Abstract
The title compound, C6H12O6, also known as d-Tagatose, occurs in its furanose and pyranose forms in solution, but only the α-pyranose form crystallizes out. In the crystal, the molecules form hydrogen bonded chains propagating in [100] linked by O—H⋯O interactions. Further O—H⋯O bonds cross-link the chains.
Related literature
For the d-tagatose market price, syntheses and applications, see: Angyal (1991 ▶); Beadle et al. (1992 ▶); Granstrom et al. (2004 ▶); Izumori (2002 ▶); Skytte (2002 ▶); Porwell (2007 ▶). For the potential of the title compound as a chiral building block, see: Soengas et al. (2005 ▶); Jones et al. (2007 ▶, 2008 ▶); Yoshihara et al. (2008 ▶). For related crystallographic literature, see: Takagi et al. (1969 ▶); Görbitz (1999 ▶); Watkin et al. (2005 ▶); Kwiecien et al. (2008 ▶); Larson (1970 ▶).
Experimental
Crystal data
C6H12O6
M r = 180.16
Orthorhombic,
a = 6.2201 (1) Å
b = 6.5022 (1) Å
c = 17.6629 (4) Å
V = 714.36 (2) Å3
Z = 4
Mo Kα radiation
μ = 0.15 mm−1
T = 190 K
0.50 × 0.30 × 0.20 mm
Data collection
Nonius KappaCCD diffractometer
Absorption correction: multi-scan (DENZO/SCALEPACK; Otwinowski & Minor, 1997 ▶) T min = 0.96, T max = 0.97
2343 measured reflections
1378 independent reflections
1351 reflections with I > 2.0σ(I)
R int = 0.010
Refinement
R[F 2 > 2σ(F 2)] = 0.025
wR(F 2) = 0.065
S = 0.96
1378 reflections
110 parameters
H-atom parameters constrained
Δρmax = 0.34 e Å−3
Δρmin = −0.20 e Å−3
Data collection: COLLECT (Nonius, 2001 ▶); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997 ▶); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994 ▶); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003 ▶); molecular graphics: CAMERON (Watkin et al., 1996 ▶); software used to prepare material for publication: CRYSTALS.
Supplementary Material
Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809017656/fl2248sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536809017656/fl2248Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
Table 1. Hydrogen-bond geometry (Å, °).
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| O4—H41⋯O10i | 0.81 | 2.02 | 2.8236 (14) | 171 |
| O9—H91⋯O1ii | 0.83 | 1.90 | 2.7203 (14) | 173 |
| O12—H121⋯O4iii | 0.83 | 2.09 | 2.7875 (14) | 142 |
| O10—H101⋯O4iv | 0.81 | 2.10 | 2.8518 (14) | 155 |
| O1—H11⋯O6v | 0.81 | 1.96 | 2.7661 (14) | 175 |
Symmetry codes: (i)
; (ii)
; (iii)
; (iv)
; (v)
.
Acknowledgments
Arla Foods generously provided a sample of d-tagatose, obtained as described (Beadle et al., 1992 ▶) from d-galactose, for crystallization.
supplementary crystallographic information
Comment
Until recently D-tagatose was a rare and expensive hexose; the price in the 2007–2008 Aldrich catalogue was 331.00 pounds sterling for 5 g (Porwell, 2007). It is now available cheaply in large quantities [around 5 pounds sterling per kg] prepared by either chemical (Beadle et al., 1992) or biotechnological (Granstrom et al., 2004; Izumori, 2002) techniques, and it is widely investigated as a low calorie sweetener (Skytte, 2002); the potential of D-tagatose as a chiral building block is also beginning to be recognized (Soengas et al., 2005; Watkin et al., 2005; Jones et al., 2007; Jones et al., 2008; Yoshihara et al., 2008). The crystal structure of another hitherto rare diasteroisomeric ketohexose, D-psicose, has recently been published (Kwiecien et al., 2008). A previous α-D-tagatose structure solution (Takagi et al., 1969), did not report either three-dimensional coordinates or bond lengths and angles. Although in aqueous solution both furanose and pyranose forms are present, only the α-pyranose crystallizes out. The crystal structure of the title compound (Fig. 1) consists of a network of hydrogen-bonded chains running parallel to the a axis (Fig.2). Referring to Table 1, O4—H41···O10 is the only intramolecular hydrogen bond detected in the structure. O12—H121···O4 and O1—H11···O6 link the molecules into chains, and O9—H91···O1 and O10—H101···O4 stabilize the structure with inter-chain hydrogen bonds. O4 is involved as an acceptor in two hydrogen bonds and as a donor in an almost linear hydrogen bond - the latter by means of H41. The crystal structure shows three equatorial groups and two axial groups, one of which is an axial anomeric hydroxyl group; this would be expected to be the most thermodynamically stable pyranose anomer. The fairly high value of the anisotropic displacement of O12 - compared to the other C and O atoms - is probably due to thermal motion. It results also in a higher - compared to the other H atoms - isotropic displacement for H121 i.e. the hydrogen atom connected to the last atom of the flexible C7—C11—O12 chain.
Experimental
In aqueous solution the major form present is α-D-tagatopyranose (71%) (Fig.1) with 18% of the β-pyranose and small amount of the furanoses (Angyal, 1991). The title compound was recrystallized from a 1:10 mixture of water and acetone allowing the slow competetive evaporation of the solvents, after which, transparent prismatic crystals appeared.
Refinement
The data were collected with molybdenum radiation and since there were no atoms heavier than Si present, there were no measurable anomalous differences and it was admissible to merge Friedel pairs of reflections. Changes in illuminated volume were kept to a minimum, and were taken into account (Görbitz, 1999) by the multi-scan inter-frame scaling (DENZO/SCALEPACK, Otwinowski & Minor, 1997). The H atoms were all located in a difference map, but those attached to carbon atoms were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C—H in the range 0.93–0.98, N—H in the range 0.86–0.89 O—H = 0.82 Å) and Uiso(H) (in the range 1.2–1.5 times Ueq of the parent atom), after which the positions were refined with riding constraints.
Figures
Fig. 1.
The title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitary radius.
Fig. 2.
Packing diagram of title compound viewed down the a axis. Hydrogen bonds are shown as dotted lines.
Fig. 3.
D-Tagatose and α-D-tagatopyranose.
Crystal data
| C6H12O6 | F(000) = 384 |
| Mr = 180.16 | Dx = 1.675 Mg m−3 |
| Orthorhombic, P212121 | Mo Kα radiation, λ = 0.71073 Å |
| Hall symbol: P 2ac 2ab | Cell parameters from 1344 reflections |
| a = 6.2201 (1) Å | θ = 5–32° |
| b = 6.5022 (1) Å | µ = 0.15 mm−1 |
| c = 17.6629 (4) Å | T = 190 K |
| V = 714.36 (2) Å3 | Prism, colourless |
| Z = 4 | 0.50 × 0.30 × 0.20 mm |
Data collection
| Nonius KappaCCD diffractometer | 1351 reflections with I > 2.0σ(I) |
| graphite | Rint = 0.010 |
| ω scans | θmax = 31.5°, θmin = 5.6° |
| Absorption correction: multi-scan (DENZO/SCALEPACK; Otwinowski & Minor, 1997) | h = −9→9 |
| Tmin = 0.96, Tmax = 0.97 | k = −9→9 |
| 2343 measured reflections | l = −25→25 |
| 1378 independent reflections |
Refinement
| Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
| Least-squares matrix: full | H-atom parameters constrained |
| R[F2 > 2σ(F2)] = 0.025 | Method = Modified Sheldrick w = 1/[σ2(F2) + ( 0.04P)2 + 0.18P], where P = (max(Fo2,0) + 2Fc2)/3 |
| wR(F2) = 0.065 | (Δ/σ)max = 0.0001 |
| S = 0.97 | Δρmax = 0.34 e Å−3 |
| 1378 reflections | Δρmin = −0.20 e Å−3 |
| 110 parameters | Extinction correction: Larson (1970), Equation 22 |
| 0 restraints | Extinction coefficient: 260 (40) |
| Primary atom site location: structure-invariant direct methods |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| O1 | −0.20580 (13) | 0.34108 (12) | 0.17994 (4) | 0.0157 | |
| C2 | −0.02883 (15) | 0.29006 (15) | 0.13171 (5) | 0.0113 | |
| C3 | 0.10689 (16) | 0.47890 (15) | 0.11569 (5) | 0.0118 | |
| O4 | −0.02429 (12) | 0.62640 (12) | 0.07662 (4) | 0.0150 | |
| C5 | 0.29501 (17) | 0.41697 (16) | 0.06531 (6) | 0.0143 | |
| O6 | 0.42202 (12) | 0.25811 (12) | 0.09985 (4) | 0.0139 | |
| C7 | 0.30499 (16) | 0.07510 (15) | 0.11774 (5) | 0.0118 | |
| C8 | 0.11083 (16) | 0.12491 (15) | 0.16890 (5) | 0.0118 | |
| O9 | 0.18387 (14) | 0.19838 (12) | 0.24031 (4) | 0.0171 | |
| O10 | 0.22054 (13) | −0.01458 (12) | 0.05105 (4) | 0.0142 | |
| C11 | 0.46654 (17) | −0.06848 (16) | 0.15537 (6) | 0.0155 | |
| O12 | 0.61351 (15) | −0.12797 (16) | 0.09805 (5) | 0.0271 | |
| H21 | −0.0851 | 0.2365 | 0.0849 | 0.0134* | |
| H31 | 0.1585 | 0.5338 | 0.1629 | 0.0151* | |
| H51 | 0.3943 | 0.5322 | 0.0579 | 0.0174* | |
| H52 | 0.2364 | 0.3698 | 0.0173 | 0.0181* | |
| H81 | 0.0263 | 0.0023 | 0.1724 | 0.0147* | |
| H112 | 0.5375 | −0.0021 | 0.1979 | 0.0193* | |
| H111 | 0.3929 | −0.1876 | 0.1738 | 0.0194* | |
| H41 | 0.0463 | 0.7255 | 0.0642 | 0.0240* | |
| H91 | 0.1860 | 0.0956 | 0.2678 | 0.0275* | |
| H121 | 0.7044 | −0.2120 | 0.1130 | 0.0413* | |
| H101 | 0.3225 | −0.0416 | 0.0248 | 0.0252* | |
| H11 | −0.3163 | 0.3242 | 0.1565 | 0.0238* |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| O1 | 0.0103 (3) | 0.0192 (4) | 0.0177 (3) | −0.0009 (3) | 0.0026 (3) | −0.0047 (3) |
| C2 | 0.0102 (4) | 0.0120 (4) | 0.0118 (4) | −0.0005 (4) | 0.0005 (3) | −0.0019 (3) |
| C3 | 0.0107 (4) | 0.0107 (4) | 0.0141 (4) | 0.0001 (3) | −0.0003 (3) | 0.0004 (3) |
| O4 | 0.0131 (3) | 0.0119 (3) | 0.0201 (3) | 0.0026 (3) | −0.0007 (3) | 0.0027 (3) |
| C5 | 0.0125 (4) | 0.0121 (4) | 0.0183 (4) | 0.0022 (4) | 0.0034 (4) | 0.0041 (3) |
| O6 | 0.0097 (3) | 0.0111 (3) | 0.0209 (3) | −0.0001 (3) | −0.0007 (3) | 0.0036 (3) |
| C7 | 0.0112 (4) | 0.0100 (4) | 0.0143 (4) | −0.0003 (4) | −0.0007 (3) | 0.0007 (3) |
| C8 | 0.0124 (4) | 0.0107 (4) | 0.0122 (4) | −0.0020 (4) | −0.0001 (3) | −0.0004 (3) |
| O9 | 0.0243 (4) | 0.0154 (3) | 0.0115 (3) | −0.0007 (3) | −0.0033 (3) | 0.0001 (3) |
| O10 | 0.0138 (3) | 0.0151 (3) | 0.0137 (3) | 0.0009 (3) | 0.0005 (3) | −0.0030 (3) |
| C11 | 0.0136 (4) | 0.0139 (4) | 0.0191 (4) | 0.0026 (4) | −0.0015 (4) | 0.0033 (4) |
| O12 | 0.0213 (4) | 0.0322 (5) | 0.0280 (4) | 0.0161 (4) | 0.0044 (4) | 0.0078 (4) |
Geometric parameters (Å, °)
| O1—C2 | 1.4309 (12) | O6—C7 | 1.4303 (12) |
| O1—H11 | 0.810 | C7—C8 | 1.5426 (14) |
| C2—C3 | 1.5167 (14) | C7—O10 | 1.4155 (12) |
| C2—C8 | 1.5294 (14) | C7—C11 | 1.5241 (14) |
| C2—H21 | 0.963 | C8—O9 | 1.4232 (11) |
| C3—O4 | 1.4359 (12) | C8—H81 | 0.957 |
| C3—C5 | 1.5241 (14) | O9—H91 | 0.826 |
| C3—H31 | 0.963 | O10—H101 | 0.805 |
| O4—H41 | 0.810 | C11—O12 | 1.4178 (14) |
| C5—O6 | 1.4364 (12) | C11—H112 | 0.973 |
| C5—H51 | 0.980 | C11—H111 | 0.957 |
| C5—H52 | 0.972 | O12—H121 | 0.829 |
| C2—O1—H11 | 108.5 | O6—C7—C8 | 110.68 (8) |
| O1—C2—C3 | 110.58 (8) | O6—C7—O10 | 110.35 (8) |
| O1—C2—C8 | 110.13 (8) | C8—C7—O10 | 106.46 (8) |
| C3—C2—C8 | 109.41 (8) | O6—C7—C11 | 105.69 (8) |
| O1—C2—H21 | 108.4 | C8—C7—C11 | 112.92 (8) |
| C3—C2—H21 | 109.6 | O10—C7—C11 | 110.81 (8) |
| C8—C2—H21 | 108.7 | C7—C8—C2 | 109.91 (8) |
| C2—C3—O4 | 108.31 (8) | C7—C8—O9 | 109.85 (8) |
| C2—C3—C5 | 108.81 (8) | C2—C8—O9 | 109.04 (8) |
| O4—C3—C5 | 109.40 (8) | C7—C8—H81 | 107.0 |
| C2—C3—H31 | 108.9 | C2—C8—H81 | 107.5 |
| O4—C3—H31 | 111.0 | O9—C8—H81 | 113.5 |
| C5—C3—H31 | 110.3 | C8—O9—H91 | 104.7 |
| C3—O4—H41 | 110.7 | C7—O10—H101 | 106.1 |
| C3—C5—O6 | 111.36 (8) | C7—C11—O12 | 106.31 (8) |
| C3—C5—H51 | 111.1 | C7—C11—H112 | 111.4 |
| O6—C5—H51 | 105.1 | O12—C11—H112 | 112.4 |
| C3—C5—H52 | 107.7 | C7—C11—H111 | 109.2 |
| O6—C5—H52 | 110.4 | O12—C11—H111 | 109.3 |
| H51—C5—H52 | 111.2 | H112—C11—H111 | 108.3 |
| C5—O6—C7 | 114.34 (8) | C11—O12—H121 | 113.0 |
Hydrogen-bond geometry (Å, °)
| D—H···A | D—H | H···A | D···A | D—H···A |
| O4—H41···O10i | 0.81 | 2.02 | 2.8236 (14) | 171 |
| O9—H91···O1ii | 0.83 | 1.90 | 2.7203 (14) | 173 |
| O12—H121···O4iii | 0.83 | 2.09 | 2.7875 (14) | 142 |
| O10—H101···O4iv | 0.81 | 2.10 | 2.8518 (14) | 155 |
| O1—H11···O6v | 0.81 | 1.96 | 2.7661 (14) | 175 |
Symmetry codes: (i) x, y+1, z; (ii) −x, y−1/2, −z+1/2; (iii) x+1, y−1, z; (iv) x+1/2, −y+1/2, −z; (v) x−1, y, z.
Footnotes
Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FL2248).
References
- Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst.27, 435.
- Angyal, S. J. (1991). Adv. Carbohydr. Chem. Biochem.49, 19–35.
- Beadle, J. R., Saunders, J. P. & Wajda, T. J. (1992). Process for Manufacturing tagatose, US Patent 5 078 796, January 7, 1992.
- Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst.36, 1487.
- Görbitz, C. H. (1999). Acta Cryst. B55, 1090–1098. [DOI] [PubMed]
- Granstrom, T. B., Takata, G., Tokuda, M. & Izumori, K. (2004). J. Biosci. Bioeng.97, 89–94. [DOI] [PubMed]
- Izumori, K. (2002). Naturwissennshaften, 89, 120-124.
- Jones, N. A., Jenkinson, S. F., Soengas, R., Fanefjord, M., Wormald, M. R., Dwek, R. A., Kiran, G. P., Devendar, R., Takata, G., Morimoto, K., Izumori, K. & Fleet, G. W. J. (2007). Tetrahedron Asymmetry, 18, 774–786.
- Jones, N. A., Rao, D., Yoshihara, A., Gullapalli, P., Morimoto, K., Takata, G., Hunter, S. J., Wormald, M. R., Dwek, R. A., Izumori, K. & Fleet, G. W. J. (2008). Tetrahedron Asymmetry, 19, 1904–1918.
- Kwiecien, A., Slepokura, K. & Lis, T. (2008). Carbohydrate Res.343, 2336–2339. [DOI] [PubMed]
- Larson, A. C. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 291–294. Copenhagen: Munksgaard.
- Nonius (2001). COLLECT Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Porwell, J. (2007). Aldrich Handbook of Fine Chemicals p. 2253. Milwaukee, WI, USA: Aldrich.
- Skytte, U. P. (2002). Cereal Foods World, 47, 224–227.
- Soengas, R., Izumori, K., Simone, M. I., Watkin, D. J., Skytte, U. P., Soetaert, W. & Fleet, G. W. J. (2005). Tetrahedron Lett.46, 5755–5759.
- Takagi, S. & Rosenstein, R. D. (1969). Carbohydrate Res.11, 156–158.
- Watkin, D. J., Glawar, A. F. G., Soengas, R., Skytte, U. P., Wormald, M. R., Dwek, R. A. & Fleet, G. W. J. (2005). Acta Cryst. E61, o2891–o2893.
- Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON, Chemical Crystallography Laboratory, Oxford, UK.
- Yoshihara, A., Haraguchi, S., Gullapalli, P., Rao, D., Morimoto, K., Takata, G., Jones, N. A., Jenkinson, S. F., Wormald, M. R., Dwek, R. A., Fleet, G. W. J. & Izumori, K. (2008). Tetrahedron Asymmetry, 19, 739–745.
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809017656/fl2248sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536809017656/fl2248Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report



