Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 May 14;65(Pt 6):o1260. doi: 10.1107/S160053680901695X

3,5-Bis(4-methoxy­phen­yl)-1H-1,2,4-triazole monohydrate

Hai-Ying Wang a, Jian-Ping Ma a, Ru-Qi Huang a, Yu-Bin Dong a,*
PMCID: PMC2969559  PMID: 21583125

Abstract

In the title compound, C16H15N3O2·H2O, the two benzene rings and the triazole ring lie almost in the same plane, the triazole ring forming dihedral angles of 5.07 (9) and 5.80 (8)° with the benzene rings. In the crystal, there are three relatively strong inter­molecular O—H⋯N and N—H⋯O hydrogen bonds, which lead to the formation of a one-dimensional double chain running parallel to the a axis. Weak π—π inter­actions between the benzene rings of neighboring chains with a centroid–centroid distance of 3.893 (4) Å result in the formation of layers parallel to the ac plane.

Related literature

For the biological activity and pharmaceutical applications of compounds containing triazole subunits, see: Chai et al. (2009); Nadkarni et al. (2001); Zhan & Lou (2007). For triazole ring bond-length data, see; Claramunt et al. (2001); Zhou et al. (2001); John (1998).graphic file with name e-65-o1260-scheme1.jpg

Experimental

Crystal data

  • C16H15N3O2·H2O

  • M r = 299.33

  • Triclinic, Inline graphic

  • a = 6.9948 (18) Å

  • b = 11.125 (3) Å

  • c = 11.184 (3) Å

  • α = 110.603 (4)°

  • β = 107.932 (3)°

  • γ = 95.690 (4)°

  • V = 753.8 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 298 K

  • 0.40 × 0.20 × 0.19 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: none

  • 3854 measured reflections

  • 2651 independent reflections

  • 1993 reflections with I > 2σ(I)

  • R int = 0.016

Refinement

  • R[F 2 > 2σ(F 2)] = 0.052

  • wR(F 2) = 0.134

  • S = 1.05

  • 2651 reflections

  • 201 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.25 e Å−3

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053680901695X/zl2201sup1.cif

e-65-o1260-sup1.cif (18.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053680901695X/zl2201Isup2.hkl

e-65-o1260-Isup2.hkl (130.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3A⋯N1 0.97 1.96 2.902 (2) 164
N2—H2⋯O3i 0.86 1.90 2.753 (2) 170
O3—H3B⋯N3ii 0.96 1.97 2.885 (2) 159

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors thank the National Natural Science Foundation of China (grant Nos. 20871076 and 20671060), the PhD Programs Foundation of the Ministry of Education of China (grant No. 200804450001) and the Shandong Natural Science Foundation (grant No. JQ200803) for support.

supplementary crystallographic information

Comment

During the past decades, compounds containing triazole subunits have been intensively studied due to their diverse biological activities, such as antibacterial, antitumor, etc. and have become a central focus in the study of agricultural and medicinal chemicals (Chai et al., 2009; Nadkarni et al., 2001; Zhan et al., 2007). In a search for more effective antibacterial compounds, we have synthesized the title compound and determined its structure.

The molecular structure of the title compound is shown in Fig. 1. The two benzene rings and the triazole ring almost lie in the same plane. The corresponding dihedral angles of each benzene ring with the triazole ring are 5.07 (9) (between C2–C7 and N1–N3/C8/C9) and 5.80 (8)° (between N1–N3/C8/C9 and C10–C15), respectively. The bond lengths of the triazole ring are very similar to other 1H-1,2,4-triazole derivatives (Claramunt et al., 2001; Zhou et al., 2001). C8—N3 (1.365 (2) Å) and N1—N2 (1.359 (2) Å) are typical for carbon-nitrogen single bonds and nitrogen-nitrogen single bonds, and C8—N1 (1.323 (2) Å) and C9—N3 (1.330 (2) Å) correspond to typical carbon-nitrogen double bonds (John, 1998). C9—N2 (1.333 (2) Å) is a carbon-nitrogen single bond, but the bond length is markedly shorter than usual carbon-nitrogen single bonds and close to a double bond due to its conjugation with the C9—N3 double bond.

The packing of the molecules in the crystal structure is stabilized through N—H···O, O—H···O and π—π interactions. Water molecules act both as hydrogen-acceptor and as hydrogen-donor which leads to the formation of a one dimensional double chain running parallel to the a axis (Fig. 2, Table 1). The ring made up of C10 to C15 (with the centroid Cg1) is parallel to its symmetry related counterpart with a Cg1··· Cg1iii distance of 3.893 (4) Å [symmetry code: (iii)-x, -y, -z]. Adjacent chains are linked via these intermolecular π—π interactions between the Cg1 rings to form a two-dimentional layer parallel to the ac plane (Fig. 3).

Experimental

A mixture of 4-methoxyphenylmethylenemalononitrile (20 mmol), hydrazine dihydrochloride (20 mmol) and hydrazine hydrate (60 mmol) in ethylene glycol (10 ml) was heated to 403 K with stirring for 3–4 h. After cooling to room temperature, the reaction mixture was diluted with water (20 ml). The precipitate was filtered, washed with water, dried and purified by column chromatography on silica gel using CH2Cl2 as the eluent to afford a white solid after evaporation of the solvent. The white solid was dissolved in ethanol and colourless crystals of the title compound were obtained on slow evaporation of the solvent at room temperature.

Refinement

Hydrogen atoms attached to carbon were placed in geometrically idealized positions (Carene—H = 0.93 Å, Cmethyl—H = 0.96 Å) and refined using a riding model with isotropic displacement parameters Uiso = 1.2 (1.5 for methyl groups) Ueq(C). The H atoms attached to N and O atoms were located by Fourier difference synthesis and refined using a riding model with isotropic displacement parameters of Uiso = 1.2 Ueq(N) and Uiso = 1.5 Ueq(O).

Figures

Fig. 1.

Fig. 1.

The molecular structure, with atom labels and 30% probability displacement ellipsoids.

Fig. 2.

Fig. 2.

View of a one dimensional double chain of the title structure. Hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonding have been omitted for clarity.

Fig. 3.

Fig. 3.

The crystal packing of the title compound via weak π—π interactions. The distance of centroids is 3.893 (4) Å (Dashed lines: hydrogen bonds; broken lines: π—π interactions.) [symmetry code: (iii) -x, -y, -z].

Crystal data

C16H15N3O2·H2O Z = 2
Mr = 299.33 F(000) = 316
Triclinic, P1 Dx = 1.319 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 6.9948 (18) Å Cell parameters from 1120 reflections
b = 11.125 (3) Å θ = 2.2–24.0°
c = 11.184 (3) Å µ = 0.09 mm1
α = 110.603 (4)° T = 298 K
β = 107.932 (3)° Block, colourless
γ = 95.690 (4)° 0.40 × 0.20 × 0.19 mm
V = 753.8 (3) Å3

Data collection

Bruker SMART CCD area-detector diffractometer 1993 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.016
graphite θmax = 25.1°, θmin = 2.0°
phi and ω scans h = −4→8
3854 measured reflections k = −13→11
2651 independent reflections l = −12→13

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.134 H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0708P)2 + 0.0124P] where P = (Fo2 + 2Fc2)/3
2651 reflections (Δ/σ)max = 0.001
201 parameters Δρmax = 0.17 e Å3
0 restraints Δρmin = −0.25 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 1.3626 (4) 0.5268 (3) 0.8502 (3) 0.0831 (8)
H1A 1.4171 0.4539 0.8091 0.125*
H1B 1.4672 0.5887 0.9349 0.125*
H1C 1.3199 0.5696 0.7886 0.125*
C2 1.0219 (3) 0.3942 (2) 0.7668 (2) 0.0493 (5)
C3 0.8500 (3) 0.3622 (2) 0.7965 (2) 0.0506 (5)
H3 0.8550 0.3978 0.8864 0.061*
C4 0.6729 (3) 0.27787 (19) 0.6928 (2) 0.0447 (5)
H4 0.5585 0.2571 0.7137 0.054*
C5 0.6599 (3) 0.22255 (18) 0.55736 (19) 0.0394 (5)
C6 0.8338 (3) 0.2549 (2) 0.5307 (2) 0.0524 (6)
H6 0.8292 0.2193 0.4409 0.063*
C7 1.0141 (3) 0.3388 (2) 0.6341 (2) 0.0578 (6)
H7 1.1300 0.3576 0.6138 0.069*
C8 0.4703 (3) 0.13404 (18) 0.44671 (18) 0.0368 (4)
C9 0.2616 (3) 0.00131 (18) 0.24816 (19) 0.0379 (5)
C10 0.1682 (3) −0.08505 (18) 0.10190 (19) 0.0393 (5)
C11 0.2847 (3) −0.0918 (2) 0.0197 (2) 0.0519 (6)
H11 0.4199 −0.0417 0.0587 0.062*
C12 0.2030 (3) −0.1712 (2) −0.1177 (2) 0.0598 (6)
H12 0.2828 −0.1741 −0.1711 0.072*
C13 0.0040 (3) −0.2468 (2) −0.1776 (2) 0.0503 (5)
C14 −0.1137 (3) −0.2420 (2) −0.0979 (2) 0.0539 (6)
H14 −0.2481 −0.2932 −0.1372 0.065*
C15 −0.0313 (3) −0.1610 (2) 0.0403 (2) 0.0499 (5)
H15 −0.1121 −0.1576 0.0932 0.060*
C16 −0.2664 (4) −0.4015 (2) −0.3827 (2) 0.0745 (8)
H16A −0.2851 −0.4629 −0.3425 0.112*
H16B −0.2915 −0.4491 −0.4783 0.112*
H16C −0.3617 −0.3455 −0.3735 0.112*
N1 0.2943 (2) 0.10899 (16) 0.46420 (16) 0.0437 (4)
N2 0.1636 (2) 0.02456 (16) 0.33612 (16) 0.0424 (4)
H2 0.0354 −0.0092 0.3148 0.051*
N3 0.4569 (2) 0.06990 (15) 0.31449 (15) 0.0404 (4)
O1 −0.0613 (2) −0.32325 (16) −0.31464 (15) 0.0726 (5)
O2 1.1911 (2) 0.48023 (16) 0.87639 (15) 0.0693 (5)
O3 0.2326 (2) 0.08148 (15) 0.69915 (14) 0.0540 (4)
H3A 0.2339 0.1008 0.6215 0.100*
H3B 0.3314 0.0294 0.7142 0.100*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0486 (14) 0.087 (2) 0.079 (2) −0.0039 (13) 0.0166 (13) 0.0062 (16)
C2 0.0446 (12) 0.0498 (13) 0.0414 (12) 0.0095 (10) 0.0117 (10) 0.0088 (10)
C3 0.0611 (14) 0.0521 (13) 0.0338 (12) 0.0116 (10) 0.0194 (10) 0.0106 (10)
C4 0.0481 (12) 0.0474 (12) 0.0392 (12) 0.0092 (9) 0.0215 (9) 0.0139 (10)
C5 0.0434 (11) 0.0407 (11) 0.0372 (11) 0.0122 (9) 0.0182 (9) 0.0157 (9)
C6 0.0494 (13) 0.0623 (14) 0.0362 (12) 0.0052 (10) 0.0205 (10) 0.0075 (10)
C7 0.0457 (12) 0.0662 (15) 0.0519 (14) 0.0043 (11) 0.0238 (11) 0.0103 (12)
C8 0.0401 (10) 0.0403 (11) 0.0340 (11) 0.0121 (8) 0.0173 (8) 0.0157 (9)
C9 0.0373 (10) 0.0439 (11) 0.0381 (11) 0.0114 (9) 0.0175 (9) 0.0191 (10)
C10 0.0417 (11) 0.0419 (11) 0.0351 (11) 0.0075 (9) 0.0147 (9) 0.0166 (9)
C11 0.0477 (12) 0.0585 (14) 0.0380 (12) −0.0078 (10) 0.0166 (10) 0.0109 (11)
C12 0.0638 (15) 0.0636 (15) 0.0438 (13) −0.0072 (12) 0.0258 (11) 0.0130 (12)
C13 0.0615 (14) 0.0427 (12) 0.0346 (12) 0.0000 (10) 0.0095 (10) 0.0123 (10)
C14 0.0437 (12) 0.0563 (14) 0.0495 (14) −0.0016 (10) 0.0101 (10) 0.0170 (11)
C15 0.0397 (11) 0.0608 (14) 0.0475 (13) 0.0072 (10) 0.0173 (10) 0.0202 (11)
C16 0.0777 (17) 0.0606 (16) 0.0490 (15) −0.0158 (13) −0.0073 (12) 0.0160 (13)
N1 0.0420 (9) 0.0526 (10) 0.0366 (10) 0.0123 (8) 0.0178 (8) 0.0148 (8)
N2 0.0329 (8) 0.0539 (10) 0.0385 (10) 0.0071 (7) 0.0147 (7) 0.0160 (8)
N3 0.0370 (9) 0.0472 (10) 0.0338 (9) 0.0064 (7) 0.0148 (7) 0.0124 (8)
O1 0.0834 (12) 0.0678 (11) 0.0387 (10) −0.0165 (9) 0.0129 (8) 0.0074 (8)
O2 0.0503 (9) 0.0764 (12) 0.0499 (10) −0.0021 (8) 0.0085 (7) 0.0033 (9)
O3 0.0439 (8) 0.0746 (10) 0.0513 (9) 0.0170 (7) 0.0265 (7) 0.0255 (8)

Geometric parameters (Å, °)

C1—O2 1.412 (3) C9—C10 1.462 (3)
C1—H1A 0.9600 C10—C15 1.379 (3)
C1—H1B 0.9600 C10—C11 1.393 (3)
C1—H1C 0.9600 C11—C12 1.368 (3)
C2—O2 1.370 (2) C11—H11 0.9300
C2—C7 1.373 (3) C12—C13 1.375 (3)
C2—C3 1.389 (3) C12—H12 0.9300
C3—C4 1.370 (3) C13—O1 1.362 (2)
C3—H3 0.9300 C13—C14 1.380 (3)
C4—C5 1.390 (3) C14—C15 1.379 (3)
C4—H4 0.9300 C14—H14 0.9300
C5—C6 1.381 (3) C15—H15 0.9300
C5—C8 1.461 (3) C16—O1 1.418 (3)
C6—C7 1.381 (3) C16—H16A 0.9600
C6—H6 0.9300 C16—H16B 0.9600
C7—H7 0.9300 C16—H16C 0.9600
C8—N1 1.323 (2) N1—N2 1.359 (2)
C8—N3 1.365 (2) N2—H2 0.8600
C9—N3 1.330 (2) O3—H3A 0.9678
C9—N2 1.333 (2) O3—H3B 0.9583
O2—C1—H1A 109.5 C15—C10—C9 123.15 (18)
O2—C1—H1B 109.5 C11—C10—C9 119.01 (17)
H1A—C1—H1B 109.5 C12—C11—C10 120.85 (18)
O2—C1—H1C 109.5 C12—C11—H11 119.6
H1A—C1—H1C 109.5 C10—C11—H11 119.6
H1B—C1—H1C 109.5 C11—C12—C13 120.7 (2)
O2—C2—C7 124.66 (19) C11—C12—H12 119.7
O2—C2—C3 115.73 (19) C13—C12—H12 119.7
C7—C2—C3 119.61 (19) O1—C13—C12 115.9 (2)
C4—C3—C2 119.73 (19) O1—C13—C14 124.71 (19)
C4—C3—H3 120.1 C12—C13—C14 119.4 (2)
C2—C3—H3 120.1 C15—C14—C13 119.77 (19)
C3—C4—C5 121.72 (19) C15—C14—H14 120.1
C3—C4—H4 119.1 C13—C14—H14 120.1
C5—C4—H4 119.1 C10—C15—C14 121.47 (19)
C6—C5—C4 117.40 (18) C10—C15—H15 119.3
C6—C5—C8 120.93 (17) C14—C15—H15 119.3
C4—C5—C8 121.67 (17) O1—C16—H16A 109.5
C7—C6—C5 121.7 (2) O1—C16—H16B 109.5
C7—C6—H6 119.2 H16A—C16—H16B 109.5
C5—C6—H6 119.2 O1—C16—H16C 109.5
C2—C7—C6 119.84 (19) H16A—C16—H16C 109.5
C2—C7—H7 120.1 H16B—C16—H16C 109.5
C6—C7—H7 120.1 C8—N1—N2 102.97 (15)
N1—C8—N3 113.34 (16) C9—N2—N1 110.53 (15)
N1—C8—C5 123.47 (16) C9—N2—H2 124.7
N3—C8—C5 123.19 (16) N1—N2—H2 124.7
N3—C9—N2 109.15 (17) C9—N3—C8 104.00 (15)
N3—C9—C10 125.62 (17) C13—O1—C16 118.50 (18)
N2—C9—C10 125.23 (17) C2—O2—C1 118.09 (18)
C15—C10—C11 117.84 (18) H3A—O3—H3B 107.8
O2—C2—C3—C4 179.32 (17) C11—C12—C13—O1 −179.37 (19)
C7—C2—C3—C4 −1.4 (3) C11—C12—C13—C14 0.1 (3)
C2—C3—C4—C5 0.1 (3) O1—C13—C14—C15 179.8 (2)
C3—C4—C5—C6 0.5 (3) C12—C13—C14—C15 0.4 (3)
C3—C4—C5—C8 −179.20 (17) C11—C10—C15—C14 0.4 (3)
C4—C5—C6—C7 0.1 (3) C9—C10—C15—C14 −179.59 (18)
C8—C5—C6—C7 179.80 (18) C13—C14—C15—C10 −0.7 (3)
O2—C2—C7—C6 −178.80 (19) N3—C8—N1—N2 0.0 (2)
C3—C2—C7—C6 2.0 (3) C5—C8—N1—N2 179.44 (16)
C5—C6—C7—C2 −1.3 (3) N3—C9—N2—N1 −0.6 (2)
C6—C5—C8—N1 −173.76 (19) C10—C9—N2—N1 179.86 (16)
C4—C5—C8—N1 6.0 (3) C8—N1—N2—C9 0.35 (19)
C6—C5—C8—N3 5.6 (3) N2—C9—N3—C8 0.6 (2)
C4—C5—C8—N3 −174.69 (17) C10—C9—N3—C8 −179.88 (17)
N3—C9—C10—C15 175.33 (18) N1—C8—N3—C9 −0.4 (2)
N2—C9—C10—C15 −5.2 (3) C5—C8—N3—C9 −179.81 (16)
N3—C9—C10—C11 −4.6 (3) C12—C13—O1—C16 −178.8 (2)
N2—C9—C10—C11 174.80 (18) C14—C13—O1—C16 1.8 (3)
C15—C10—C11—C12 0.1 (3) C7—C2—O2—C1 7.2 (3)
C9—C10—C11—C12 −179.88 (19) C3—C2—O2—C1 −173.6 (2)
C10—C11—C12—C13 −0.4 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O3—H3A···N1 0.97 1.96 2.902 (2) 164
N2—H2···O3i 0.86 1.90 2.753 (2) 170
O3—H3B···N3ii 0.96 1.97 2.885 (2) 159

Symmetry codes: (i) −x, −y, −z+1; (ii) −x+1, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZL2201).

References

  1. Bruker (2000). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Chai, X.-Y., Zhang, J., Yu, S.-C., Hu, H.-G., Zou, Y., Zhao, Q.-J., Dan, Z.-G., Zhang, D.-Z. & Wu, Q.-Y. (2009). Bioorg. Med. Chem. Lett.19, 1811–1814. [DOI] [PubMed]
  3. Claramunt, R. M., Lopez, C., Angeles, G. M., Dolores, O. M., Rosario, T. M., Pinilla, E., Alarcon, S. H., Alkorta, I. & Elguero, J. (2001). New J. Chem.25, 1061–1068.
  4. John, A. D. (1998). Lang’s Handbook of Chemistry, Vol. 4, pp. 39–41. New York: McGraw-Hill.
  5. Nadkarni, B. A., Kamat, V. R. & Khadse, B. G. (2001). Arzneim. Forsch.51,569–573. [DOI] [PubMed]
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Zhan, T.-R. & Lou, H.-X. (2007). Carbohydr. Res.342, 865–869. [DOI] [PubMed]
  8. Zhou, X. J., Kovalev, E. G., Klug, J. T. & Khodorkovsky, V. (2001). Org. Lett.3, 1725–1727. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053680901695X/zl2201sup1.cif

e-65-o1260-sup1.cif (18.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053680901695X/zl2201Isup2.hkl

e-65-o1260-Isup2.hkl (130.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES