Abstract
The title borophosphate LiNi(H2O)2[BP2O8]·H2O was synthesized under hydrothermal conditions. The crystal structure is isotypic with the Mg analogue and features helical [BP2O8]3− borophosphate ribbons, constructed by BO4 (2 symmetry) and PO4 tetrahedra. The borate groups share all their oxygen apices with adjacent phosphate tetrahedra. The ribbons are connected via Ni2+ cations that are located on twofold rotation axes. The cations have a slightly distorted octahedral oxygen coordination by four O atoms from the anion and by two water molecules. The voids within the helices are occupied by Li+ cations, likewise located on twofold rotation axes, in an irregular environment of five O atoms. The structure is stabilized by O—H⋯O hydrogen bonds between coordinated or uncoordinated water molecules and O atoms that are part of the helices.
Related literature
For the isotypic Mg analogue, see: Lin et al. (2008 ▶). For other borophosphates, see: Boy & Kniep (2001 ▶); Kniep et al. (1998 ▶). A review on the structural chemistry of borophosphates is given by Ewald et al. (2007 ▶).
Experimental
Crystal data
LiNi(H2O)2[BP2O8]·H2O
M r = 320.44
Hexagonal,
a = 9.3359 (3) Å
c = 15.7497 (11) Å
V = 1188.82 (10) Å3
Z = 6
Mo Kα radiation
μ = 2.91 mm−1
T = 296 K
0.22 × 0.20 × 0.17 mm
Data collection
Bruker APEXII CCD area-detector diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2007 ▶) T min = 0.567, T max = 0.638
6139 measured reflections
708 independent reflections
684 reflections with I > 2σ(I)
R int = 0.049
Refinement
R[F 2 > 2σ(F 2)] = 0.026
wR(F 2) = 0.065
S = 1.14
708 reflections
75 parameters
H-atom parameters constrained
Δρmax = 0.68 e Å−3
Δρmin = −0.39 e Å−3
Absolute structure: Flack (1983 ▶), 235 Friedel pairs
Flack parameter: 0.01 (3)
Data collection: APEX2 (Bruker, 2007 ▶); cell refinement: SAINT (Bruker, 2007 ▶); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 ▶); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 ▶); molecular graphics: SHELXTL (Sheldrick, 2008 ▶); software used to prepare material for publication: SHELXTL.
Supplementary Material
Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809014652/wm2227sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536809014652/wm2227Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
Table 1. Selected bond lengths (Å).
| Ni1—O1i | 2.048 (3) |
| Ni1—O2 | 2.070 (3) |
| Ni1—O3 | 2.130 (3) |
| P2—O1 | 1.503 (3) |
| P2—O2 | 1.510 (3) |
| P2—O4 | 1.546 (3) |
| P2—O5 | 1.556 (3) |
| O6—Li | 2.12 (2) |
| B—O5ii | 1.461 (5) |
| B—O4iii | 1.471 (5) |
| Li—O2iv | 2.113 (13) |
| Li—O3v | 2.164 (4) |
Symmetry codes: (i)
; (ii)
; (iii)
; (iv)
; (v)
.
Table 2. Hydrogen-bond geometry (Å, °).
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| O3—H3A⋯O5iv | 0.81 | 2.01 | 2.746 (4) | 151 |
| O3—H3A⋯O2iv | 0.81 | 2.60 | 3.165 (4) | 128 |
| O6—H6⋯O4vi | 0.83 | 2.52 | 3.331 (4) | 167 |
| O6—H6⋯O1vi | 0.83 | 2.66 | 3.092 (4) | 114 |
| O3—H3B⋯O1 | 0.83 | 2.00 | 2.810 (4) | 167 |
| O3—H3B⋯O2 | 0.83 | 2.54 | 2.955 (4) | 112 |
Symmetry codes: (iv)
; (vi)
.
Acknowledgments
This work was supported by the Main Teacher Project of Hena Province (grant No. 649082) and the Foundation of Graduate Produce (reference 2008-M-17).
supplementary crystallographic information
Comment
With increasing interest in microporous materials, the synthesis of compounds like borophosphates with open framework structures have drawn much attention during the past few years. These compounds show a rich crystal chemistry (Kniep et al., 1998; Ewald et al., 2007).
The crystal structure of LiNi(H2O)2[BP2O8].H2O is isotypic with that of the Mg analogue (Lin et al. 2008) and contains an infinite one-dimensional anionic structure. The condensation of BO4 and PO4 tetrahedra leads to helical ribbons with composition [BP2O8]3- (Fig. 1), whereby each BO4 tetrahedron shares its vertices with four PO4 tetrahedra. Bond lenghts and angles within the anionic structure are consistent with related borophosphates (Boy & Kniep, 2001; Lin et al., 2008).
The free loop of the borophosphate helix is occupied by Li+ cations, which are coordinated by with five O atoms, two from phosphate groups (O2) and three from water molecules (O3), thus completing an helical unit {Li[BP2O8]2-} with a central channel running along the 65 screw axis. The channels are filled up with water of crystallization (O6). The Ni2+ cations, located on a twofold rotation axis, are surrounded in a distorted octahedral coordination by four O atoms from adjacent phosphate groups and two water molecules, leading to the overall formula LiNi(H2O)2[BP2O8].H2O (Fig. 2). The Ni—O distances range from 2.048 (3)–2.130 (3) Å and are in the usual range. The crystal structure is stabilized by O—H···O hydrogen bonds between coordinated or uncoordinated water molecules and O atoms that are part of the helices.
Experimental
Green block-shaped crystals were synthesized hydrothermally from a mixture of Ni(NO3)2, Li2B4O7, water and H3PO4. In a typical synthesis, 0.87 g Ni(NO3)2.6H2O was dissolved in a mixture of 5 mL water, 1.691 g Li2B4O7 and 2 ml H3PO4 (85%wt ) under constant stirring. Finally, the mixture was kept in a 30 ml Teflon-lined steel autoclave at 443 K for 6d. The autoclave was slowly cooled to room temperature.
Refinement
The highest peak in the difference map is 1.29Å from atom H6, and the minimum peak is 0.48Å from atom P2.
Figures
Fig. 1.
A part of the structure of LiNi(H2O)2[BP2O8].H2O with displacement ellipsoids drawn at the 50% the probability level. Symmetry codes: (i) 1 - y, 1 - x, 0.16667 - z; (ii) 1 - x, 1 - x + y, 0.33333 - z; (iii) x-y, x, -0.16667 + z; (iv) y, x, 0.66667 - z; (v) y, -x + y, 0.16667 + z; (vi) x, x-y, 0.83333 - z.
Fig. 2.
Polyhedral diagram for LiNi(H2O)2[BP2O8].H2O in projection along [001]. Colour code: purple P, orange B, blue Ni, red OW6 and green Li.
Crystal data
| LiNi(H2O)2[BP2O8]·H2O | Dx = 2.686 Mg m−3 |
| Mr = 320.44 | Mo Kα radiation, λ = 0.71073 Å |
| Hexagonal, P6522 | Cell parameters from 1684 reflections |
| Hall symbol: P 65 2 ( 0 | θ = 2.5–29.5° |
| a = 9.3359 (3) Å | µ = 2.91 mm−1 |
| c = 15.7497 (11) Å | T = 296 K |
| V = 1188.82 (10) Å3 | Block, green |
| Z = 6 | 0.22 × 0.20 × 0.17 mm |
| F(000) = 960 |
Data collection
| Bruker APEXII CCD area-detector diffractometer | 708 independent reflections |
| Radiation source: fine-focus sealed tube | 684 reflections with I > 2σ(I) |
| graphite | Rint = 0.049 |
| φ and ω scans | θmax = 29.5°, θmin = 2.5° |
| Absorption correction: multi-scan (SADABS; Bruker, 2007) | h = −10→11 |
| Tmin = 0.567, Tmax = 0.638 | k = −8→11 |
| 6139 measured reflections | l = −18→14 |
Refinement
| Refinement on F2 | Secondary atom site location: difference Fourier map |
| Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
| R[F2 > 2σ(F2)] = 0.026 | H-atom parameters constrained |
| wR(F2) = 0.065 | w = 1/[σ2(Fo2) + (0.0284P)2 + 2.1868P] where P = (Fo2 + 2Fc2)/3 |
| S = 1.14 | (Δ/σ)max = 0.001 |
| 708 reflections | Δρmax = 0.68 e Å−3 |
| 75 parameters | Δρmin = −0.39 e Å−3 |
| 0 restraints | Absolute structure: Flack (1983), 235 Friedel pairs |
| Primary atom site location: structure-invariant direct methods | Flack parameter: 0.01 (3) |
Special details
| Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
| Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| Ni1 | 0.55533 (4) | 0.44467 (4) | 0.0833 | 0.0098 (2) | |
| P2 | 0.38859 (12) | 0.21675 (12) | 0.24795 (7) | 0.0093 (3) | |
| O5 | 0.4156 (3) | 0.2355 (3) | 0.34570 (16) | 0.0108 (6) | |
| O4 | 0.2137 (3) | 0.1899 (4) | 0.23106 (18) | 0.0129 (7) | |
| O3 | 0.4865 (4) | 0.1970 (4) | 0.05090 (19) | 0.0214 (7) | |
| O2 | 0.5200 (4) | 0.3782 (3) | 0.21028 (17) | 0.0142 (7) | |
| O1 | 0.3853 (4) | 0.0644 (4) | 0.21452 (17) | 0.0151 (7) | |
| O6 | 0.2044 (10) | 0.1022 (5) | −0.0833 | 0.079 (2) | |
| B | 0.3037 (8) | 0.1518 (4) | 0.4167 | 0.0090 (13) | |
| Li | 0.466 (3) | 0.2331 (13) | −0.0833 | 0.080 (5) | |
| H3A | 0.5738 | 0.2196 | 0.0284 | 0.096* | |
| H6 | 0.1509 | 0.0382 | −0.1223 | 0.096* | |
| H3B | 0.4428 | 0.1571 | 0.0973 | 0.096* |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| Ni1 | 0.0098 (3) | 0.0098 (3) | 0.0100 (3) | 0.0050 (3) | 0.0013 (3) | 0.0013 (3) |
| P2 | 0.0097 (5) | 0.0097 (5) | 0.0086 (5) | 0.0050 (4) | 0.0015 (4) | 0.0015 (4) |
| O5 | 0.0095 (14) | 0.0126 (16) | 0.0089 (13) | 0.0044 (12) | 0.0014 (11) | 0.0016 (11) |
| O4 | 0.0131 (16) | 0.0132 (15) | 0.0157 (16) | 0.0091 (13) | −0.0022 (12) | −0.0030 (12) |
| O3 | 0.0277 (18) | 0.0162 (18) | 0.0231 (17) | 0.0130 (14) | 0.0121 (14) | 0.0049 (14) |
| O2 | 0.0143 (16) | 0.0134 (14) | 0.0101 (13) | 0.0032 (13) | 0.0021 (12) | 0.0040 (11) |
| O1 | 0.0211 (17) | 0.0159 (16) | 0.0147 (14) | 0.0140 (14) | 0.0008 (14) | −0.0017 (12) |
| O6 | 0.083 (6) | 0.061 (3) | 0.100 (6) | 0.042 (3) | 0.000 | −0.024 (4) |
| B | 0.012 (3) | 0.009 (2) | 0.007 (3) | 0.0059 (15) | 0.000 | 0.001 (2) |
| Li | 0.094 (15) | 0.089 (10) | 0.058 (10) | 0.047 (8) | 0.000 | 0.011 (10) |
Geometric parameters (Å, °)
| Ni1—O1i | 2.048 (3) | O4—Bi | 1.471 (5) |
| Ni1—O1ii | 2.048 (3) | O3—Li | 2.164 (4) |
| Ni1—O2iii | 2.070 (3) | O2—Liiv | 2.113 (13) |
| Ni1—O2 | 2.070 (3) | O1—Ni1v | 2.048 (3) |
| Ni1—O3 | 2.130 (3) | O6—Li | 2.12 (2) |
| Ni1—O3iii | 2.130 (3) | B—O5vi | 1.461 (5) |
| Ni1—Li | 3.137 (5) | B—O4vii | 1.471 (5) |
| Ni1—Liiv | 3.137 (5) | B—O4v | 1.471 (5) |
| P2—O1 | 1.503 (3) | Li—O2iii | 2.113 (13) |
| P2—O2 | 1.510 (3) | Li—O2viii | 2.113 (13) |
| P2—O4 | 1.546 (3) | Li—O3ix | 2.164 (4) |
| P2—O5 | 1.556 (3) | Li—Ni1viii | 3.137 (5) |
| O5—B | 1.461 (5) | ||
| O1i—Ni1—O1ii | 92.58 (18) | B—O5—P2 | 131.6 (3) |
| O1i—Ni1—O2iii | 88.53 (11) | Bi—O4—P2 | 127.8 (3) |
| O1ii—Ni1—O2iii | 101.19 (12) | Ni1—O3—Li | 93.87 (18) |
| O1i—Ni1—O2 | 101.19 (12) | P2—O2—Ni1 | 127.36 (17) |
| O1ii—Ni1—O2 | 88.53 (11) | P2—O2—Liiv | 129.2 (4) |
| O2iii—Ni1—O2 | 166.00 (17) | Ni1—O2—Liiv | 97.1 (2) |
| O1i—Ni1—O3 | 86.52 (13) | P2—O1—Ni1v | 140.72 (18) |
| O1ii—Ni1—O3 | 177.55 (12) | O5vi—B—O5 | 103.4 (4) |
| O2iii—Ni1—O3 | 81.08 (11) | O5vi—B—O4vii | 111.43 (15) |
| O2—Ni1—O3 | 89.40 (11) | O5—B—O4vii | 114.16 (15) |
| O1i—Ni1—O3iii | 177.55 (12) | O5vi—B—O4v | 114.16 (15) |
| O1ii—Ni1—O3iii | 86.52 (13) | O5—B—O4v | 111.43 (16) |
| O2iii—Ni1—O3iii | 89.40 (11) | O4vii—B—O4v | 102.6 (4) |
| O2—Ni1—O3iii | 81.08 (11) | O2iii—Li—O2viii | 106.9 (9) |
| O3—Ni1—O3iii | 94.47 (19) | O2iii—Li—O6 | 126.5 (5) |
| O1i—Ni1—Li | 72.0 (4) | O2viii—Li—O6 | 126.5 (5) |
| O1ii—Ni1—Li | 138.23 (8) | O2iii—Li—O3 | 79.3 (3) |
| O2iii—Ni1—Li | 41.9 (3) | O2viii—Li—O3 | 95.5 (4) |
| O2—Ni1—Li | 131.83 (17) | O6—Li—O3 | 94.3 (6) |
| O3—Ni1—Li | 43.50 (9) | O2iii—Li—O3ix | 95.5 (4) |
| O3iii—Ni1—Li | 107.3 (4) | O2viii—Li—O3ix | 79.3 (3) |
| O1i—Ni1—Liiv | 138.23 (8) | O6—Li—O3ix | 94.3 (6) |
| O1ii—Ni1—Liiv | 72.0 (4) | O3—Li—O3ix | 171.3 (11) |
| O2iii—Ni1—Liiv | 131.83 (17) | O2iii—Li—Ni1 | 40.91 (9) |
| O2—Ni1—Liiv | 41.9 (3) | O2viii—Li—Ni1 | 118.8 (6) |
| O3—Ni1—Liiv | 107.3 (4) | O6—Li—Ni1 | 103.3 (4) |
| O3iii—Ni1—Liiv | 43.50 (9) | O3—Li—Ni1 | 42.64 (13) |
| Li—Ni1—Liiv | 143.2 (5) | O3ix—Li—Ni1 | 134.5 (3) |
| O1—P2—O2 | 115.38 (17) | O2iii—Li—Ni1viii | 118.8 (6) |
| O1—P2—O4 | 105.45 (17) | O2viii—Li—Ni1viii | 40.91 (9) |
| O2—P2—O4 | 111.07 (18) | O6—Li—Ni1viii | 103.3 (4) |
| O1—P2—O5 | 112.24 (16) | O3—Li—Ni1viii | 134.5 (4) |
| O2—P2—O5 | 105.75 (16) | O3ix—Li—Ni1viii | 42.64 (13) |
| O4—P2—O5 | 106.70 (15) | Ni1—Li—Ni1viii | 153.4 (7) |
Symmetry codes: (i) x−y, x, z−1/6; (ii) −x+1, −x+y+1, −z+1/3; (iii) −y+1, −x+1, −z+1/6; (iv) −x+y+1, −x+1, z+1/3; (v) y, −x+y, z+1/6; (vi) x, x−y, −z+5/6; (vii) y, x, −z+2/3; (viii) −y+1, x−y, z−1/3; (ix) x, x−y, −z−1/6.
Hydrogen-bond geometry (Å, °)
| D—H···A | D—H | H···A | D···A | D—H···A |
| O3—H3A···O5viii | 0.81 | 2.01 | 2.746 (4) | 151 |
| O3—H3A···O2viii | 0.81 | 2.60 | 3.165 (4) | 128 |
| O6—H6···O4x | 0.83 | 2.52 | 3.331 (4) | 167 |
| O6—H6···O1x | 0.83 | 2.66 | 3.092 (4) | 114 |
| O3—H3B···O1 | 0.83 | 2.00 | 2.810 (4) | 167 |
| O3—H3B···O2 | 0.83 | 2.54 | 2.955 (4) | 112 |
Symmetry codes: (viii) −y+1, x−y, z−1/3; (x) x−y, −y, −z.
Footnotes
Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2227).
References
- Boy, I. & Kniep, R. J. (2001). Z. Kristallogr. New Cryst. Struct.216, 9–10.
- Bruker (2007). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
- Ewald, B., Huang, Y.-X. & Kniep, R. (2007). Z. Anorg. Allg. Chem 633, 1517–1540.
- Flack, H. D. (1983). Acta Cryst. A39, 876–881.
- Kniep, R., Engelhardt, H. & Hauf, C. (1998). Chem. Mater.10, 2930–2934.
- Lin, J.-R., Huang, Y.-X., Wu, Y.-H. & Zhou, Y. (2008). Acta Cryst. E64, i39–i40. [DOI] [PMC free article] [PubMed]
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809014652/wm2227sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536809014652/wm2227Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report


