Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 May 23;65(Pt 6):o1393–o1394. doi: 10.1107/S1600536809017656

α-d-Tagatopyran­ose

Francesco Punzo a,*,, David J Watkin b, George W J Fleet c
PMCID: PMC2969552  PMID: 21583239

Abstract

The title compound, C6H12O6, also known as d-Tagatose, occurs in its furanose and pyranose forms in solution, but only the α-pyran­ose form crystallizes out. In the crystal, the molecules form hydrogen bonded chains propagating in [100] linked by O—H⋯O interactions. Further O—H⋯O bonds cross-link the chains.

Related literature

For the d-tagatose market price, syntheses and applications, see: Angyal (1991); Beadle et al. (1992); Granstrom et al. (2004); Izumori (2002); Skytte (2002); Porwell (2007). For the potential of the title compound as a chiral building block, see: Soengas et al. (2005); Jones et al. (2007, 2008); Yoshihara et al. (2008). For related crystallographic literature, see: Takagi et al. (1969); Görbitz (1999); Watkin et al. (2005); Kwiecien et al. (2008); Larson (1970).graphic file with name e-65-o1393-scheme1.jpg

Experimental

Crystal data

  • C6H12O6

  • M r = 180.16

  • Orthorhombic, Inline graphic

  • a = 6.2201 (1) Å

  • b = 6.5022 (1) Å

  • c = 17.6629 (4) Å

  • V = 714.36 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.15 mm−1

  • T = 190 K

  • 0.50 × 0.30 × 0.20 mm

Data collection

  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (DENZO/SCALEPACK; Otwinowski & Minor, 1997) T min = 0.96, T max = 0.97

  • 2343 measured reflections

  • 1378 independent reflections

  • 1351 reflections with I > 2.0σ(I)

  • R int = 0.010

Refinement

  • R[F 2 > 2σ(F 2)] = 0.025

  • wR(F 2) = 0.065

  • S = 0.96

  • 1378 reflections

  • 110 parameters

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.20 e Å−3

Data collection: COLLECT (Nonius, 2001); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809017656/fl2248sup1.cif

e-65-o1393-sup1.cif (13.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809017656/fl2248Isup2.hkl

e-65-o1393-Isup2.hkl (69.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H41⋯O10i 0.81 2.02 2.8236 (14) 171
O9—H91⋯O1ii 0.83 1.90 2.7203 (14) 173
O12—H121⋯O4iii 0.83 2.09 2.7875 (14) 142
O10—H101⋯O4iv 0.81 2.10 2.8518 (14) 155
O1—H11⋯O6v 0.81 1.96 2.7661 (14) 175

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic.

Acknowledgments

Arla Foods generously provided a sample of d-tagatose, obtained as described (Beadle et al., 1992) from d-galactose, for crystallization.

supplementary crystallographic information

Comment

Until recently D-tagatose was a rare and expensive hexose; the price in the 2007–2008 Aldrich catalogue was 331.00 pounds sterling for 5 g (Porwell, 2007). It is now available cheaply in large quantities [around 5 pounds sterling per kg] prepared by either chemical (Beadle et al., 1992) or biotechnological (Granstrom et al., 2004; Izumori, 2002) techniques, and it is widely investigated as a low calorie sweetener (Skytte, 2002); the potential of D-tagatose as a chiral building block is also beginning to be recognized (Soengas et al., 2005; Watkin et al., 2005; Jones et al., 2007; Jones et al., 2008; Yoshihara et al., 2008). The crystal structure of another hitherto rare diasteroisomeric ketohexose, D-psicose, has recently been published (Kwiecien et al., 2008). A previous α-D-tagatose structure solution (Takagi et al., 1969), did not report either three-dimensional coordinates or bond lengths and angles. Although in aqueous solution both furanose and pyranose forms are present, only the α-pyranose crystallizes out. The crystal structure of the title compound (Fig. 1) consists of a network of hydrogen-bonded chains running parallel to the a axis (Fig.2). Referring to Table 1, O4—H41···O10 is the only intramolecular hydrogen bond detected in the structure. O12—H121···O4 and O1—H11···O6 link the molecules into chains, and O9—H91···O1 and O10—H101···O4 stabilize the structure with inter-chain hydrogen bonds. O4 is involved as an acceptor in two hydrogen bonds and as a donor in an almost linear hydrogen bond - the latter by means of H41. The crystal structure shows three equatorial groups and two axial groups, one of which is an axial anomeric hydroxyl group; this would be expected to be the most thermodynamically stable pyranose anomer. The fairly high value of the anisotropic displacement of O12 - compared to the other C and O atoms - is probably due to thermal motion. It results also in a higher - compared to the other H atoms - isotropic displacement for H121 i.e. the hydrogen atom connected to the last atom of the flexible C7—C11—O12 chain.

Experimental

In aqueous solution the major form present is α-D-tagatopyranose (71%) (Fig.1) with 18% of the β-pyranose and small amount of the furanoses (Angyal, 1991). The title compound was recrystallized from a 1:10 mixture of water and acetone allowing the slow competetive evaporation of the solvents, after which, transparent prismatic crystals appeared.

Refinement

The data were collected with molybdenum radiation and since there were no atoms heavier than Si present, there were no measurable anomalous differences and it was admissible to merge Friedel pairs of reflections. Changes in illuminated volume were kept to a minimum, and were taken into account (Görbitz, 1999) by the multi-scan inter-frame scaling (DENZO/SCALEPACK, Otwinowski & Minor, 1997). The H atoms were all located in a difference map, but those attached to carbon atoms were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C—H in the range 0.93–0.98, N—H in the range 0.86–0.89 O—H = 0.82 Å) and Uiso(H) (in the range 1.2–1.5 times Ueq of the parent atom), after which the positions were refined with riding constraints.

Figures

Fig. 1.

Fig. 1.

The title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitary radius.

Fig. 2.

Fig. 2.

Packing diagram of title compound viewed down the a axis. Hydrogen bonds are shown as dotted lines.

Fig. 3.

Fig. 3.

D-Tagatose and α-D-tagatopyranose.

Crystal data

C6H12O6 F(000) = 384
Mr = 180.16 Dx = 1.675 Mg m3
Orthorhombic, P212121 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2ab Cell parameters from 1344 reflections
a = 6.2201 (1) Å θ = 5–32°
b = 6.5022 (1) Å µ = 0.15 mm1
c = 17.6629 (4) Å T = 190 K
V = 714.36 (2) Å3 Prism, colourless
Z = 4 0.50 × 0.30 × 0.20 mm

Data collection

Nonius KappaCCD diffractometer 1351 reflections with I > 2.0σ(I)
graphite Rint = 0.010
ω scans θmax = 31.5°, θmin = 5.6°
Absorption correction: multi-scan (DENZO/SCALEPACK; Otwinowski & Minor, 1997) h = −9→9
Tmin = 0.96, Tmax = 0.97 k = −9→9
2343 measured reflections l = −25→25
1378 independent reflections

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.025 Method = Modified Sheldrick w = 1/[σ2(F2) + ( 0.04P)2 + 0.18P], where P = (max(Fo2,0) + 2Fc2)/3
wR(F2) = 0.065 (Δ/σ)max = 0.0001
S = 0.97 Δρmax = 0.34 e Å3
1378 reflections Δρmin = −0.20 e Å3
110 parameters Extinction correction: Larson (1970), Equation 22
0 restraints Extinction coefficient: 260 (40)
Primary atom site location: structure-invariant direct methods

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 −0.20580 (13) 0.34108 (12) 0.17994 (4) 0.0157
C2 −0.02883 (15) 0.29006 (15) 0.13171 (5) 0.0113
C3 0.10689 (16) 0.47890 (15) 0.11569 (5) 0.0118
O4 −0.02429 (12) 0.62640 (12) 0.07662 (4) 0.0150
C5 0.29501 (17) 0.41697 (16) 0.06531 (6) 0.0143
O6 0.42202 (12) 0.25811 (12) 0.09985 (4) 0.0139
C7 0.30499 (16) 0.07510 (15) 0.11774 (5) 0.0118
C8 0.11083 (16) 0.12491 (15) 0.16890 (5) 0.0118
O9 0.18387 (14) 0.19838 (12) 0.24031 (4) 0.0171
O10 0.22054 (13) −0.01458 (12) 0.05105 (4) 0.0142
C11 0.46654 (17) −0.06848 (16) 0.15537 (6) 0.0155
O12 0.61351 (15) −0.12797 (16) 0.09805 (5) 0.0271
H21 −0.0851 0.2365 0.0849 0.0134*
H31 0.1585 0.5338 0.1629 0.0151*
H51 0.3943 0.5322 0.0579 0.0174*
H52 0.2364 0.3698 0.0173 0.0181*
H81 0.0263 0.0023 0.1724 0.0147*
H112 0.5375 −0.0021 0.1979 0.0193*
H111 0.3929 −0.1876 0.1738 0.0194*
H41 0.0463 0.7255 0.0642 0.0240*
H91 0.1860 0.0956 0.2678 0.0275*
H121 0.7044 −0.2120 0.1130 0.0413*
H101 0.3225 −0.0416 0.0248 0.0252*
H11 −0.3163 0.3242 0.1565 0.0238*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0103 (3) 0.0192 (4) 0.0177 (3) −0.0009 (3) 0.0026 (3) −0.0047 (3)
C2 0.0102 (4) 0.0120 (4) 0.0118 (4) −0.0005 (4) 0.0005 (3) −0.0019 (3)
C3 0.0107 (4) 0.0107 (4) 0.0141 (4) 0.0001 (3) −0.0003 (3) 0.0004 (3)
O4 0.0131 (3) 0.0119 (3) 0.0201 (3) 0.0026 (3) −0.0007 (3) 0.0027 (3)
C5 0.0125 (4) 0.0121 (4) 0.0183 (4) 0.0022 (4) 0.0034 (4) 0.0041 (3)
O6 0.0097 (3) 0.0111 (3) 0.0209 (3) −0.0001 (3) −0.0007 (3) 0.0036 (3)
C7 0.0112 (4) 0.0100 (4) 0.0143 (4) −0.0003 (4) −0.0007 (3) 0.0007 (3)
C8 0.0124 (4) 0.0107 (4) 0.0122 (4) −0.0020 (4) −0.0001 (3) −0.0004 (3)
O9 0.0243 (4) 0.0154 (3) 0.0115 (3) −0.0007 (3) −0.0033 (3) 0.0001 (3)
O10 0.0138 (3) 0.0151 (3) 0.0137 (3) 0.0009 (3) 0.0005 (3) −0.0030 (3)
C11 0.0136 (4) 0.0139 (4) 0.0191 (4) 0.0026 (4) −0.0015 (4) 0.0033 (4)
O12 0.0213 (4) 0.0322 (5) 0.0280 (4) 0.0161 (4) 0.0044 (4) 0.0078 (4)

Geometric parameters (Å, °)

O1—C2 1.4309 (12) O6—C7 1.4303 (12)
O1—H11 0.810 C7—C8 1.5426 (14)
C2—C3 1.5167 (14) C7—O10 1.4155 (12)
C2—C8 1.5294 (14) C7—C11 1.5241 (14)
C2—H21 0.963 C8—O9 1.4232 (11)
C3—O4 1.4359 (12) C8—H81 0.957
C3—C5 1.5241 (14) O9—H91 0.826
C3—H31 0.963 O10—H101 0.805
O4—H41 0.810 C11—O12 1.4178 (14)
C5—O6 1.4364 (12) C11—H112 0.973
C5—H51 0.980 C11—H111 0.957
C5—H52 0.972 O12—H121 0.829
C2—O1—H11 108.5 O6—C7—C8 110.68 (8)
O1—C2—C3 110.58 (8) O6—C7—O10 110.35 (8)
O1—C2—C8 110.13 (8) C8—C7—O10 106.46 (8)
C3—C2—C8 109.41 (8) O6—C7—C11 105.69 (8)
O1—C2—H21 108.4 C8—C7—C11 112.92 (8)
C3—C2—H21 109.6 O10—C7—C11 110.81 (8)
C8—C2—H21 108.7 C7—C8—C2 109.91 (8)
C2—C3—O4 108.31 (8) C7—C8—O9 109.85 (8)
C2—C3—C5 108.81 (8) C2—C8—O9 109.04 (8)
O4—C3—C5 109.40 (8) C7—C8—H81 107.0
C2—C3—H31 108.9 C2—C8—H81 107.5
O4—C3—H31 111.0 O9—C8—H81 113.5
C5—C3—H31 110.3 C8—O9—H91 104.7
C3—O4—H41 110.7 C7—O10—H101 106.1
C3—C5—O6 111.36 (8) C7—C11—O12 106.31 (8)
C3—C5—H51 111.1 C7—C11—H112 111.4
O6—C5—H51 105.1 O12—C11—H112 112.4
C3—C5—H52 107.7 C7—C11—H111 109.2
O6—C5—H52 110.4 O12—C11—H111 109.3
H51—C5—H52 111.2 H112—C11—H111 108.3
C5—O6—C7 114.34 (8) C11—O12—H121 113.0

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O4—H41···O10i 0.81 2.02 2.8236 (14) 171
O9—H91···O1ii 0.83 1.90 2.7203 (14) 173
O12—H121···O4iii 0.83 2.09 2.7875 (14) 142
O10—H101···O4iv 0.81 2.10 2.8518 (14) 155
O1—H11···O6v 0.81 1.96 2.7661 (14) 175

Symmetry codes: (i) x, y+1, z; (ii) −x, y−1/2, −z+1/2; (iii) x+1, y−1, z; (iv) x+1/2, −y+1/2, −z; (v) x−1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FL2248).

References

  1. Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst.27, 435.
  2. Angyal, S. J. (1991). Adv. Carbohydr. Chem. Biochem.49, 19–35.
  3. Beadle, J. R., Saunders, J. P. & Wajda, T. J. (1992). Process for Manufacturing tagatose, US Patent 5 078 796, January 7, 1992.
  4. Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst.36, 1487.
  5. Görbitz, C. H. (1999). Acta Cryst. B55, 1090–1098. [DOI] [PubMed]
  6. Granstrom, T. B., Takata, G., Tokuda, M. & Izumori, K. (2004). J. Biosci. Bioeng.97, 89–94. [DOI] [PubMed]
  7. Izumori, K. (2002). Naturwissennshaften, 89, 120-124.
  8. Jones, N. A., Jenkinson, S. F., Soengas, R., Fanefjord, M., Wormald, M. R., Dwek, R. A., Kiran, G. P., Devendar, R., Takata, G., Morimoto, K., Izumori, K. & Fleet, G. W. J. (2007). Tetrahedron Asymmetry, 18, 774–786.
  9. Jones, N. A., Rao, D., Yoshihara, A., Gullapalli, P., Morimoto, K., Takata, G., Hunter, S. J., Wormald, M. R., Dwek, R. A., Izumori, K. & Fleet, G. W. J. (2008). Tetrahedron Asymmetry, 19, 1904–1918.
  10. Kwiecien, A., Slepokura, K. & Lis, T. (2008). Carbohydrate Res.343, 2336–2339. [DOI] [PubMed]
  11. Larson, A. C. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 291–294. Copenhagen: Munksgaard.
  12. Nonius (2001). COLLECT Nonius BV, Delft, The Netherlands.
  13. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  14. Porwell, J. (2007). Aldrich Handbook of Fine Chemicals p. 2253. Milwaukee, WI, USA: Aldrich.
  15. Skytte, U. P. (2002). Cereal Foods World, 47, 224–227.
  16. Soengas, R., Izumori, K., Simone, M. I., Watkin, D. J., Skytte, U. P., Soetaert, W. & Fleet, G. W. J. (2005). Tetrahedron Lett.46, 5755–5759.
  17. Takagi, S. & Rosenstein, R. D. (1969). Carbohydrate Res.11, 156–158.
  18. Watkin, D. J., Glawar, A. F. G., Soengas, R., Skytte, U. P., Wormald, M. R., Dwek, R. A. & Fleet, G. W. J. (2005). Acta Cryst. E61, o2891–o2893.
  19. Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON, Chemical Crystallography Laboratory, Oxford, UK.
  20. Yoshihara, A., Haraguchi, S., Gullapalli, P., Rao, D., Morimoto, K., Takata, G., Jones, N. A., Jenkinson, S. F., Wormald, M. R., Dwek, R. A., Fleet, G. W. J. & Izumori, K. (2008). Tetrahedron Asymmetry, 19, 739–745.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809017656/fl2248sup1.cif

e-65-o1393-sup1.cif (13.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809017656/fl2248Isup2.hkl

e-65-o1393-Isup2.hkl (69.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES