Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 May 7;65(Pt 6):i42. doi: 10.1107/S1600536809014652

Lithium diaqua­nickel(II) catena-borodiphosphate(V) monohydrate

Juan Zheng a, Aiyun Zhang a,*
PMCID: PMC2969569  PMID: 21582977

Abstract

The title borophosphate LiNi(H2O)2[BP2O8]·H2O was synthesized under hydro­thermal conditions. The crystal structure is isotypic with the Mg analogue and features helical [BP2O8]3− borophosphate ribbons, constructed by BO4 (2 symmetry) and PO4 tetra­hedra. The borate groups share all their oxygen apices with adjacent phosphate tetra­hedra. The ribbons are connected via Ni2+ cations that are located on twofold rotation axes. The cations have a slightly distorted octa­hedral oxygen coordination by four O atoms from the anion and by two water mol­ecules. The voids within the helices are occupied by Li+ cations, likewise located on twofold rotation axes, in an irregular environment of five O atoms. The structure is stabilized by O—H⋯O hydrogen bonds between coordinated or uncoordinated water mol­ecules and O atoms that are part of the helices.

Related literature

For the isotypic Mg analogue, see: Lin et al. (2008). For other borophosphates, see: Boy & Kniep (2001); Kniep et al. (1998). A review on the structural chemistry of borophosphates is given by Ewald et al. (2007).

Experimental

Crystal data

  • LiNi(H2O)2[BP2O8]·H2O

  • M r = 320.44

  • Hexagonal, Inline graphic

  • a = 9.3359 (3) Å

  • c = 15.7497 (11) Å

  • V = 1188.82 (10) Å3

  • Z = 6

  • Mo Kα radiation

  • μ = 2.91 mm−1

  • T = 296 K

  • 0.22 × 0.20 × 0.17 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007) T min = 0.567, T max = 0.638

  • 6139 measured reflections

  • 708 independent reflections

  • 684 reflections with I > 2σ(I)

  • R int = 0.049

Refinement

  • R[F 2 > 2σ(F 2)] = 0.026

  • wR(F 2) = 0.065

  • S = 1.14

  • 708 reflections

  • 75 parameters

  • H-atom parameters constrained

  • Δρmax = 0.68 e Å−3

  • Δρmin = −0.39 e Å−3

  • Absolute structure: Flack (1983), 235 Friedel pairs

  • Flack parameter: 0.01 (3)

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809014652/wm2227sup1.cif

e-65-00i42-sup1.cif (15.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809014652/wm2227Isup2.hkl

e-65-00i42-Isup2.hkl (35.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

Ni1—O1i 2.048 (3)
Ni1—O2 2.070 (3)
Ni1—O3 2.130 (3)
P2—O1 1.503 (3)
P2—O2 1.510 (3)
P2—O4 1.546 (3)
P2—O5 1.556 (3)
O6—Li 2.12 (2)
B—O5ii 1.461 (5)
B—O4iii 1.471 (5)
Li—O2iv 2.113 (13)
Li—O3v 2.164 (4)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic.

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3A⋯O5iv 0.81 2.01 2.746 (4) 151
O3—H3A⋯O2iv 0.81 2.60 3.165 (4) 128
O6—H6⋯O4vi 0.83 2.52 3.331 (4) 167
O6—H6⋯O1vi 0.83 2.66 3.092 (4) 114
O3—H3B⋯O1 0.83 2.00 2.810 (4) 167
O3—H3B⋯O2 0.83 2.54 2.955 (4) 112

Symmetry codes: (iv) Inline graphic; (vi) Inline graphic.

Acknowledgments

This work was supported by the Main Teacher Project of Hena Province (grant No. 649082) and the Foundation of Graduate Produce (reference 2008-M-17).

supplementary crystallographic information

Comment

With increasing interest in microporous materials, the synthesis of compounds like borophosphates with open framework structures have drawn much attention during the past few years. These compounds show a rich crystal chemistry (Kniep et al., 1998; Ewald et al., 2007).

The crystal structure of LiNi(H2O)2[BP2O8].H2O is isotypic with that of the Mg analogue (Lin et al. 2008) and contains an infinite one-dimensional anionic structure. The condensation of BO4 and PO4 tetrahedra leads to helical ribbons with composition [BP2O8]3- (Fig. 1), whereby each BO4 tetrahedron shares its vertices with four PO4 tetrahedra. Bond lenghts and angles within the anionic structure are consistent with related borophosphates (Boy & Kniep, 2001; Lin et al., 2008).

The free loop of the borophosphate helix is occupied by Li+ cations, which are coordinated by with five O atoms, two from phosphate groups (O2) and three from water molecules (O3), thus completing an helical unit {Li[BP2O8]2-} with a central channel running along the 65 screw axis. The channels are filled up with water of crystallization (O6). The Ni2+ cations, located on a twofold rotation axis, are surrounded in a distorted octahedral coordination by four O atoms from adjacent phosphate groups and two water molecules, leading to the overall formula LiNi(H2O)2[BP2O8].H2O (Fig. 2). The Ni—O distances range from 2.048 (3)–2.130 (3) Å and are in the usual range. The crystal structure is stabilized by O—H···O hydrogen bonds between coordinated or uncoordinated water molecules and O atoms that are part of the helices.

Experimental

Green block-shaped crystals were synthesized hydrothermally from a mixture of Ni(NO3)2, Li2B4O7, water and H3PO4. In a typical synthesis, 0.87 g Ni(NO3)2.6H2O was dissolved in a mixture of 5 mL water, 1.691 g Li2B4O7 and 2 ml H3PO4 (85%wt ) under constant stirring. Finally, the mixture was kept in a 30 ml Teflon-lined steel autoclave at 443 K for 6d. The autoclave was slowly cooled to room temperature.

Refinement

The highest peak in the difference map is 1.29Å from atom H6, and the minimum peak is 0.48Å from atom P2.

Figures

Fig. 1.

Fig. 1.

A part of the structure of LiNi(H2O)2[BP2O8].H2O with displacement ellipsoids drawn at the 50% the probability level. Symmetry codes: (i) 1 - y, 1 - x, 0.16667 - z; (ii) 1 - x, 1 - x + y, 0.33333 - z; (iii) x-y, x, -0.16667 + z; (iv) y, x, 0.66667 - z; (v) y, -x + y, 0.16667 + z; (vi) x, x-y, 0.83333 - z.

Fig. 2.

Fig. 2.

Polyhedral diagram for LiNi(H2O)2[BP2O8].H2O in projection along [001]. Colour code: purple P, orange B, blue Ni, red OW6 and green Li.

Crystal data

LiNi(H2O)2[BP2O8]·H2O Dx = 2.686 Mg m3
Mr = 320.44 Mo Kα radiation, λ = 0.71073 Å
Hexagonal, P6522 Cell parameters from 1684 reflections
Hall symbol: P 65 2 ( 0 θ = 2.5–29.5°
a = 9.3359 (3) Å µ = 2.91 mm1
c = 15.7497 (11) Å T = 296 K
V = 1188.82 (10) Å3 Block, green
Z = 6 0.22 × 0.20 × 0.17 mm
F(000) = 960

Data collection

Bruker APEXII CCD area-detector diffractometer 708 independent reflections
Radiation source: fine-focus sealed tube 684 reflections with I > 2σ(I)
graphite Rint = 0.049
φ and ω scans θmax = 29.5°, θmin = 2.5°
Absorption correction: multi-scan (SADABS; Bruker, 2007) h = −10→11
Tmin = 0.567, Tmax = 0.638 k = −8→11
6139 measured reflections l = −18→14

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.026 H-atom parameters constrained
wR(F2) = 0.065 w = 1/[σ2(Fo2) + (0.0284P)2 + 2.1868P] where P = (Fo2 + 2Fc2)/3
S = 1.14 (Δ/σ)max = 0.001
708 reflections Δρmax = 0.68 e Å3
75 parameters Δρmin = −0.39 e Å3
0 restraints Absolute structure: Flack (1983), 235 Friedel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: 0.01 (3)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Ni1 0.55533 (4) 0.44467 (4) 0.0833 0.0098 (2)
P2 0.38859 (12) 0.21675 (12) 0.24795 (7) 0.0093 (3)
O5 0.4156 (3) 0.2355 (3) 0.34570 (16) 0.0108 (6)
O4 0.2137 (3) 0.1899 (4) 0.23106 (18) 0.0129 (7)
O3 0.4865 (4) 0.1970 (4) 0.05090 (19) 0.0214 (7)
O2 0.5200 (4) 0.3782 (3) 0.21028 (17) 0.0142 (7)
O1 0.3853 (4) 0.0644 (4) 0.21452 (17) 0.0151 (7)
O6 0.2044 (10) 0.1022 (5) −0.0833 0.079 (2)
B 0.3037 (8) 0.1518 (4) 0.4167 0.0090 (13)
Li 0.466 (3) 0.2331 (13) −0.0833 0.080 (5)
H3A 0.5738 0.2196 0.0284 0.096*
H6 0.1509 0.0382 −0.1223 0.096*
H3B 0.4428 0.1571 0.0973 0.096*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Ni1 0.0098 (3) 0.0098 (3) 0.0100 (3) 0.0050 (3) 0.0013 (3) 0.0013 (3)
P2 0.0097 (5) 0.0097 (5) 0.0086 (5) 0.0050 (4) 0.0015 (4) 0.0015 (4)
O5 0.0095 (14) 0.0126 (16) 0.0089 (13) 0.0044 (12) 0.0014 (11) 0.0016 (11)
O4 0.0131 (16) 0.0132 (15) 0.0157 (16) 0.0091 (13) −0.0022 (12) −0.0030 (12)
O3 0.0277 (18) 0.0162 (18) 0.0231 (17) 0.0130 (14) 0.0121 (14) 0.0049 (14)
O2 0.0143 (16) 0.0134 (14) 0.0101 (13) 0.0032 (13) 0.0021 (12) 0.0040 (11)
O1 0.0211 (17) 0.0159 (16) 0.0147 (14) 0.0140 (14) 0.0008 (14) −0.0017 (12)
O6 0.083 (6) 0.061 (3) 0.100 (6) 0.042 (3) 0.000 −0.024 (4)
B 0.012 (3) 0.009 (2) 0.007 (3) 0.0059 (15) 0.000 0.001 (2)
Li 0.094 (15) 0.089 (10) 0.058 (10) 0.047 (8) 0.000 0.011 (10)

Geometric parameters (Å, °)

Ni1—O1i 2.048 (3) O4—Bi 1.471 (5)
Ni1—O1ii 2.048 (3) O3—Li 2.164 (4)
Ni1—O2iii 2.070 (3) O2—Liiv 2.113 (13)
Ni1—O2 2.070 (3) O1—Ni1v 2.048 (3)
Ni1—O3 2.130 (3) O6—Li 2.12 (2)
Ni1—O3iii 2.130 (3) B—O5vi 1.461 (5)
Ni1—Li 3.137 (5) B—O4vii 1.471 (5)
Ni1—Liiv 3.137 (5) B—O4v 1.471 (5)
P2—O1 1.503 (3) Li—O2iii 2.113 (13)
P2—O2 1.510 (3) Li—O2viii 2.113 (13)
P2—O4 1.546 (3) Li—O3ix 2.164 (4)
P2—O5 1.556 (3) Li—Ni1viii 3.137 (5)
O5—B 1.461 (5)
O1i—Ni1—O1ii 92.58 (18) B—O5—P2 131.6 (3)
O1i—Ni1—O2iii 88.53 (11) Bi—O4—P2 127.8 (3)
O1ii—Ni1—O2iii 101.19 (12) Ni1—O3—Li 93.87 (18)
O1i—Ni1—O2 101.19 (12) P2—O2—Ni1 127.36 (17)
O1ii—Ni1—O2 88.53 (11) P2—O2—Liiv 129.2 (4)
O2iii—Ni1—O2 166.00 (17) Ni1—O2—Liiv 97.1 (2)
O1i—Ni1—O3 86.52 (13) P2—O1—Ni1v 140.72 (18)
O1ii—Ni1—O3 177.55 (12) O5vi—B—O5 103.4 (4)
O2iii—Ni1—O3 81.08 (11) O5vi—B—O4vii 111.43 (15)
O2—Ni1—O3 89.40 (11) O5—B—O4vii 114.16 (15)
O1i—Ni1—O3iii 177.55 (12) O5vi—B—O4v 114.16 (15)
O1ii—Ni1—O3iii 86.52 (13) O5—B—O4v 111.43 (16)
O2iii—Ni1—O3iii 89.40 (11) O4vii—B—O4v 102.6 (4)
O2—Ni1—O3iii 81.08 (11) O2iii—Li—O2viii 106.9 (9)
O3—Ni1—O3iii 94.47 (19) O2iii—Li—O6 126.5 (5)
O1i—Ni1—Li 72.0 (4) O2viii—Li—O6 126.5 (5)
O1ii—Ni1—Li 138.23 (8) O2iii—Li—O3 79.3 (3)
O2iii—Ni1—Li 41.9 (3) O2viii—Li—O3 95.5 (4)
O2—Ni1—Li 131.83 (17) O6—Li—O3 94.3 (6)
O3—Ni1—Li 43.50 (9) O2iii—Li—O3ix 95.5 (4)
O3iii—Ni1—Li 107.3 (4) O2viii—Li—O3ix 79.3 (3)
O1i—Ni1—Liiv 138.23 (8) O6—Li—O3ix 94.3 (6)
O1ii—Ni1—Liiv 72.0 (4) O3—Li—O3ix 171.3 (11)
O2iii—Ni1—Liiv 131.83 (17) O2iii—Li—Ni1 40.91 (9)
O2—Ni1—Liiv 41.9 (3) O2viii—Li—Ni1 118.8 (6)
O3—Ni1—Liiv 107.3 (4) O6—Li—Ni1 103.3 (4)
O3iii—Ni1—Liiv 43.50 (9) O3—Li—Ni1 42.64 (13)
Li—Ni1—Liiv 143.2 (5) O3ix—Li—Ni1 134.5 (3)
O1—P2—O2 115.38 (17) O2iii—Li—Ni1viii 118.8 (6)
O1—P2—O4 105.45 (17) O2viii—Li—Ni1viii 40.91 (9)
O2—P2—O4 111.07 (18) O6—Li—Ni1viii 103.3 (4)
O1—P2—O5 112.24 (16) O3—Li—Ni1viii 134.5 (4)
O2—P2—O5 105.75 (16) O3ix—Li—Ni1viii 42.64 (13)
O4—P2—O5 106.70 (15) Ni1—Li—Ni1viii 153.4 (7)

Symmetry codes: (i) xy, x, z−1/6; (ii) −x+1, −x+y+1, −z+1/3; (iii) −y+1, −x+1, −z+1/6; (iv) −x+y+1, −x+1, z+1/3; (v) y, −x+y, z+1/6; (vi) x, xy, −z+5/6; (vii) y, x, −z+2/3; (viii) −y+1, xy, z−1/3; (ix) x, xy, −z−1/6.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O3—H3A···O5viii 0.81 2.01 2.746 (4) 151
O3—H3A···O2viii 0.81 2.60 3.165 (4) 128
O6—H6···O4x 0.83 2.52 3.331 (4) 167
O6—H6···O1x 0.83 2.66 3.092 (4) 114
O3—H3B···O1 0.83 2.00 2.810 (4) 167
O3—H3B···O2 0.83 2.54 2.955 (4) 112

Symmetry codes: (viii) −y+1, xy, z−1/3; (x) xy, −y, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2227).

References

  1. Boy, I. & Kniep, R. J. (2001). Z. Kristallogr. New Cryst. Struct.216, 9–10.
  2. Bruker (2007). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Ewald, B., Huang, Y.-X. & Kniep, R. (2007). Z. Anorg. Allg. Chem 633, 1517–1540.
  4. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  5. Kniep, R., Engelhardt, H. & Hauf, C. (1998). Chem. Mater.10, 2930–2934.
  6. Lin, J.-R., Huang, Y.-X., Wu, Y.-H. & Zhou, Y. (2008). Acta Cryst. E64, i39–i40. [DOI] [PMC free article] [PubMed]
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809014652/wm2227sup1.cif

e-65-00i42-sup1.cif (15.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809014652/wm2227Isup2.hkl

e-65-00i42-Isup2.hkl (35.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES