Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Jun 17;65(Pt 7):m777–m778. doi: 10.1107/S1600536809021990

[μ-(4S,5S,15S,16S)-10,21-Di-tert-butyl-4,5,15,16-tetra­phenyl-3,6,14,17-tetra­aza­tricyclo­[17.3.1.18,12]tetra­cosa-1(23),8,10,12(24),19,21-hexa­ene-23,24-diolato-κ8 N 3,N 6,O 23,O 24:N 14 N 17,O 23,O 24]bis­[(acetato-κO)zinc(II)] ethanol disolvate

Li-Jing Fan a,*, Jian-Fang Ma a, Jie Liu a
PMCID: PMC2969517  PMID: 21582707

Abstract

In the title compound, [Zn2(C36H42N4O2)(CH3COO)2]·2CH3CH2OH, a centrosymmetric dinuclear zinc macrocyclic complex is accompanied by two half-occupied ethanol solvent molecues resulting in a 1:2 macrocycle–solvent composition. The ZnII atom has a square-pyramidal geometry arising from an N2O3 donor set, being coordinated by two N atoms and two O atoms from the macrocyclic ligand in the equatorial sites and one O atom from an acetate anion in the apical site. The two ZnII atoms are linked by two phenolate O atoms, generating a four-membered Zn2O2 ring at the centre of the macrocycle. The tert-butyl group shows rotational disorder over two sets of sites in a 0.552 (12):0.448 (12) ratio. In the crystal, N—H⋯O and O—H⋯O hydrogen bonds are seen and a short intra­molecular C—H⋯O contact occurs.

Related literature

For background to the biochemistry of zinc compounds, see: Lipscomb & Straeter (1996); Burley et al. (1990); Roderick & Mathews (1993); Bazzicalupi et al. (1997). For related structures, see: Dutta et al. (2005); Liu et al. (2007). For further synthetic details, see: Tian et al. (1999).graphic file with name e-65-0m777-scheme1.jpg

Experimental

Crystal data

  • [Zn2(C36H42N4O2)(C2H3O2)2]·2C2H6O

  • M r = 903.70

  • Triclinic, Inline graphic

  • a = 9.0566 (3) Å

  • b = 10.8410 (5) Å

  • c = 14.2828 (5) Å

  • α = 71.246 (4)°

  • β = 86.514 (3)°

  • γ = 78.362 (3)°

  • V = 1300.56 (9) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.97 mm−1

  • T = 293 K

  • 0.45 × 0.25 × 0.20 mm

Data collection

  • Oxford Diffraction Gemini R Ultra diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2006) T min = 0.748, T max = 0.824

  • 11846 measured reflections

  • 6368 independent reflections

  • 4133 reflections with I > 2σ(I)

  • R int = 0.035

Refinement

  • R[F 2 > 2σ(F 2)] = 0.077

  • wR(F 2) = 0.253

  • S = 1.05

  • 6368 reflections

  • 285 parameters

  • 655 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.15 e Å−3

  • Δρmin = −0.77 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809021990/hb2961sup1.cif

e-65-0m777-sup1.cif (24.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809021990/hb2961Isup2.hkl

e-65-0m777-Isup2.hkl (305.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

Zn1—O1 2.025 (5)
Zn1—O3 2.033 (4)
Zn1—O3i 2.043 (4)
Zn1—N2 2.100 (5)
Zn1—N1 2.104 (5)

Symmetry code: (i) Inline graphic.

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4A⋯O2 0.97 2.45 3.246 (10) 139
N1—H1N⋯O4 0.86 (7) 2.23 (7) 2.952 (9) 141 (6)
N2—H2N⋯O5ii 0.87 (4) 2.13 (4) 2.999 (9) 175 (4)
O4—H4⋯O2iii 0.82 2.06 2.768 (10) 145
O5—H5⋯O1iv 0.82 1.92 2.700 (9) 159

Symmetry codes: (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

The authors thank the National Natural Science Foundation of China (No. 20471014), the Program for New Century Excellent Talents in Chinese Universities (NCET-05–0320), the Fok Ying Tung Education Foundation and the Analysis and Testing Foundation of Northeast Normal University for support.

supplementary crystallographic information

Comment

Zinc is an essential element for all forms of life and plays a critical role in various functions, both structural and catalytic, in proteins and enzymes (Lipscomb et al.,1996; Burley et al.,1990; Roderick & Mathews, 1993). In addition, some synthetic dinuclear zinc(II) compounds appears to have functions in dephosphorylation (Bazzicalupi et al.,1997). As part of out studies in this area, the title compound, (I), a new dinuclear zinc(II) compound has been synthesized, and its structure is reported here (Fig. 1).

The complete macrocycle is generated by a crystallographic inversion centre The coordination environment around zinc is a square-pyramid with two N atoms and two O atoms from the macrocyclic (C36H44N4O2) ligand occupying the basal positions and one O atom from a acetate anion occupying the apical position. The two zinc atoms are bridged by two phenolate O atoms to generate a four-membered Zn2O2 ring. The Zn—O and Zn—N distances are normal (Dutta et al., 2005).

Experimental

To a stirred methanol (30 ml) suspension of the schiff base C36H40N4O2 (0.5 mmol), which was synthesized by the methods reported previously (Tian et al., 1999), was added solid NaBH4 (0.5 g, 13 mmol) in small portions. Over a period of 0.5 h when the red solid material gradually went into solution, and eventually an amorphous yellow mass precipitated. After 1 h, the formed yellow powder products (H2L) were filtrated off and washed thoroughly with water and ethanol, and dried in avacuum (yield 54%).

The title compound was prepared by reaction between the ligand (H2L) and zinc acetate. A mixture of H2L (0.108 g, 0.2 mmol) and Zn(OAc)2.6H2O (0.117 g, 0.4 mmol) in ethanol (20 ml) was heated with stirring to yield a clear pale yellow solution. Filtration and cooling to room temperature resulted in formation of a crystalline precipitate. Recrystallization by slow evaporation of an ethanol solution of the compound resulted in well-formed yellow blocks of (I) (yield 46%).

Refinement

The N-bonded H atoms were located in a difference map and their positions were freely refined. The other H atoms were placed in calculated positions (O—H = 0.82Å, C—H = 0.93–0.96Å) and refined as riding with Uiso(H) =1.2Ueq(C,N) or 1.5Ueq(methyl C). The methyl entities of the tert-butyl group are disordered over two sets of sites in a 0.552 (12):0.448 (12) ratio. The highest difference peak is 1.55 Å from O5 and the deepest difference hole is 0.77 Å from C17'. The anisotropic displacement factors of the disordered atoms were restrained to be nearly isotropic. Additionally, the solvent of ethanol molecule is disordered in two positions (the occupancies were fixed as 0.5:0.5).

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I). Displaceement ellipsoids are drawn at the 30% probability level and H atoms have been omitted for clarity.

Crystal data

[Zn2(C36H42N4O2)(C2H3O2)2]·2C2H6O Z = 1
Mr = 903.70 F(000) = 476
Triclinic, P1 Dx = 1.154 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 9.0566 (3) Å Cell parameters from 2131 reflections
b = 10.8410 (5) Å θ = 3.1–26.5°
c = 14.2828 (5) Å µ = 0.97 mm1
α = 71.246 (4)° T = 293 K
β = 86.514 (3)° Block, yellow
γ = 78.362 (3)° 0.45 × 0.25 × 0.20 mm
V = 1300.56 (9) Å3

Data collection

Oxford Diffraction Gemini R Ultra diffractometer 6368 independent reflections
Radiation source: fine-focus sealed tube 4133 reflections with I > 2σ(I)
graphite Rint = 0.035
Detector resolution: 10.0 pixels mm-1 θmax = 29.8°, θmin = 4.4°
ω scans h = −11→12
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2006) k = −14→14
Tmin = 0.748, Tmax = 0.824 l = −18→19
11846 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.077 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.253 H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.1644P)2] where P = (Fo2 + 2Fc2)/3
6368 reflections (Δ/σ)max < 0.001
285 parameters Δρmax = 1.15 e Å3
655 restraints Δρmin = −0.77 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Zn1 0.05562 (7) 0.12433 (7) 0.50054 (5) 0.0340 (3)
C1 −0.1270 (7) −0.0328 (6) 0.6667 (4) 0.0348 (12)
C2 −0.0490 (7) −0.0070 (7) 0.7384 (5) 0.0393 (13)
C3 −0.0831 (8) −0.0639 (8) 0.8383 (5) 0.0466 (15)
H3 −0.0290 −0.0493 0.8858 0.056*
C4 0.0649 (7) 0.0818 (7) 0.7131 (5) 0.0414 (13)
H4A 0.0126 0.1736 0.6901 0.050*
H4B 0.1207 0.0693 0.7724 0.050*
C5 0.3043 (7) 0.1208 (6) 0.6217 (5) 0.0378 (12)
C6 0.3920 (8) 0.1117 (7) 0.7007 (6) 0.0465 (14)
H6 0.3657 0.0661 0.7646 0.056*
C7 0.5162 (8) 0.1685 (8) 0.6863 (6) 0.0509 (15)
H7 0.5743 0.1609 0.7401 0.061*
C8 0.5554 (8) 0.2371 (8) 0.5923 (6) 0.0489 (15)
H8 0.6404 0.2755 0.5821 0.059*
C9 0.4671 (7) 0.2484 (7) 0.5129 (6) 0.0454 (14)
H9 0.4931 0.2953 0.4493 0.055*
C10 0.3420 (7) 0.1915 (6) 0.5269 (5) 0.0375 (12)
C11 0.3368 (7) 0.1223 (7) 0.3804 (5) 0.0397 (13)
H11A 0.3798 0.0336 0.4223 0.048*
H11B 0.4192 0.1649 0.3484 0.048*
C12 0.2376 (7) 0.1125 (7) 0.3023 (5) 0.0397 (13)
C13 0.2679 (8) 0.1641 (8) 0.2016 (5) 0.0513 (15)
H13 0.3412 0.2163 0.1820 0.062*
C14 0.1915 (9) 0.1397 (8) 0.1302 (5) 0.0530 (16)
C15 0.2210 (10) 0.2038 (10) 0.0195 (6) 0.070 (2)
C16 0.0903 (18) 0.274 (2) −0.0392 (19) 0.106 (6)* 0.448 (12)
H16A 0.0088 0.2276 −0.0169 0.159* 0.448 (12)
H16B 0.1117 0.2812 −0.1072 0.159* 0.448 (12)
H16C 0.0625 0.3617 −0.0331 0.159* 0.448 (12)
C17 0.3466 (18) 0.269 (2) −0.0069 (17) 0.078 (5)* 0.448 (12)
H17A 0.4286 0.2207 0.0380 0.117* 0.448 (12)
H17B 0.3183 0.3576 −0.0035 0.117* 0.448 (12)
H17C 0.3774 0.2721 −0.0730 0.117* 0.448 (12)
C18 0.276 (3) 0.084 (2) −0.022 (2) 0.101 (6)* 0.448 (12)
H18A 0.3649 0.0287 0.0136 0.151* 0.448 (12)
H18B 0.2996 0.1178 −0.0908 0.151* 0.448 (12)
H18C 0.1983 0.0336 −0.0136 0.151* 0.448 (12)
C16' 0.146 (3) 0.3448 (14) −0.0045 (17) 0.106 (5)* 0.552 (12)
H16D 0.0426 0.3503 0.0157 0.158* 0.552 (12)
H16E 0.1510 0.3878 −0.0745 0.158* 0.552 (12)
H16F 0.1963 0.3879 0.0297 0.158* 0.552 (12)
C17' 0.373 (3) 0.163 (3) 0.0001 (18) 0.106 (5)* 0.552 (12)
H17D 0.3988 0.0676 0.0228 0.160* 0.552 (12)
H17E 0.4347 0.1978 0.0340 0.160* 0.552 (12)
H17F 0.3908 0.1950 −0.0697 0.160* 0.552 (12)
C18' 0.154 (2) 0.1537 (17) −0.0493 (15) 0.083 (4)* 0.552 (12)
H18D 0.0463 0.1770 −0.0471 0.124* 0.552 (12)
H18E 0.1845 0.0589 −0.0303 0.124* 0.552 (12)
H18F 0.1882 0.1926 −0.1152 0.124* 0.552 (12)
C19 −0.1180 (8) 0.3676 (7) 0.4525 (7) 0.0524 (18)
C20 −0.2183 (11) 0.4959 (9) 0.3983 (7) 0.074 (3)
H20A −0.2489 0.4915 0.3365 0.110*
H20B −0.1644 0.5672 0.3861 0.110*
H20C −0.3057 0.5112 0.4376 0.110*
C21 0.192 (3) 0.573 (3) 0.260 (2) 0.107 (7)* 0.50
H21A 0.2097 0.6567 0.2627 0.129* 0.50
H21B 0.0950 0.5895 0.2286 0.129* 0.50
C22 0.308 (3) 0.525 (3) 0.197 (2) 0.117 (7)* 0.50
H22A 0.3097 0.5925 0.1341 0.176* 0.50
H22B 0.2863 0.4467 0.1867 0.176* 0.50
H22C 0.4052 0.5031 0.2281 0.176* 0.50
C23 0.690 (2) 0.287 (2) 0.1224 (14) 0.081 (5) 0.50
H23A 0.7180 0.3421 0.0591 0.121* 0.50
H23B 0.5824 0.3020 0.1279 0.121* 0.50
H23C 0.7284 0.1956 0.1289 0.121* 0.50
C24 0.7513 (19) 0.3194 (16) 0.1974 (12) 0.058 (4) 0.50
H24A 0.7141 0.4124 0.1901 0.070* 0.50
H24B 0.8602 0.3056 0.1912 0.070* 0.50
O1 −0.0909 (5) 0.2773 (5) 0.4110 (4) 0.0537 (13)
O2 −0.0635 (7) 0.3485 (6) 0.5334 (5) 0.0669 (15)
O3 −0.1018 (5) 0.0163 (4) 0.5695 (3) 0.0338 (9)
O4 0.1846 (10) 0.4916 (7) 0.3531 (5) 0.0344 (18) 0.50
H4 0.1170 0.5264 0.3826 0.052* 0.50
O5 0.7114 (8) 0.2386 (7) 0.2940 (5) 0.0252 (15) 0.50
H5 0.7511 0.2567 0.3367 0.038* 0.50
H2N 0.205 (8) −0.030 (3) 0.652 (5) 0.050 (6)*
H1N 0.225 (12) 0.271 (6) 0.394 (5) 0.095 (4)*
N2 0.1736 (6) 0.0556 (5) 0.6353 (4) 0.0366 (11)
N1 0.2504 (6) 0.2002 (5) 0.4438 (4) 0.0342 (11)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Zn1 0.0304 (4) 0.0382 (4) 0.0374 (5) −0.0082 (3) 0.0014 (3) −0.0165 (3)
C1 0.031 (3) 0.042 (3) 0.036 (3) −0.006 (2) 0.003 (2) −0.019 (2)
C2 0.035 (3) 0.049 (3) 0.041 (3) −0.009 (2) 0.001 (2) −0.024 (3)
C3 0.043 (3) 0.065 (4) 0.038 (3) −0.013 (3) 0.000 (3) −0.022 (3)
C4 0.040 (3) 0.052 (3) 0.040 (3) −0.015 (2) 0.003 (2) −0.022 (2)
C5 0.029 (2) 0.044 (3) 0.047 (3) −0.009 (2) −0.001 (2) −0.023 (2)
C6 0.040 (3) 0.058 (3) 0.049 (3) −0.012 (3) −0.002 (3) −0.026 (3)
C7 0.038 (3) 0.063 (4) 0.061 (4) −0.011 (3) −0.009 (3) −0.030 (3)
C8 0.032 (3) 0.061 (4) 0.060 (4) −0.016 (3) −0.005 (3) −0.024 (3)
C9 0.036 (3) 0.054 (3) 0.053 (3) −0.015 (3) 0.003 (3) −0.023 (3)
C10 0.030 (2) 0.041 (3) 0.048 (3) −0.008 (2) 0.000 (2) −0.023 (2)
C11 0.032 (3) 0.052 (3) 0.044 (3) −0.014 (2) 0.006 (2) −0.024 (2)
C12 0.035 (3) 0.051 (3) 0.040 (3) −0.015 (2) 0.007 (2) −0.022 (3)
C13 0.048 (3) 0.067 (4) 0.046 (3) −0.025 (3) 0.010 (3) −0.021 (3)
C14 0.055 (3) 0.069 (4) 0.042 (3) −0.021 (3) 0.009 (3) −0.024 (3)
C15 0.071 (4) 0.095 (5) 0.050 (4) −0.035 (4) 0.011 (3) −0.021 (4)
C19 0.035 (4) 0.041 (4) 0.077 (5) −0.008 (3) 0.003 (4) −0.014 (4)
C20 0.077 (6) 0.055 (5) 0.083 (6) 0.014 (4) −0.017 (5) −0.027 (5)
C23 0.067 (10) 0.097 (12) 0.058 (9) −0.011 (9) 0.004 (8) 0.000 (9)
C24 0.060 (9) 0.051 (8) 0.062 (9) −0.008 (7) −0.013 (7) −0.016 (7)
O1 0.042 (3) 0.040 (3) 0.078 (4) −0.001 (2) −0.005 (2) −0.021 (2)
O2 0.067 (4) 0.057 (3) 0.069 (4) −0.002 (3) −0.012 (3) −0.014 (3)
O3 0.033 (2) 0.039 (2) 0.033 (2) −0.0101 (17) 0.0037 (17) −0.0157 (18)
O4 0.056 (5) 0.015 (3) 0.024 (4) −0.001 (3) 0.009 (4) 0.000 (3)
O5 0.026 (4) 0.024 (4) 0.027 (4) −0.008 (3) −0.004 (3) −0.008 (3)
N2 0.034 (3) 0.042 (3) 0.040 (3) −0.010 (2) 0.000 (2) −0.019 (2)
N1 0.032 (3) 0.037 (3) 0.037 (3) −0.005 (2) 0.000 (2) −0.017 (2)

Geometric parameters (Å, °)

Zn1—O1 2.025 (5) C16—H16A 0.9600
Zn1—O3 2.033 (4) C16—H16B 0.9600
Zn1—O3i 2.043 (4) C16—H16C 0.9600
Zn1—N2 2.100 (5) C17—H17A 0.9600
Zn1—N1 2.104 (5) C17—H17B 0.9600
Zn1—Zn1i 3.0670 (13) C17—H17C 0.9600
C1—O3 1.341 (7) C18—H18A 0.9600
C1—C2 1.407 (8) C18—H18B 0.9600
C1—C12i 1.412 (9) C18—H18C 0.9600
C2—C3 1.403 (9) C16'—H16D 0.9600
C2—C4 1.501 (9) C16'—H16E 0.9600
C3—C14i 1.370 (10) C16'—H16F 0.9600
C3—H3 0.9300 C17'—H17D 0.9600
C4—N2 1.496 (8) C17'—H17E 0.9600
C4—H4A 0.9700 C17'—H17F 0.9600
C4—H4B 0.9700 C18'—H18D 0.9600
C5—C6 1.385 (9) C18'—H18E 0.9600
C5—C10 1.386 (9) C18'—H18F 0.9600
C5—N2 1.470 (8) C19—O2 1.223 (10)
C6—C7 1.363 (10) C19—O1 1.276 (9)
C6—H6 0.9300 C19—C20 1.497 (11)
C7—C8 1.374 (11) C20—H20A 0.9600
C7—H7 0.9300 C20—H20B 0.9600
C8—C9 1.386 (10) C20—H20C 0.9600
C8—H8 0.9300 C21—O4 1.34 (3)
C9—C10 1.371 (9) C21—C22 1.47 (3)
C9—H9 0.9300 C21—H21A 0.9700
C10—N1 1.456 (8) C21—H21B 0.9700
C11—N1 1.511 (7) C22—H22A 0.9600
C11—C12 1.517 (9) C22—H22B 0.9600
C11—H11A 0.9700 C22—H22C 0.9600
C11—H11B 0.9700 C23—C24 1.40 (2)
C12—C13 1.398 (10) C23—H23A 0.9600
C12—C1i 1.412 (9) C23—H23B 0.9600
C13—C14 1.387 (10) C23—H23C 0.9600
C13—H13 0.9300 C24—O5 1.446 (18)
C14—C3i 1.370 (10) C24—H24A 0.9700
C14—C15 1.540 (11) C24—H24B 0.9700
C15—C17' 1.40 (2) O3—Zn1i 2.043 (4)
C15—C16 1.426 (11) O4—H4 0.8200
C15—C17 1.426 (11) O5—H5 0.8200
C15—C18' 1.475 (17) N2—H2N 0.87 (3)
C15—C16' 1.479 (11) N1—H1N 0.86 (3)
C15—C18 1.57 (2)
O1—Zn1—O3 96.05 (19) H16A—C16—H16B 109.5
O1—Zn1—O3i 105.62 (19) C15—C16—H16C 109.5
O3—Zn1—O3i 82.40 (17) H16A—C16—H16C 109.5
O1—Zn1—N2 144.5 (2) H16B—C16—H16C 109.5
O3—Zn1—N2 88.07 (18) C15—C17—H17A 109.5
O3i—Zn1—N2 109.82 (19) C15—C17—H17B 109.5
O1—Zn1—N1 95.6 (2) H17A—C17—H17B 109.5
O3—Zn1—N1 168.18 (18) C15—C17—H17C 109.5
O3i—Zn1—N1 92.33 (17) H17A—C17—H17C 109.5
N2—Zn1—N1 83.8 (2) H17B—C17—H17C 109.5
O1—Zn1—Zn1i 104.44 (14) C15—C18—H18A 109.5
O3—Zn1—Zn1i 41.32 (11) C15—C18—H18B 109.5
O3i—Zn1—Zn1i 41.08 (11) H18A—C18—H18B 109.5
N2—Zn1—Zn1i 101.75 (15) C15—C18—H18C 109.5
N1—Zn1—Zn1i 132.53 (13) H18A—C18—H18C 109.5
O3—C1—C2 122.6 (6) H18B—C18—H18C 109.5
O3—C1—C12i 118.4 (5) C15—C16'—H16D 109.5
C2—C1—C12i 119.0 (6) C15—C16'—H16E 109.5
C3—C2—C1 118.2 (6) H16D—C16'—H16E 109.5
C3—C2—C4 118.5 (6) C15—C16'—H16F 109.5
C1—C2—C4 123.2 (6) H16D—C16'—H16F 109.5
C14i—C3—C2 123.6 (6) H16E—C16'—H16F 109.5
C14i—C3—H3 118.2 C15—C17'—H17D 109.5
C2—C3—H3 118.2 C15—C17'—H17E 109.5
N2—C4—C2 112.9 (5) H17D—C17'—H17E 109.5
N2—C4—H4A 109.0 C15—C17'—H17F 109.5
C2—C4—H4A 109.0 H17D—C17'—H17F 109.5
N2—C4—H4B 109.0 H17E—C17'—H17F 109.5
C2—C4—H4B 109.0 C15—C18'—H18D 109.5
H4A—C4—H4B 107.8 C15—C18'—H18E 109.5
C6—C5—C10 119.2 (6) H18D—C18'—H18E 109.5
C6—C5—N2 121.9 (6) C15—C18'—H18F 109.5
C10—C5—N2 118.9 (5) H18D—C18'—H18F 109.5
C7—C6—C5 121.1 (7) H18E—C18'—H18F 109.5
C7—C6—H6 119.5 O2—C19—O1 120.5 (7)
C5—C6—H6 119.5 O2—C19—C20 122.1 (7)
C6—C7—C8 119.9 (7) O1—C19—C20 117.4 (8)
C6—C7—H7 120.0 C19—C20—H20A 109.5
C8—C7—H7 120.0 C19—C20—H20B 109.5
C7—C8—C9 119.4 (6) H20A—C20—H20B 109.5
C7—C8—H8 120.3 C19—C20—H20C 109.5
C9—C8—H8 120.3 H20A—C20—H20C 109.5
C10—C9—C8 121.0 (7) H20B—C20—H20C 109.5
C10—C9—H9 119.5 O4—C21—C22 116 (2)
C8—C9—H9 119.5 O4—C21—H21A 108.2
C9—C10—C5 119.4 (6) C22—C21—H21A 108.2
C9—C10—N1 121.4 (6) O4—C21—H21B 108.2
C5—C10—N1 119.2 (5) C22—C21—H21B 108.2
N1—C11—C12 112.1 (5) H21A—C21—H21B 107.4
N1—C11—H11A 109.2 C21—C22—H22A 109.5
C12—C11—H11A 109.2 C21—C22—H22B 109.5
N1—C11—H11B 109.2 H22A—C22—H22B 109.5
C12—C11—H11B 109.2 C21—C22—H22C 109.5
H11A—C11—H11B 107.9 H22A—C22—H22C 109.5
C13—C12—C1i 119.9 (6) H22B—C22—H22C 109.5
C13—C12—C11 121.2 (6) C24—C23—H23A 109.5
C1i—C12—C11 118.3 (6) C24—C23—H23B 109.5
C14—C13—C12 121.6 (7) H23A—C23—H23B 109.5
C14—C13—H13 119.2 C24—C23—H23C 109.5
C12—C13—H13 119.2 H23A—C23—H23C 109.5
C3i—C14—C13 117.6 (7) H23B—C23—H23C 109.5
C3i—C14—C15 121.7 (7) C23—C24—O5 111.0 (14)
C13—C14—C15 120.6 (7) C23—C24—H24A 109.4
C17'—C15—C16 135.3 (16) O5—C24—H24A 109.4
C17'—C15—C17 45.7 (11) C23—C24—H24B 109.4
C16—C15—C17 113.1 (11) O5—C24—H24B 109.4
C17'—C15—C18' 98.4 (13) H24A—C24—H24B 108.0
C16—C15—C18' 56.2 (11) C19—O1—Zn1 106.4 (5)
C17—C15—C18' 122.3 (14) C1—O3—Zn1 128.5 (4)
C17'—C15—C16' 123.3 (15) C1—O3—Zn1i 113.8 (4)
C16—C15—C16' 50.1 (11) Zn1—O3—Zn1i 97.60 (17)
C17—C15—C16' 78.5 (13) C21—O4—H4 109.5
C18'—C15—C16' 105.0 (10) C24—O5—H5 109.5
C17'—C15—C14 108.8 (12) C5—N2—C4 114.9 (5)
C16—C15—C14 115.4 (13) C5—N2—Zn1 107.9 (4)
C17—C15—C14 118.0 (11) C4—N2—Zn1 107.6 (4)
C18'—C15—C14 116.1 (10) C5—N2—H2N 109 (5)
C16'—C15—C14 105.7 (12) C4—N2—H2N 107 (5)
C17'—C15—C18 58.0 (8) Zn1—N2—H2N 110 (5)
C16—C15—C18 102.3 (11) C10—N1—C11 110.9 (5)
C17—C15—C18 99.6 (14) C10—N1—Zn1 108.1 (4)
C18'—C15—C18 46.8 (10) C11—N1—Zn1 110.1 (3)
C16'—C15—C18 145.6 (14) C10—N1—H1N 124 (7)
C14—C15—C18 105.2 (12) C11—N1—H1N 93 (7)
C15—C16—H16A 109.5 Zn1—N1—H1N 109 (7)
C15—C16—H16B 109.5

Symmetry codes: (i) −x, −y, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C4—H4A···O2 0.97 2.45 3.246 (10) 139
N1—H1N···O4 0.86 (7) 2.23 (7) 2.952 (9) 141 (6)
N2—H2N···O5ii 0.87 (4) 2.13 (4) 2.999 (9) 175 (4)
O4—H4···O2iii 0.82 2.06 2.768 (10) 145
O5—H5···O1iv 0.82 1.92 2.700 (9) 159

Symmetry codes: (ii) −x+1, −y, −z+1; (iii) −x, −y+1, −z+1; (iv) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2961).

References

  1. Bazzicalupi, C., Bencini, A., Bianchi, A., Fusi, V., Giorgi, C., Paoletti, P., Valtancoli, B. & Zanchi, D. (1997). Inorg. Chem.36, 2784–2790. [DOI] [PubMed]
  2. Burley, S. K., David, P. R., Taylor, A. & Lipscomb, W. N. (1990). Proc. Natl Acad. Sci. USA, 87, 6878–6882. [DOI] [PMC free article] [PubMed]
  3. Dutta, B., Bag, P., Flörke, U. & Nag, K. (2005). Inorg. Chem 44, 147–157. [DOI] [PubMed]
  4. Lipscomb, W. N. & Straeter, N. (1996). Chem. Rev.96, 2375–2434. [DOI] [PubMed]
  5. Liu, J., Ma, J.-F., Li, S.-L. & Ping, G.-J. (2007). Acta Cryst. E63, m1954.
  6. Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Abingdon, England.
  7. Roderick, S. & Mathews, B. W. (1993). Biochemistry, 32, 3907–3912. [DOI] [PubMed]
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Tian, Y. Q., Tong, J., Frenzen, G. & Sun, J. Y. (1999). J. Org. Chem.64, 1442–1446. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809021990/hb2961sup1.cif

e-65-0m777-sup1.cif (24.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809021990/hb2961Isup2.hkl

e-65-0m777-Isup2.hkl (305.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES