokarčík et al., 2008), 2-methyl-N-(2,6-dimethylphenyl)benzamide (Gowda, Foro et al., 2008) and other benzanilides, with similar bond parameters. The two aromatic rings in the structure of (I) make the dihedral angle of 78.8 (1)°, while the central amide core –NH—C(═O)– is nearly coplanar with the benzoyl ring, forming a dihedral angle of 3.5 (2)°. Part of the crystal structure of (I), showing the formation of hydrogen-bonded chains (Table 1) running in [001] direction is shown in Fig.2.

Experimental

The title compound was prepared according to the method described by Gowda et al. (2003). The purity of the compound was checked by determining its melting point. It was characterized by recording its infrared and NMR spectra. Needle-like colourless single crystals of the title compound were obtained by slow evaporation from an ethanol solution of the compound (0.5 g in about 30 ml of ethanol) at room temperature.

Refinement

All H atoms except amide H atom were placed in calculated positions with C—H distances in the range 0.93–0.96 Å and constrained to ride on their parent atoms. The C14 methyl group was refined as orientationally disordered using the instruction AFIX 127. Amide H atom was seen in difference map and was refined with the N—H distance restrained to 0.86 (2) Å. The Uiso(H) values were set at 1.2Ueq(C-aromatic,N) or 1.5Ueq(C-methyl).

Figures

Fig. 1.

Fig. 1.

Molecular structure of (I) showing the atom labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are represented as small spheres of arbitrary radii.

Fig. 2.

Fig. 2.

Part of the crystal structure of (I), showing the formation of hydrogen-bonded chains running in [001] direction. Symmetry code (i): y - 1/4, -x + 3/4, z - 1/4. H atoms not involved in hydrogen bonding have been omitted.

Crystal data

C16H17NO Dx = 1.153 Mg m3
Mr = 239.31 Mo Kα radiation, λ = 0.71073 Å
Tetragonal, I41/a Cell parameters from 3736 reflections
Hall symbol: -I 4ad θ = 3.2–29.6°
a = 16.6224 (5) Å µ = 0.07 mm1
c = 19.9508 (7) Å T = 295 K
V = 5512.5 (3) Å3 Needle, colourless
Z = 16 0.48 × 0.07 × 0.07 mm
F(000) = 2048

Data collection

Oxford Diffraction Xcalibur diffractometer 2649 independent reflections
graphite 1250 reflections with I > 2σ(I)
Detector resolution: 10.434 pixels mm-1 Rint = 0.039
ω scans with κ offsets θmax = 25.8°, θmin = 3.2°
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2008) h = −19→20
Tmin = 0.977, Tmax = 0.992 k = −18→20
17659 measured reflections l = −24→24

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108 H atoms treated by a mixture of independent and constrained refinement
S = 0.99 w = [exp(2.10(sinθ/λ)2)]/[σ2(Fo2) + (0.0579P)2], where P = 0.33333Fo2 + 0.66667Fc2
2649 reflections (Δ/σ)max < 0.001
169 parameters Δρmax = 0.09 e Å3
2 restraints Δρmin = −0.12 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
C1 0.27487 (9) 0.49299 (9) 0.25025 (7) 0.0506 (4)
O1 0.26537 (8) 0.52765 (7) 0.30418 (5) 0.0697 (4)
N1 0.25165 (9) 0.52730 (8) 0.19248 (6) 0.0573 (4)
H1N 0.2648 (10) 0.5037 (9) 0.1539 (7) 0.069*
C2 0.31055 (9) 0.41089 (9) 0.24642 (6) 0.0483 (4)
C3 0.33373 (14) 0.37365 (12) 0.30424 (8) 0.0900 (7)
H3 0.3289 0.4009 0.3448 0.108*
C4 0.36405 (15) 0.29691 (13) 0.30384 (9) 0.0959 (7)
H4 0.3789 0.2735 0.3443 0.115*
C5 0.37308 (10) 0.25407 (10) 0.24670 (9) 0.0606 (5)
C6 0.34988 (13) 0.29146 (12) 0.18953 (9) 0.0828 (6)
H6 0.3548 0.264 0.1491 0.099*
C7 0.31947 (13) 0.36797 (11) 0.18884 (8) 0.0769 (6)
H7 0.3046 0.3911 0.1482 0.092*
C8 0.21647 (11) 0.60581 (10) 0.18922 (7) 0.0565 (4)
C9 0.13575 (12) 0.61467 (10) 0.20521 (7) 0.0630 (5)
C10 0.10337 (13) 0.69090 (13) 0.20139 (10) 0.0801 (6)
H10 0.0496 0.6988 0.2125 0.096*
C11 0.14898 (17) 0.75510 (13) 0.18149 (11) 0.0937 (7)
H11 0.126 0.806 0.1793 0.112*
C12 0.22797 (16) 0.74490 (12) 0.16481 (10) 0.0885 (7)
H12 0.2579 0.7889 0.1505 0.106*
C13 0.26422 (12) 0.66992 (11) 0.16895 (9) 0.0700 (5)
C14 0.40544 (13) 0.16975 (11) 0.24629 (11) 0.0866 (6)
H14A 0.3916 0.1441 0.2047 0.13* 0.5
H14B 0.3825 0.1401 0.2829 0.13* 0.5
H14C 0.4629 0.1711 0.251 0.13* 0.5
H14D 0.4331 0.1594 0.2877 0.13* 0.5
H14E 0.4422 0.1635 0.2095 0.13* 0.5
H14F 0.3618 0.1324 0.2414 0.13* 0.5
C15 0.08424 (12) 0.54478 (13) 0.22548 (10) 0.0842 (6)
H15A 0.0822 0.5064 0.1895 0.126*
H15B 0.0309 0.5634 0.2353 0.126*
H15C 0.1067 0.5197 0.2646 0.126*
C16 0.35125 (14) 0.65809 (14) 0.15300 (11) 0.0971 (7)
H16A 0.3778 0.6338 0.1906 0.146*
H16B 0.3756 0.7092 0.1435 0.146*
H16C 0.3563 0.6237 0.1146 0.146*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0587 (10) 0.0565 (10) 0.0367 (8) 0.0018 (8) 0.0004 (7) 0.0000 (7)
O1 0.1009 (10) 0.0724 (8) 0.0358 (6) 0.0166 (7) −0.0008 (5) −0.0073 (5)
N1 0.0802 (10) 0.0571 (9) 0.0347 (6) 0.0149 (7) −0.0026 (6) −0.0030 (6)
C2 0.0532 (9) 0.0524 (10) 0.0391 (8) 0.0019 (8) 0.0000 (7) 0.0014 (7)
C3 0.144 (2) 0.0805 (15) 0.0451 (10) 0.0401 (14) −0.0106 (11) 0.0004 (9)
C4 0.149 (2) 0.0801 (15) 0.0588 (12) 0.0407 (15) −0.0138 (12) 0.0123 (10)
C5 0.0590 (11) 0.0547 (11) 0.0681 (11) 0.0028 (8) 0.0006 (8) 0.0053 (9)
C6 0.1222 (18) 0.0660 (14) 0.0603 (11) 0.0237 (12) −0.0004 (11) −0.0090 (9)
C7 0.1186 (17) 0.0670 (13) 0.0450 (9) 0.0233 (11) −0.0040 (10) 0.0010 (8)
C8 0.0777 (13) 0.0525 (11) 0.0392 (8) 0.0119 (10) −0.0078 (8) −0.0030 (7)
C9 0.0758 (14) 0.0587 (12) 0.0546 (10) 0.0104 (10) −0.0076 (8) −0.0021 (8)
C10 0.0811 (14) 0.0717 (15) 0.0874 (13) 0.0192 (12) −0.0078 (11) −0.0007 (11)
C11 0.116 (2) 0.0634 (15) 0.1019 (16) 0.0252 (15) −0.0078 (14) 0.0029 (11)
C12 0.116 (2) 0.0550 (13) 0.0946 (14) −0.0017 (13) 0.0019 (13) 0.0062 (10)
C13 0.0870 (15) 0.0604 (13) 0.0625 (10) 0.0017 (11) −0.0007 (9) −0.0021 (9)
C14 0.0941 (16) 0.0622 (13) 0.1034 (15) 0.0131 (11) −0.0005 (12) 0.0093 (11)
C15 0.0811 (15) 0.0787 (14) 0.0928 (14) 0.0011 (12) 0.0017 (11) 0.0046 (10)
C16 0.0926 (17) 0.0928 (16) 0.1059 (16) −0.0052 (13) 0.0143 (13) −0.0034 (12)

Geometric parameters (Å, °)

C1—O1 1.2307 (16) C10—C11 1.368 (3)
C1—N1 1.3427 (17) C10—H10 0.93
C1—C2 1.490 (2) C11—C12 1.365 (3)
N1—C8 1.431 (2) C11—H11 0.93
N1—H1N 0.892 (13) C12—C13 1.387 (3)
C2—C7 1.360 (2) C12—H12 0.93
C2—C3 1.365 (2) C13—C16 1.494 (3)
C3—C4 1.372 (3) C14—H14A 0.96
C3—H3 0.93 C14—H14B 0.96
C4—C5 1.352 (2) C14—H14C 0.96
C4—H4 0.93 C14—H14D 0.96
C5—C6 1.355 (2) C14—H14E 0.96
C5—C14 1.501 (2) C14—H14F 0.96
C6—C7 1.369 (3) C15—H15A 0.96
C6—H6 0.93 C15—H15B 0.96
C7—H7 0.93 C15—H15C 0.96
C8—C9 1.387 (2) C16—H16A 0.96
C8—C13 1.389 (2) C16—H16B 0.96
C9—C10 1.379 (2) C16—H16C 0.96
C9—C15 1.499 (3)
O1—C1—N1 120.98 (15) C13—C12—H12 119.5
O1—C1—C2 121.65 (13) C12—C13—C8 117.29 (19)
N1—C1—C2 117.35 (13) C12—C13—C16 121.75 (19)
C1—N1—C8 122.94 (12) C8—C13—C16 120.95 (18)
C1—N1—H1N 119.0 (11) C5—C14—H14A 109.5
C8—N1—H1N 117.5 (10) C5—C14—H14B 109.5
C7—C2—C3 116.44 (15) H14A—C14—H14B 109.5
C7—C2—C1 124.54 (14) C5—C14—H14C 109.5
C3—C2—C1 118.98 (14) H14A—C14—H14C 109.5
C2—C3—C4 121.38 (16) H14B—C14—H14C 109.5
C2—C3—H3 119.3 C5—C14—H14D 109.5
C4—C3—H3 119.3 H14A—C14—H14D 141.1
C5—C4—C3 122.37 (17) H14B—C14—H14D 56.3
C5—C4—H4 118.8 H14C—C14—H14D 56.3
C3—C4—H4 118.8 C5—C14—H14E 109.5
C4—C5—C6 115.88 (16) H14A—C14—H14E 56.3
C4—C5—C14 122.41 (17) H14B—C14—H14E 141.1
C6—C5—C14 121.70 (17) H14C—C14—H14E 56.3
C5—C6—C7 122.67 (16) H14D—C14—H14E 109.5
C5—C6—H6 118.7 C5—C14—H14F 109.5
C7—C6—H6 118.7 H14A—C14—H14F 56.3
C2—C7—C6 121.27 (15) H14B—C14—H14F 56.3
C2—C7—H7 119.4 H14C—C14—H14F 141.1
C6—C7—H7 119.4 H14D—C14—H14F 109.5
C9—C8—C13 122.57 (16) H14E—C14—H14F 109.5
C9—C8—N1 118.78 (16) C9—C15—H15A 109.5
C13—C8—N1 118.63 (17) C9—C15—H15B 109.5
C10—C9—C8 117.55 (18) H15A—C15—H15B 109.5
C10—C9—C15 120.28 (19) C9—C15—H15C 109.5
C8—C9—C15 122.17 (16) H15A—C15—H15C 109.5
C11—C10—C9 121.1 (2) H15B—C15—H15C 109.5
C11—C10—H10 119.4 C13—C16—H16A 109.5
C9—C10—H10 119.4 C13—C16—H16B 109.5
C12—C11—C10 120.47 (19) H16A—C16—H16B 109.5
C12—C11—H11 119.8 C13—C16—H16C 109.5
C10—C11—H11 119.8 H16A—C16—H16C 109.5
C11—C12—C13 121.0 (2) H16B—C16—H16C 109.5
C11—C12—H12 119.5
O1—C1—N1—C8 1.4 (3) C1—N1—C8—C9 −79.3 (2)
C2—C1—N1—C8 179.93 (15) C1—N1—C8—C13 101.84 (18)
O1—C1—C2—C7 177.04 (17) C13—C8—C9—C10 −1.0 (2)
N1—C1—C2—C7 −1.5 (3) N1—C8—C9—C10 −179.76 (14)
O1—C1—C2—C3 −0.5 (3) C13—C8—C9—C15 178.53 (16)
N1—C1—C2—C3 −179.03 (17) N1—C8—C9—C15 −0.2 (2)
C7—C2—C3—C4 −0.2 (3) C8—C9—C10—C11 1.0 (3)
C1—C2—C3—C4 177.5 (2) C15—C9—C10—C11 −178.47 (18)
C2—C3—C4—C5 0.3 (4) C9—C10—C11—C12 0.1 (3)
C3—C4—C5—C6 −0.3 (3) C10—C11—C12—C13 −1.4 (3)
C3—C4—C5—C14 −179.3 (2) C11—C12—C13—C8 1.4 (3)
C4—C5—C6—C7 0.3 (3) C11—C12—C13—C16 −178.01 (19)
C14—C5—C6—C7 179.3 (2) C9—C8—C13—C12 −0.2 (2)
C3—C2—C7—C6 0.2 (3) N1—C8—C13—C12 178.56 (15)
C1—C2—C7—C6 −177.35 (18) C9—C8—C13—C16 179.20 (15)
C5—C6—C7—C2 −0.3 (3) N1—C8—C13—C16 −2.0 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1N···O1i 0.89 (1) 2.03 (1) 2.8814 (16) 161 (2)
C7—H7···O1i 0.93 2.48 3.385 (2) 165

Symmetry codes: (i) y−1/4, −x+3/4, z−1/4.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2462).

References

  1. Brandenburg, K. (2002). DIAMOND Crystal Impact GbR, Bonn, Germany.
  2. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  3. Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  4. Gowda, B. T., Foro, S., Sowmya, B. P. & Fuess, H. (2008). Acta Cryst. E64, o1605. [DOI] [PMC free article] [PubMed]
  5. Gowda, B. T., Foro, S., Sowmya, B. P. & Fuess, H. (2009). Private communication (refcode 691312). CCDC, Union Road, Cambridge, England.
  6. Gowda, B. T., Jyothi, K., Paulus, H. & Fuess, H. (2003). Z. Naturforsch. Teil A, 58, 225–230.
  7. Gowda, B. T., Tokarčík, M., Kožíšek, J., Sowmya, B. P. & Fuess, H. (2008). Acta Cryst. E64, o1299. [DOI] [PMC free article] [PubMed]
  8. Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809022648/dn2462sup1.cif

e-65-o1612-sup1.cif (18.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809022648/dn2462Isup2.hkl

e-65-o1612-Isup2.hkl (127.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES