Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 May 7;65(Pt 6):o1184–o1185. doi: 10.1107/S1600536809015542

N′-[(E)-4-Bromo­benzyl­idene]-2-(4-isobutyl­phen­yl)propanohydrazide

Hoong-Kun Fun a,*,, Ching Kheng Quah a,§, K V Sujith b, B Kalluraya b
PMCID: PMC2969560  PMID: 21583058

Abstract

The asymmetric unit of the title compound, C20H23BrN2O, contains two independent mol­ecules (A and B), in which the orientations of the 4-isobutyl­phenyl units are different. The dihedral angle between the two benzene rings is 88.45 (8)° in mol­ecule A and 89.87 (8)° in mol­ecule B. Mol­ecules A and B are linked by a C—H⋯N hydrogen bond. In the crystal, mol­ecules are linked into chains running along the a axis by inter­molcular N—H⋯O and C—H⋯O hydrogen bonds. The crystal structure is further stabilized by C—H⋯π inter­actions. The presence of pseudosymmetry in the structure suggests the higher symmetry space group Pbca. However, attempts to refine the structure in this space group resulted in a disorder model with high R (0.097) and wR (0.257) values. The crystal studied was an inversion twin with a 0.595 (4):0.405 (4) domain ratio.

Related literature

For the biological activities of hydrazone derivatives, see: Bedia et al. (2006); Rollas et al. (2002); Terzioglu & Gürsoy (2003); Sridhar & Perumal (2003); Amir & Kumar (2007). For a related structure, see: Fun et al. (2008). For bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).graphic file with name e-65-o1184-scheme1.jpg

Experimental

Crystal data

  • C20H23BrN2O

  • M r = 387.31

  • Orthorhombic, Inline graphic

  • a = 9.1440 (1) Å

  • b = 12.0110 (1) Å

  • c = 33.5670 (4) Å

  • V = 3686.62 (7) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 2.24 mm−1

  • T = 100 K

  • 0.49 × 0.38 × 0.19 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.407, T max = 0.682

  • 120355 measured reflections

  • 20557 independent reflections

  • 13317 reflections with I > 2σ(I)

  • R int = 0.045

Refinement

  • R[F 2 > 2σ(F 2)] = 0.042

  • wR(F 2) = 0.103

  • S = 1.04

  • 20557 reflections

  • 448 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.72 e Å−3

  • Δρmin = −0.62 e Å−3

  • Absolute structure: Flack (1983), 9205 Friedel pairs

  • Flack parameter: 0.595 (4)

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809015542/ci2787sup1.cif

e-65-o1184-sup1.cif (31.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809015542/ci2787Isup2.hkl

e-65-o1184-Isup2.hkl (1,004.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected torsion angles (°).

C8A—C9A—C10A—C11A −96.54 (17)
C8A—C9A—C10A—C15A 80.18 (18)
C20A—C9A—C10A—C11A 141.61 (15)
C20A—C9A—C10A—C15A −41.7 (2)
C8B—C9B—C10B—C11B 77.53 (17)
C8B—C9B—C10B—C15B −101.83 (16)
C20B—C9B—C10B—C11B −160.06 (14)
C20B—C9B—C10B—C15B 20.6 (2)

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2A—H1NA⋯O1Bi 0.91 (2) 1.97 (2) 2.830 (2) 157 (2)
N2B—H1NB⋯O1Aii 0.77 (2) 2.11 (2) 2.826 (2) 155 (2)
C7A—H7AA⋯O1Bi 0.93 2.45 3.241 (2) 143
C7B—H7BA⋯O1Aii 0.93 2.53 3.307 (3) 141
C20B—H20F⋯N1A 0.96 2.56 3.494 (2) 164
C12A—H12ACg2i 0.93 2.66 3.482 (2) 148
C12B—H12BCg1ii 0.93 2.79 3.680 (2) 160

Symmetry codes: (i) Inline graphic; (ii) Inline graphic. Cg1 and Cg2 are the centroids of the C1A–C6A and C1B–C6B benzene rings, respectively.

Acknowledgments

HKF and CKQ acknowledge funding from the Malaysian Government and Universiti Sains Malaysia (USM) under the Research University Golden Goose Grant (No. 1001/PFIZIK/811012). CKQ thanks Universiti Sains Malaysia for a fellowship.

supplementary crystallographic information

Comment

Hydrazones have been found to possess antimicrobial, anticonvulsant, analgesic, antiinflammatory, antiplatelet, antitubercular, anticancer and antitumoral activities (Bedia et al., 2006; Rollas et al., 2002; Terzioglu & Gürsoy, 2003). Aryl hydrazones are important building blocks for the synthesis of a variety of heterocyclic compounds such as pyrazolines and pyrazoles (Sridhar et al., 2003). Aryl hydrazones have been most conveniently synthesized by the reaction of aryl hydrazines with carbonyl compounds. Similarly ibuprofen is also known for their pharmaceutical activities and belongs to the class of Non-Steroidal Anti-Inflammatory Drugs (Amir & Kumar, 2007). We are interested in the synthesis and crystal structure of ibuprofen containing hydrazone derivatives (Fun et al., 2008). Prompted by these observations, it was contemplated to synthesize and report the crystal structure of the title compound.

The asymmetric unit contains two independent molecules (Fig. 1), A and B, in which the orientations of the 4-isobutylphenyl units are different (Table 1). The bond lengths (Allen et al., 1987) and angles in the molecule (Fig. 1) are within normal ranges and are comparable to a closely related structure (Fun et al., 2008). The molecule A is linked to the molecule B by C20B—H20F···N1A hydrogen bond (Fig. 1). The dihedral angle formed by the C1A-C6A and C10A-C15A benzene rings is 89.87 (8)° and that between the C1B-C6B and C10B-C15B planes is 88.45 (8)°, indicating that they are almost perpendicular to each other.

The crystal packing is consolidated by intermolecular N—H···O and C—H···O hydrogen bonds (Fig. 2) which link the independent molecules into chains parallel to the [100]. The crystal structure is further stabilized by C—H···π interactions (Table 1) involving the C1A-C6A (centroid Cg1) and C1B–C6B (centroid Cg2) benzene rings.

Experimental

The title compound was obtained by refluxing a mixture of 2-[4-(2-methylpropyl)phenyl]propanehydrazide (0.01 mol), 4-bromobenzaldehyde (0.01 mol) in ethanol (30 ml) and 3 drops of concentrated sulfuric acid for 1 h. Excess ethanol was removed from the reaction mixture under reduced pressure. The solid product obtained was filtered, washed with ethanol and dried. Single crystals suitable for X-ray analysis were obtained by slow evaporation of an ethanol-N,N-dimethylformamide (DMF) (3:1) solution.

Refinement

Atoms H1NA and H1NB were located in a difference difference Fourier map and refined freely. The remaining H atoms were positioned geometrically and refined using a riding model, with C-H = 0.93–0.98 Å and Uiso(H) = 1.2 or 1.5 Ueq(C). A rotating-group model was applied for the methyl groups. The presence of pseudo-symmetry in the structure suggests a higher symmetry space group Pbca. But attempts to refine the structure in the space group Pbca resulted in a disorder model with high R (0.097) and wR (0.257) values. Because of the presence of a pseudo-centre of symmetry, the absolute structure could not be determined. The reported Flack parameter was obtained by TWIN/BASF procedure in SHELXL (Sheldrick, 2008).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme. The dashed line indicates a hydrogen bond.

Fig. 2.

Fig. 2.

The crystal packing of the title compound, viewed along the a axis. Intermolecular interactions are shown as dashed lines.

Crystal data

C20H23BrN2O F(000) = 1600
Mr = 387.31 Dx = 1.396 Mg m3
Orthorhombic, P212121 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2ab Cell parameters from 9400 reflections
a = 9.1440 (1) Å θ = 2.5–31.7°
b = 12.0110 (1) Å µ = 2.24 mm1
c = 33.5670 (4) Å T = 100 K
V = 3686.62 (7) Å3 Block, colourless
Z = 8 0.49 × 0.38 × 0.19 mm

Data collection

Bruker SMART APEXII CCD area-detector diffractometer 20557 independent reflections
Radiation source: fine-focus sealed tube 13317 reflections with I > 2σ(I)
graphite Rint = 0.045
φ and ω scans θmax = 38.6°, θmin = 1.2°
Absorption correction: multi-scan (SADABS; Bruker, 2005) h = −16→16
Tmin = 0.407, Tmax = 0.682 k = −21→20
120355 measured reflections l = −58→56

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.103 w = 1/[σ2(Fo2) + (0.0498P)2] where P = (Fo2 + 2Fc2)/3
S = 1.04 (Δ/σ)max = 0.001
20557 reflections Δρmax = 0.72 e Å3
448 parameters Δρmin = −0.61 e Å3
0 restraints Absolute structure: Flack (1983), 9205 Friedel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: 0.595 (4)

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1A 0.849271 (19) 0.479672 (14) 0.078235 (6) 0.02563 (4)
O1A 0.88325 (12) 1.00346 (11) 0.27706 (3) 0.0213 (2)
N1A 0.73139 (15) 0.87330 (12) 0.22421 (4) 0.0173 (3)
N2A 0.66653 (15) 0.94990 (12) 0.24939 (4) 0.0164 (3)
C1A 0.81210 (19) 0.67440 (14) 0.17959 (5) 0.0184 (3)
H1AA 0.8601 0.6813 0.2039 0.022*
C2A 0.85669 (18) 0.59430 (13) 0.15259 (5) 0.0187 (3)
H2AA 0.9328 0.5460 0.1589 0.022*
C3A 0.78674 (19) 0.58675 (14) 0.11603 (5) 0.0189 (3)
C4A 0.6703 (2) 0.65496 (14) 0.10623 (5) 0.0211 (3)
H4AA 0.6243 0.6487 0.0816 0.025*
C5A 0.62366 (19) 0.73315 (14) 0.13401 (5) 0.0192 (3)
H5AA 0.5437 0.7781 0.1281 0.023*
C6A 0.6946 (2) 0.74535 (13) 0.17050 (5) 0.0165 (3)
C7A 0.64467 (19) 0.83222 (13) 0.19787 (5) 0.0176 (3)
H7AA 0.5490 0.8581 0.1962 0.021*
C8A 0.74894 (16) 1.00775 (15) 0.27548 (5) 0.0170 (3)
C9A 0.65950 (18) 1.07453 (13) 0.30584 (5) 0.0172 (3)
H9AA 0.5624 1.0888 0.2946 0.021*
C10A 0.64245 (16) 0.99942 (13) 0.34220 (4) 0.0155 (3)
C11A 0.51587 (18) 0.93583 (14) 0.34705 (5) 0.0185 (3)
H11A 0.4397 0.9428 0.3289 0.022*
C12A 0.50265 (19) 0.86228 (13) 0.37874 (5) 0.0182 (3)
H12A 0.4167 0.8217 0.3817 0.022*
C13A 0.61539 (18) 0.84797 (13) 0.40622 (4) 0.0172 (3)
C14A 0.74046 (17) 0.91272 (14) 0.40148 (5) 0.0204 (3)
H14A 0.8167 0.9056 0.4196 0.025*
C15A 0.75390 (17) 0.98781 (15) 0.37016 (5) 0.0200 (3)
H15A 0.8382 1.0307 0.3679 0.024*
C16A 0.60190 (19) 0.76581 (13) 0.43996 (5) 0.0194 (3)
H16A 0.6991 0.7508 0.4502 0.023*
H16B 0.5640 0.6965 0.4293 0.023*
C17A 0.50438 (19) 0.80147 (14) 0.47485 (5) 0.0219 (3)
H17A 0.4035 0.8064 0.4652 0.026*
C18A 0.5468 (3) 0.91335 (16) 0.49144 (6) 0.0442 (6)
H18A 0.5341 0.9693 0.4713 0.066*
H18B 0.6473 0.9116 0.4997 0.066*
H18C 0.4859 0.9305 0.5139 0.066*
C19A 0.5104 (2) 0.71186 (15) 0.50728 (5) 0.0274 (4)
H19A 0.4477 0.7328 0.5290 0.041*
H19B 0.6090 0.7046 0.5168 0.041*
H19C 0.4784 0.6420 0.4964 0.041*
C20A 0.73368 (19) 1.18646 (15) 0.31432 (6) 0.0229 (4)
H20A 0.6876 1.2212 0.3368 0.034*
H20B 0.7246 1.2339 0.2914 0.034*
H20C 0.8353 1.1744 0.3200 0.034*
Br1B 0.63994 (2) −0.015149 (14) 0.077318 (5) 0.02449 (4)
O1B 0.61864 (12) 0.49983 (11) 0.27805 (3) 0.0206 (2)
N1B 0.77028 (15) 0.36554 (11) 0.22662 (4) 0.0161 (3)
N2B 0.83490 (16) 0.44565 (12) 0.25061 (4) 0.0165 (3)
C1B 0.68109 (19) 0.17270 (13) 0.18046 (5) 0.0175 (3)
H1BA 0.6314 0.1809 0.2045 0.021*
C2B 0.63144 (18) 0.09615 (13) 0.15256 (5) 0.0183 (3)
H2BA 0.5492 0.0529 0.1577 0.022*
C3B 0.7075 (2) 0.08541 (13) 0.11670 (5) 0.0190 (3)
C4B 0.83235 (19) 0.14694 (13) 0.10867 (5) 0.0190 (3)
H4BA 0.8824 0.1379 0.0848 0.023*
C5B 0.88101 (19) 0.22226 (13) 0.13705 (5) 0.0180 (3)
H5BA 0.9654 0.2633 0.1323 0.022*
C6B 0.8045 (2) 0.23731 (13) 0.17286 (5) 0.0164 (3)
C7B 0.85619 (19) 0.32373 (13) 0.20041 (5) 0.0175 (3)
H7BA 0.9524 0.3484 0.1988 0.021*
C8B 0.75320 (16) 0.50621 (14) 0.27594 (4) 0.0153 (3)
C9B 0.84083 (18) 0.58372 (12) 0.30309 (4) 0.0144 (3)
H9BA 0.9371 0.5957 0.2910 0.017*
C10B 0.86268 (16) 0.52286 (12) 0.34255 (4) 0.0146 (3)
C11B 0.96862 (18) 0.43906 (13) 0.34546 (5) 0.0165 (3)
H11B 1.0261 0.4219 0.3234 0.020*
C12B 0.98872 (19) 0.38154 (13) 0.38080 (5) 0.0188 (3)
H12B 1.0601 0.3265 0.3821 0.023*
C13B 0.90454 (18) 0.40422 (13) 0.41439 (5) 0.0182 (3)
C14B 0.80027 (18) 0.48834 (14) 0.41132 (5) 0.0205 (3)
H14B 0.7433 0.5056 0.4334 0.025*
C15B 0.77918 (18) 0.54699 (13) 0.37620 (5) 0.0182 (3)
H15B 0.7088 0.6028 0.3751 0.022*
C16B 0.9216 (2) 0.33528 (14) 0.45152 (5) 0.0215 (3)
H16C 0.8740 0.3733 0.4735 0.026*
H16D 1.0248 0.3293 0.4579 0.026*
C17B 0.85697 (19) 0.21766 (13) 0.44763 (5) 0.0195 (3)
H17B 0.9058 0.1806 0.4253 0.023*
C18B 0.8867 (2) 0.14987 (15) 0.48509 (5) 0.0313 (4)
H18D 0.8488 0.0759 0.4817 0.047*
H18E 0.8399 0.1847 0.5075 0.047*
H18F 0.9902 0.1463 0.4897 0.047*
C19B 0.6939 (2) 0.22087 (16) 0.43873 (6) 0.0285 (4)
H19D 0.6584 0.1464 0.4350 0.043*
H19E 0.6771 0.2634 0.4149 0.043*
H19F 0.6432 0.2549 0.4606 0.043*
C20B 0.76379 (18) 0.69647 (14) 0.30640 (5) 0.0190 (3)
H20D 0.8130 0.7416 0.3258 0.029*
H20E 0.6641 0.6853 0.3144 0.029*
H20F 0.7659 0.7332 0.2810 0.029*
H1NA 0.568 (2) 0.9602 (19) 0.2475 (6) 0.034 (6)*
H1NB 0.918 (2) 0.4564 (18) 0.2501 (6) 0.022 (6)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1A 0.02409 (8) 0.02207 (8) 0.03074 (9) 0.00076 (7) 0.00373 (8) −0.00849 (8)
O1A 0.0144 (5) 0.0287 (6) 0.0207 (5) 0.0038 (5) 0.0014 (5) −0.0010 (5)
N1A 0.0173 (7) 0.0183 (6) 0.0162 (7) 0.0044 (6) 0.0033 (5) 0.0026 (5)
N2A 0.0131 (6) 0.0205 (6) 0.0155 (6) 0.0042 (6) 0.0016 (5) −0.0004 (5)
C1A 0.0171 (8) 0.0192 (7) 0.0188 (8) 0.0012 (7) −0.0003 (7) 0.0027 (6)
C2A 0.0161 (8) 0.0172 (7) 0.0228 (8) 0.0033 (7) 0.0031 (7) 0.0018 (6)
C3A 0.0178 (8) 0.0179 (7) 0.0209 (8) −0.0027 (7) 0.0042 (7) −0.0021 (6)
C4A 0.0196 (8) 0.0222 (8) 0.0216 (8) 0.0005 (7) −0.0010 (7) −0.0018 (6)
C5A 0.0159 (8) 0.0193 (7) 0.0225 (8) 0.0028 (7) −0.0008 (7) 0.0008 (6)
C6A 0.0152 (9) 0.0174 (7) 0.0169 (8) 0.0003 (6) 0.0018 (6) 0.0015 (6)
C7A 0.0162 (8) 0.0176 (7) 0.0190 (7) 0.0044 (7) 0.0014 (7) 0.0004 (6)
C8A 0.0170 (7) 0.0194 (8) 0.0146 (7) 0.0024 (7) 0.0025 (6) 0.0047 (6)
C9A 0.0137 (7) 0.0185 (7) 0.0194 (7) 0.0033 (7) 0.0019 (6) 0.0010 (6)
C10A 0.0143 (7) 0.0179 (6) 0.0144 (6) 0.0015 (6) 0.0024 (5) −0.0011 (5)
C11A 0.0153 (7) 0.0213 (8) 0.0188 (8) −0.0011 (6) −0.0001 (6) −0.0003 (6)
C12A 0.0180 (8) 0.0182 (7) 0.0185 (8) −0.0042 (6) 0.0003 (6) −0.0019 (6)
C13A 0.0183 (7) 0.0173 (6) 0.0160 (7) −0.0005 (6) 0.0027 (6) −0.0021 (5)
C14A 0.0160 (7) 0.0293 (8) 0.0160 (7) −0.0025 (7) −0.0004 (6) 0.0036 (6)
C15A 0.0133 (7) 0.0284 (8) 0.0184 (7) −0.0060 (7) −0.0002 (5) 0.0019 (6)
C16A 0.0206 (8) 0.0173 (7) 0.0203 (7) 0.0020 (6) 0.0031 (6) 0.0025 (6)
C17A 0.0228 (8) 0.0232 (8) 0.0197 (8) 0.0028 (7) 0.0051 (6) 0.0041 (6)
C18A 0.0875 (18) 0.0250 (9) 0.0202 (9) 0.0014 (11) 0.0156 (11) −0.0014 (7)
C19A 0.0312 (10) 0.0280 (9) 0.0231 (8) −0.0014 (8) 0.0046 (7) 0.0094 (7)
C20A 0.0222 (9) 0.0197 (8) 0.0269 (9) 0.0020 (7) 0.0041 (7) 0.0033 (7)
Br1B 0.03377 (10) 0.01815 (7) 0.02155 (8) 0.00059 (7) −0.00595 (8) −0.00540 (7)
O1B 0.0119 (5) 0.0290 (6) 0.0210 (5) −0.0029 (5) 0.0010 (4) −0.0038 (5)
N1B 0.0165 (6) 0.0165 (6) 0.0153 (6) −0.0018 (6) −0.0010 (5) −0.0015 (5)
N2B 0.0129 (7) 0.0206 (7) 0.0160 (6) −0.0039 (6) 0.0007 (5) −0.0023 (5)
C1B 0.0196 (9) 0.0174 (7) 0.0154 (7) 0.0001 (7) 0.0008 (7) 0.0005 (6)
C2B 0.0186 (8) 0.0163 (6) 0.0200 (7) 0.0002 (7) −0.0004 (7) 0.0016 (6)
C3B 0.0249 (8) 0.0126 (6) 0.0194 (8) 0.0011 (7) −0.0037 (7) −0.0018 (6)
C4B 0.0222 (8) 0.0185 (7) 0.0161 (7) 0.0041 (7) −0.0001 (7) −0.0011 (6)
C5B 0.0189 (8) 0.0185 (7) 0.0167 (7) 0.0014 (7) 0.0005 (6) 0.0007 (6)
C6B 0.0171 (9) 0.0157 (7) 0.0166 (8) 0.0021 (6) −0.0024 (6) −0.0007 (6)
C7B 0.0171 (8) 0.0192 (7) 0.0163 (7) 0.0002 (7) −0.0012 (6) −0.0005 (6)
C8B 0.0167 (7) 0.0160 (7) 0.0132 (7) −0.0022 (6) 0.0009 (5) 0.0009 (6)
C9B 0.0145 (7) 0.0150 (6) 0.0135 (6) −0.0022 (6) 0.0000 (6) 0.0007 (5)
C10B 0.0143 (7) 0.0139 (6) 0.0157 (6) −0.0014 (6) −0.0014 (5) −0.0005 (5)
C11B 0.0162 (7) 0.0173 (7) 0.0160 (7) 0.0007 (6) 0.0015 (6) −0.0022 (6)
C12B 0.0172 (8) 0.0146 (6) 0.0245 (8) 0.0023 (6) −0.0027 (6) −0.0005 (6)
C13B 0.0213 (7) 0.0173 (6) 0.0160 (7) −0.0021 (6) −0.0030 (6) 0.0005 (5)
C14B 0.0255 (8) 0.0221 (7) 0.0139 (6) 0.0036 (7) 0.0012 (6) 0.0000 (6)
C15B 0.0180 (7) 0.0184 (7) 0.0182 (7) 0.0038 (6) 0.0007 (6) −0.0006 (6)
C16B 0.0285 (9) 0.0212 (7) 0.0148 (7) −0.0026 (7) −0.0066 (6) 0.0023 (6)
C17B 0.0236 (8) 0.0190 (7) 0.0159 (7) 0.0002 (7) −0.0014 (6) 0.0021 (5)
C18B 0.0449 (12) 0.0244 (8) 0.0246 (9) −0.0040 (8) −0.0040 (8) 0.0067 (7)
C19B 0.0244 (9) 0.0293 (9) 0.0318 (9) −0.0033 (7) 0.0007 (8) 0.0004 (8)
C20B 0.0224 (8) 0.0166 (7) 0.0180 (7) 0.0015 (6) −0.0013 (6) 0.0018 (6)

Geometric parameters (Å, °)

Br1A—C3A 1.8948 (17) Br1B—C3B 1.8944 (16)
O1A—C8A 1.2304 (19) O1B—C8B 1.2349 (18)
N1A—C7A 1.286 (2) N1B—C7B 1.282 (2)
N1A—N2A 1.3830 (18) N1B—N2B 1.3868 (18)
N2A—C8A 1.348 (2) N2B—C8B 1.345 (2)
N2A—H1NA 0.91 (2) N2B—H1NB 0.770 (19)
C1A—C2A 1.383 (2) C1B—C2B 1.389 (2)
C1A—C6A 1.405 (3) C1B—C6B 1.393 (3)
C1A—H1AA 0.93 C1B—H1BA 0.93
C2A—C3A 1.387 (2) C2B—C3B 1.396 (2)
C2A—H2AA 0.93 C2B—H2BA 0.93
C3A—C4A 1.383 (2) C3B—C4B 1.386 (2)
C4A—C5A 1.390 (2) C4B—C5B 1.387 (2)
C4A—H4AA 0.93 C4B—H4BA 0.93
C5A—C6A 1.394 (2) C5B—C6B 1.403 (2)
C5A—H5AA 0.93 C5B—H5BA 0.93
C6A—C7A 1.463 (2) C6B—C7B 1.468 (2)
C7A—H7AA 0.93 C7B—H7BA 0.93
C8A—C9A 1.533 (2) C8B—C9B 1.530 (2)
C9A—C10A 1.526 (2) C9B—C10B 1.526 (2)
C9A—C20A 1.532 (2) C9B—C20B 1.531 (2)
C9A—H9AA 0.98 C9B—H9BA 0.98
C10A—C15A 1.393 (2) C10B—C15B 1.394 (2)
C10A—C11A 1.396 (2) C10B—C11B 1.400 (2)
C11A—C12A 1.388 (2) C11B—C12B 1.385 (2)
C11A—H11A 0.93 C11B—H11B 0.93
C12A—C13A 1.394 (2) C12B—C13B 1.392 (2)
C12A—H12A 0.93 C12B—H12B 0.93
C13A—C14A 1.392 (2) C13B—C14B 1.393 (2)
C13A—C16A 1.507 (2) C13B—C16B 1.505 (2)
C14A—C15A 1.390 (2) C14B—C15B 1.387 (2)
C14A—H14A 0.93 C14B—H14B 0.93
C15A—H15A 0.93 C15B—H15B 0.93
C16A—C17A 1.533 (2) C16B—C17B 1.537 (2)
C16A—H16A 0.97 C16B—H16C 0.97
C16A—H16B 0.97 C16B—H16D 0.97
C17A—C18A 1.505 (3) C17B—C19B 1.522 (3)
C17A—C19A 1.532 (2) C17B—C18B 1.523 (2)
C17A—H17A 0.98 C17B—H17B 0.98
C18A—H18A 0.96 C18B—H18D 0.96
C18A—H18B 0.96 C18B—H18E 0.96
C18A—H18C 0.96 C18B—H18F 0.96
C19A—H19A 0.96 C19B—H19D 0.96
C19A—H19B 0.96 C19B—H19E 0.96
C19A—H19C 0.96 C19B—H19F 0.96
C20A—H20A 0.96 C20B—H20D 0.96
C20A—H20B 0.96 C20B—H20E 0.96
C20A—H20C 0.96 C20B—H20F 0.96
C7A—N1A—N2A 114.27 (13) C7B—N1B—N2B 114.15 (13)
C8A—N2A—N1A 120.01 (13) C8B—N2B—N1B 120.36 (13)
C8A—N2A—H1NA 121.9 (14) C8B—N2B—H1NB 118.0 (16)
N1A—N2A—H1NA 118.1 (14) N1B—N2B—H1NB 121.7 (16)
C2A—C1A—C6A 120.33 (16) C2B—C1B—C6B 120.66 (15)
C2A—C1A—H1AA 119.8 C2B—C1B—H1BA 119.7
C6A—C1A—H1AA 119.8 C6B—C1B—H1BA 119.7
C1A—C2A—C3A 119.30 (15) C1B—C2B—C3B 118.66 (16)
C1A—C2A—H2AA 120.3 C1B—C2B—H2BA 120.7
C3A—C2A—H2AA 120.3 C3B—C2B—H2BA 120.7
C4A—C3A—C2A 121.77 (15) C4B—C3B—C2B 121.92 (15)
C4A—C3A—Br1A 118.38 (13) C4B—C3B—Br1B 118.22 (12)
C2A—C3A—Br1A 119.85 (13) C2B—C3B—Br1B 119.86 (13)
C3A—C4A—C5A 118.49 (16) C3B—C4B—C5B 118.57 (15)
C3A—C4A—H4AA 120.8 C3B—C4B—H4BA 120.7
C5A—C4A—H4AA 120.8 C5B—C4B—H4BA 120.7
C4A—C5A—C6A 121.17 (16) C4B—C5B—C6B 120.84 (16)
C4A—C5A—H5AA 119.4 C4B—C5B—H5BA 119.6
C6A—C5A—H5AA 119.4 C6B—C5B—H5BA 119.6
C5A—C6A—C1A 118.87 (15) C1B—C6B—C5B 119.29 (15)
C5A—C6A—C7A 118.81 (16) C1B—C6B—C7B 122.62 (15)
C1A—C6A—C7A 122.32 (15) C5B—C6B—C7B 118.06 (16)
N1A—C7A—C6A 120.87 (16) N1B—C7B—C6B 120.80 (16)
N1A—C7A—H7AA 119.6 N1B—C7B—H7BA 119.6
C6A—C7A—H7AA 119.6 C6B—C7B—H7BA 119.6
O1A—C8A—N2A 124.37 (16) O1B—C8B—N2B 123.79 (15)
O1A—C8A—C9A 121.71 (15) O1B—C8B—C9B 121.70 (15)
N2A—C8A—C9A 113.78 (13) N2B—C8B—C9B 114.50 (13)
C10A—C9A—C20A 114.55 (13) C10B—C9B—C8B 107.11 (12)
C10A—C9A—C8A 106.07 (12) C10B—C9B—C20B 114.91 (13)
C20A—C9A—C8A 110.26 (14) C8B—C9B—C20B 109.92 (13)
C10A—C9A—H9AA 108.6 C10B—C9B—H9BA 108.2
C20A—C9A—H9AA 108.6 C8B—C9B—H9BA 108.2
C8A—C9A—H9AA 108.6 C20B—C9B—H9BA 108.2
C15A—C10A—C11A 118.25 (14) C15B—C10B—C11B 118.15 (14)
C15A—C10A—C9A 121.57 (14) C15B—C10B—C9B 122.14 (13)
C11A—C10A—C9A 120.10 (14) C11B—C10B—C9B 119.70 (13)
C12A—C11A—C10A 120.65 (15) C12B—C11B—C10B 120.68 (15)
C12A—C11A—H11A 119.7 C12B—C11B—H11B 119.7
C10A—C11A—H11A 119.7 C10B—C11B—H11B 119.7
C11A—C12A—C13A 121.41 (15) C11B—C12B—C13B 121.51 (15)
C11A—C12A—H12A 119.3 C11B—C12B—H12B 119.2
C13A—C12A—H12A 119.3 C13B—C12B—H12B 119.2
C14A—C13A—C12A 117.58 (14) C12B—C13B—C14B 117.42 (14)
C14A—C13A—C16A 121.26 (15) C12B—C13B—C16B 120.39 (15)
C12A—C13A—C16A 121.16 (15) C14B—C13B—C16B 122.10 (15)
C15A—C14A—C13A 121.43 (15) C15B—C14B—C13B 121.77 (15)
C15A—C14A—H14A 119.3 C15B—C14B—H14B 119.1
C13A—C14A—H14A 119.3 C13B—C14B—H14B 119.1
C14A—C15A—C10A 120.65 (15) C14B—C15B—C10B 120.47 (15)
C14A—C15A—H15A 119.7 C14B—C15B—H15B 119.8
C10A—C15A—H15A 119.7 C10B—C15B—H15B 119.8
C13A—C16A—C17A 116.02 (13) C13B—C16B—C17B 113.29 (13)
C13A—C16A—H16A 108.3 C13B—C16B—H16C 108.9
C17A—C16A—H16A 108.3 C17B—C16B—H16C 108.9
C13A—C16A—H16B 108.3 C13B—C16B—H16D 108.9
C17A—C16A—H16B 108.3 C17B—C16B—H16D 108.9
H16A—C16A—H16B 107.4 H16C—C16B—H16D 107.7
C18A—C17A—C19A 110.80 (15) C19B—C17B—C18B 110.54 (15)
C18A—C17A—C16A 112.47 (16) C19B—C17B—C16B 111.74 (15)
C19A—C17A—C16A 109.00 (14) C18B—C17B—C16B 110.65 (13)
C18A—C17A—H17A 108.1 C19B—C17B—H17B 107.9
C19A—C17A—H17A 108.1 C18B—C17B—H17B 107.9
C16A—C17A—H17A 108.1 C16B—C17B—H17B 107.9
C17A—C18A—H18A 109.5 C17B—C18B—H18D 109.5
C17A—C18A—H18B 109.5 C17B—C18B—H18E 109.5
H18A—C18A—H18B 109.5 H18D—C18B—H18E 109.5
C17A—C18A—H18C 109.5 C17B—C18B—H18F 109.5
H18A—C18A—H18C 109.5 H18D—C18B—H18F 109.5
H18B—C18A—H18C 109.5 H18E—C18B—H18F 109.5
C17A—C19A—H19A 109.5 C17B—C19B—H19D 109.5
C17A—C19A—H19B 109.5 C17B—C19B—H19E 109.5
H19A—C19A—H19B 109.5 H19D—C19B—H19E 109.5
C17A—C19A—H19C 109.5 C17B—C19B—H19F 109.5
H19A—C19A—H19C 109.5 H19D—C19B—H19F 109.5
H19B—C19A—H19C 109.5 H19E—C19B—H19F 109.5
C9A—C20A—H20A 109.5 C9B—C20B—H20D 109.5
C9A—C20A—H20B 109.5 C9B—C20B—H20E 109.5
H20A—C20A—H20B 109.5 H20D—C20B—H20E 109.5
C9A—C20A—H20C 109.5 C9B—C20B—H20F 109.5
H20A—C20A—H20C 109.5 H20D—C20B—H20F 109.5
H20B—C20A—H20C 109.5 H20E—C20B—H20F 109.5
C7A—N1A—N2A—C8A −172.90 (15) C7B—N1B—N2B—C8B 171.64 (15)
C6A—C1A—C2A—C3A 1.7 (3) C6B—C1B—C2B—C3B −0.1 (2)
C1A—C2A—C3A—C4A −2.0 (3) C1B—C2B—C3B—C4B 1.5 (2)
C1A—C2A—C3A—Br1A 178.62 (12) C1B—C2B—C3B—Br1B −178.25 (12)
C2A—C3A—C4A—C5A 0.3 (3) C2B—C3B—C4B—C5B −0.9 (2)
Br1A—C3A—C4A—C5A 179.62 (13) Br1B—C3B—C4B—C5B 178.82 (12)
C3A—C4A—C5A—C6A 1.8 (3) C3B—C4B—C5B—C6B −1.0 (2)
C4A—C5A—C6A—C1A −2.1 (3) C2B—C1B—C6B—C5B −1.7 (2)
C4A—C5A—C6A—C7A 177.39 (16) C2B—C1B—C6B—C7B 176.39 (15)
C2A—C1A—C6A—C5A 0.3 (3) C4B—C5B—C6B—C1B 2.3 (2)
C2A—C1A—C6A—C7A −179.19 (15) C4B—C5B—C6B—C7B −175.90 (14)
N2A—N1A—C7A—C6A −176.44 (13) N2B—N1B—C7B—C6B 179.61 (13)
C5A—C6A—C7A—N1A −155.46 (16) C1B—C6B—C7B—N1B −20.0 (2)
C1A—C6A—C7A—N1A 24.0 (2) C5B—C6B—C7B—N1B 158.13 (15)
N1A—N2A—C8A—O1A 5.2 (3) N1B—N2B—C8B—O1B −4.2 (3)
N1A—N2A—C8A—C9A −170.40 (13) N1B—N2B—C8B—C9B 174.74 (13)
O1A—C8A—C9A—C10A −82.77 (19) O1B—C8B—C9B—C10B 82.66 (19)
N2A—C8A—C9A—C10A 93.00 (16) N2B—C8B—C9B—C10B −96.26 (16)
O1A—C8A—C9A—C20A 41.8 (2) O1B—C8B—C9B—C20B −42.8 (2)
N2A—C8A—C9A—C20A −142.45 (15) N2B—C8B—C9B—C20B 138.28 (14)
C8A—C9A—C10A—C11A −96.54 (17) C8B—C9B—C10B—C11B 77.53 (17)
C8A—C9A—C10A—C15A 80.18 (18) C8B—C9B—C10B—C15B −101.83 (16)
C20A—C9A—C10A—C11A 141.61 (15) C20B—C9B—C10B—C11B −160.06 (14)
C20A—C9A—C10A—C15A −41.7 (2) C20B—C9B—C10B—C15B 20.6 (2)
C15A—C10A—C11A—C12A −0.6 (2) C15B—C10B—C11B—C12B 0.4 (2)
C9A—C10A—C11A—C12A 176.19 (15) C9B—C10B—C11B—C12B −178.97 (15)
C10A—C11A—C12A—C13A −1.1 (2) C10B—C11B—C12B—C13B 0.4 (2)
C11A—C12A—C13A—C14A 1.9 (2) C11B—C12B—C13B—C14B −0.9 (2)
C11A—C12A—C13A—C16A −178.41 (14) C11B—C12B—C13B—C16B 175.84 (15)
C12A—C13A—C14A—C15A −1.0 (2) C12B—C13B—C14B—C15B 0.6 (2)
C16A—C13A—C14A—C15A 179.36 (15) C16B—C13B—C14B—C15B −176.03 (15)
C13A—C14A—C15A—C10A −0.8 (3) C13B—C14B—C15B—C10B 0.1 (3)
C11A—C10A—C15A—C14A 1.6 (2) C11B—C10B—C15B—C14B −0.7 (2)
C9A—C10A—C15A—C14A −175.20 (15) C9B—C10B—C15B—C14B 178.71 (15)
C14A—C13A—C16A—C17A 103.66 (19) C12B—C13B—C16B—C17B −72.7 (2)
C12A—C13A—C16A—C17A −76.0 (2) C14B—C13B—C16B—C17B 103.90 (18)
C13A—C16A—C17A—C18A −53.4 (2) C13B—C16B—C17B—C19B −60.1 (2)
C13A—C16A—C17A—C19A −176.68 (15) C13B—C16B—C17B—C18B 176.24 (16)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N2A—H1NA···O1Bi 0.91 (2) 1.97 (2) 2.830 (2) 157 (2)
N2B—H1NB···O1Aii 0.77 (2) 2.11 (2) 2.826 (2) 155 (2)
C7A—H7AA···O1Bi 0.93 2.45 3.241 (2) 143
C7B—H7BA···O1Aii 0.93 2.53 3.307 (3) 141
C20B—H20F···N1A 0.96 2.56 3.494 (2) 164
C12A—H12A···Cg2i 0.93 2.66 3.482 (2) 148
C12B—H12B···Cg1ii 0.93 2.79 3.680 (2) 160

Symmetry codes: (i) −x+1, y+1/2, −z+1/2; (ii) −x+2, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2787).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Amir, M. & Kumar, S. (2007). Acta Pharm.57, 31–45. [DOI] [PubMed]
  3. Bedia, K.-K., Elçin, O., Seda, U., Fatma, K., Nathaly, S., Sevim, R. & Dimoglo, A. (2006). Eur. J. Med. Chem.41, 1253–1261. [DOI] [PubMed]
  4. Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst.19, 105–107.
  6. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  7. Fun, H.-K., Jebas, S. R., Sujith, K. V., Patil, P. S., Kalluraya, B. & Dharmaprakash, S. M. (2008). Acta Cryst. E64, o1001–o1002. [DOI] [PMC free article] [PubMed]
  8. Rollas, S., Gülerman, N. & Erdeniz, H. (2002). Farmaco, 57, 171–174. [DOI] [PubMed]
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  11. Sridhar, R. & Perumal, P. T. (2003). Synth. Commun.33, 1483–1488.
  12. Terzioglu, N. & Gürsoy, A. (2003). Eur. J. Med. Chem.38, 781–786. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809015542/ci2787sup1.cif

e-65-o1184-sup1.cif (31.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809015542/ci2787Isup2.hkl

e-65-o1184-Isup2.hkl (1,004.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES