Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 May 29;65(Pt 6):m693. doi: 10.1107/S1600536809019266

Dibromido(2,2′:6′,2′′-terpyridine-κ3 N,N′,N′′)zinc(II)

Qing-Lan Zhao a, Guo-Peng Li b,*
PMCID: PMC2969570  PMID: 21583049

Abstract

In the title compound, [ZnBr2(C15H11N3)], the ZnII ion is five-coordinated by the three N atoms from a 2,2′:6′,2′′-terpyridine ligand (terpy) and two bromide anions in a distorted trigonal bipyramidal configuration. Each mol­ecule is situated on a twofold rotational axis that passes through the ZnII ion and the central ring of the terpy ligand. In the crystal structure, aromatic π–π inter­actions between terpy ligands [centroid–centroid distances = 3.6265 (9) Å] link mol­ecules into stacks propagated in the [001] direction.

Related literature

For related structures, see: Alizadeh et al. (2009); Mahmoudi et al. (2009); Huang et al. (2009); Ma et al. (2009); Bai et al. (2009).graphic file with name e-65-0m693-scheme1.jpg

Experimental

Crystal data

  • [ZnBr2(C15H11N3)]

  • M r = 458.46

  • Monoclinic, Inline graphic

  • a = 17.0972 (5) Å

  • b = 9.3528 (3) Å

  • c = 11.5334 (4) Å

  • β = 126.051 (1)°

  • V = 1491.08 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 7.00 mm−1

  • T = 296 K

  • 0.20 × 0.18 × 0.16 mm

Data collection

  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.335, T max = 0.401 (expected range = 0.273–0.326)

  • 9665 measured reflections

  • 1457 independent reflections

  • 1371 reflections with I > 2σ(I)

  • R int = 0.019

Refinement

  • R[F 2 > 2σ(F 2)] = 0.015

  • wR(F 2) = 0.039

  • S = 1.08

  • 1457 reflections

  • 97 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.29 e Å−3

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809019266/cv2561sup1.cif

e-65-0m693-sup1.cif (15.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809019266/cv2561Isup2.hkl

e-65-0m693-Isup2.hkl (72KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are grateful to the Henan Administration of Science and Technology for financial support (grant No. 092300410031).

supplementary crystallographic information

Comment

As a contribution to structural characterization of 2,2':6',2''-terpyridine complexes (Alizadeh et al., 2009; Huang et al., 2009; Ma et al., 2009; Bai et al., 2009) we present here the title complex (I).

In (I) (Fig. 1), the ZnII ion is five-coordinated in a distorted trigonal bipyramidal configuration by three N atoms from a 2,2':6',2''-terpyridine ligand and by two Br anions. The Zn–Br and Zn–N bond lengths are within normal ranges (Mahmoudi et al., 2009).

In the crystal structure, the π–π stacking interactions between aromatic rings of Cg1 and Cg2 [Cg1 and Cg2 are (N1, C6 — C8, C7i, C6i) and (N2, C1 — C5) ring centroids, respectively, symmetry code: (i) -x + 1, y, -z + 1/2] are observed, with a centroid–centroid distances of 3.6265 (9) Å.

Experimental

The title compound was synthesized hydrothermally in a Teflon-lined autoclave (25 mL) by heating a mixture of 2,2':6',2''-terpyridine (0.2 mmol), ZnBr2 (0.2 mmol) and one drop of Et3N (pH ≈ 8–9) in water (10 mL) at 393 K for 3 d. Crystals suitable for X-ray analysis were obtained.

Refinement

All H atoms were included in calculated positions, with C—H distances fixed to 0.93 Å and were refined in the riding-model approximation, with Uiso(H) = 1.2 Ueq (C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with the atom-labelling scheme [symmetry code: (A) -x, + 1, y, -z + 1/2]. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as small spheres of arbitrary radius.

Fig. 2.

Fig. 2.

A portion of the crystal packing showing the π–π interactions (dashed lines) between the aromatic rings.

Crystal data

[ZnBr2(C15H11N3)] F(000) = 888
Mr = 458.46 Dx = 2.042 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yc Cell parameters from 1580 reflections
a = 17.0972 (5) Å θ = 2.5–26.3°
b = 9.3528 (3) Å µ = 7.00 mm1
c = 11.5334 (4) Å T = 296 K
β = 126.051 (1)° Block, colourless
V = 1491.08 (8) Å3 0.20 × 0.18 × 0.16 mm
Z = 4

Data collection

Bruker SMART APEXII CCD diffractometer 1457 independent reflections
Radiation source: fine-focus sealed tube 1371 reflections with I > 2σ(I)
graphite Rint = 0.019
φ and ω scans θmax = 26.0°, θmin = 2.6°
Absorption correction: multi-scan (SADABS; Bruker, 2005) h = −21→21
Tmin = 0.335, Tmax = 0.401 k = −11→11
9665 measured reflections l = −14→14

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.015 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.039 H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0184P)2 + 1.2604P] where P = (Fo2 + 2Fc2)/3
1457 reflections (Δ/σ)max < 0.001
97 parameters Δρmax = 0.27 e Å3
0 restraints Δρmin = −0.29 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 0.380531 (15) 0.11870 (2) 0.03979 (2) 0.04022 (8)
Zn1 0.5000 0.25499 (3) 0.2500 0.02736 (8)
N1 0.5000 0.4802 (2) 0.2500 0.0253 (4)
N2 0.58982 (11) 0.31649 (16) 0.18054 (15) 0.0288 (3)
C1 0.63375 (14) 0.2248 (2) 0.1474 (2) 0.0352 (4)
H1 0.6256 0.1272 0.1525 0.042*
C2 0.69093 (14) 0.2696 (2) 0.1056 (2) 0.0392 (4)
H2 0.7210 0.2033 0.0838 0.047*
C3 0.70254 (14) 0.4137 (2) 0.0970 (2) 0.0394 (4)
H3 0.7411 0.4461 0.0700 0.047*
C4 0.65606 (13) 0.5102 (2) 0.12890 (18) 0.0346 (4)
H4 0.6620 0.6081 0.1219 0.042*
C5 0.60056 (12) 0.45792 (18) 0.17152 (16) 0.0268 (4)
C6 0.54892 (12) 0.55136 (18) 0.21013 (16) 0.0263 (3)
C7 0.54910 (13) 0.69976 (19) 0.20701 (19) 0.0337 (4)
H7 0.5815 0.7485 0.1767 0.040*
C8 0.5000 0.7736 (3) 0.2500 0.0367 (6)
H8 0.5000 0.8730 0.2500 0.044*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.04910 (14) 0.03300 (12) 0.03959 (12) −0.01116 (8) 0.02667 (10) −0.00711 (7)
Zn1 0.03545 (17) 0.01984 (14) 0.03395 (16) 0.000 0.02441 (14) 0.000
N1 0.0293 (10) 0.0231 (10) 0.0253 (9) 0.000 0.0170 (9) 0.000
N2 0.0322 (8) 0.0264 (8) 0.0335 (7) −0.0007 (6) 0.0224 (7) 0.0004 (6)
C1 0.0407 (11) 0.0311 (10) 0.0417 (10) 0.0025 (8) 0.0285 (9) −0.0011 (8)
C2 0.0372 (11) 0.0487 (12) 0.0398 (10) 0.0025 (9) 0.0271 (9) −0.0038 (9)
C3 0.0354 (10) 0.0545 (12) 0.0380 (10) −0.0069 (9) 0.0271 (9) −0.0022 (9)
C4 0.0367 (10) 0.0359 (10) 0.0339 (9) −0.0072 (8) 0.0222 (8) 0.0005 (8)
C5 0.0268 (9) 0.0287 (9) 0.0235 (7) −0.0027 (7) 0.0139 (7) 0.0004 (7)
C6 0.0274 (9) 0.0247 (8) 0.0237 (7) −0.0027 (7) 0.0133 (7) 0.0007 (6)
C7 0.0360 (10) 0.0268 (9) 0.0351 (9) −0.0042 (8) 0.0193 (8) 0.0030 (7)
C8 0.0426 (16) 0.0201 (12) 0.0409 (14) 0.000 0.0210 (13) 0.000

Geometric parameters (Å, °)

Br1—Zn1 2.4179 (2) C2—H2 0.9300
Zn1—N1 2.106 (2) C3—C4 1.388 (3)
Zn1—N2i 2.1861 (14) C3—H3 0.9300
Zn1—N2 2.1861 (14) C4—C5 1.389 (2)
Zn1—Br1i 2.4179 (2) C4—H4 0.9300
N1—C6i 1.3441 (19) C5—C6 1.485 (2)
N1—C6 1.3441 (19) C6—C7 1.388 (3)
N2—C1 1.336 (2) C7—C8 1.385 (2)
N2—C5 1.348 (2) C7—H7 0.9300
C1—C2 1.385 (3) C8—C7i 1.385 (2)
C1—H1 0.9300 C8—H8 0.9300
C2—C3 1.374 (3)
N1—Zn1—N2i 74.75 (4) C3—C2—H2 120.5
N1—Zn1—N2 74.75 (4) C1—C2—H2 120.5
N2i—Zn1—N2 149.49 (8) C2—C3—C4 119.27 (17)
N1—Zn1—Br1 121.815 (7) C2—C3—H3 120.4
N2i—Zn1—Br1 98.34 (4) C4—C3—H3 120.4
N2—Zn1—Br1 97.60 (4) C3—C4—C5 118.78 (18)
N1—Zn1—Br1i 121.815 (7) C3—C4—H4 120.6
N2i—Zn1—Br1i 97.60 (4) C5—C4—H4 120.6
N2—Zn1—Br1i 98.34 (4) N2—C5—C4 121.69 (16)
Br1—Zn1—Br1i 116.370 (14) N2—C5—C6 114.99 (14)
C6i—N1—C6 120.6 (2) C4—C5—C6 123.32 (16)
C6i—N1—Zn1 119.68 (10) N1—C6—C7 121.01 (16)
C6—N1—Zn1 119.68 (10) N1—C6—C5 114.25 (15)
C1—N2—C5 118.88 (15) C7—C6—C5 124.74 (15)
C1—N2—Zn1 124.80 (12) C8—C7—C6 118.57 (17)
C5—N2—Zn1 116.32 (11) C8—C7—H7 120.7
N2—C1—C2 122.43 (18) C6—C7—H7 120.7
N2—C1—H1 118.8 C7i—C8—C7 120.2 (2)
C2—C1—H1 118.8 C7i—C8—H8 119.9
C3—C2—C1 118.93 (18) C7—C8—H8 119.9
N2i—Zn1—N1—C6i 0.68 (9) C1—C2—C3—C4 −0.6 (3)
N2—Zn1—N1—C6i −179.32 (9) C2—C3—C4—C5 1.3 (3)
Br1—Zn1—N1—C6i 91.12 (8) C1—N2—C5—C4 −0.1 (2)
Br1i—Zn1—N1—C6i −88.88 (8) Zn1—N2—C5—C4 179.88 (12)
N2i—Zn1—N1—C6 −179.32 (9) C1—N2—C5—C6 179.87 (15)
N2—Zn1—N1—C6 0.68 (9) Zn1—N2—C5—C6 −0.19 (18)
Br1—Zn1—N1—C6 −88.88 (8) C3—C4—C5—N2 −0.9 (3)
Br1i—Zn1—N1—C6 91.12 (8) C3—C4—C5—C6 179.12 (16)
N1—Zn1—N2—C1 179.71 (15) C6i—N1—C6—C7 −0.96 (12)
N2i—Zn1—N2—C1 179.71 (15) Zn1—N1—C6—C7 179.04 (12)
Br1—Zn1—N2—C1 −59.30 (14) C6i—N1—C6—C5 179.02 (15)
Br1i—Zn1—N2—C1 58.90 (14) Zn1—N1—C6—C5 −0.98 (15)
N1—Zn1—N2—C5 −0.23 (11) N2—C5—C6—N1 0.74 (19)
N2i—Zn1—N2—C5 −0.23 (11) C4—C5—C6—N1 −179.33 (14)
Br1—Zn1—N2—C5 120.76 (11) N2—C5—C6—C7 −179.29 (16)
Br1i—Zn1—N2—C5 −121.05 (11) C4—C5—C6—C7 0.6 (3)
C5—N2—C1—C2 0.8 (3) N1—C6—C7—C8 1.9 (2)
Zn1—N2—C1—C2 −179.16 (14) C5—C6—C7—C8 −178.10 (13)
N2—C1—C2—C3 −0.4 (3) C6—C7—C8—C7i −0.91 (11)

Symmetry codes: (i) −x+1, y, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2561).

References

  1. Alizadeh, R., Heidari, A., Ahmadi, R. & Amani, V. (2009). Acta Cryst. E65, m483–m484. [DOI] [PMC free article] [PubMed]
  2. Bai, F. Q., Zhou, X., Xia, B. H., Liu, T., Zhang, J. P. & Zhang, H. X. (2009). J. Organomet. Chem 694, 1848–1860.
  3. Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Huang, W., You, W., Wang, L. & Yao, C. (2009). Inorg. Chim. Acta, 362, 2127–2135.
  5. Ma, Z., Xing, Y. P., Yang, M., Hua, M., Liu, B. Q., da Silva, M. F. C. G. & Pombeiro, A. J. L. (2009). Inorg. Chim. Acta, 362, 2921–2926.
  6. Mahmoudi, A., Khalaj, M., Gao, S., Ng, S. W. & Mohammadgholiha, M. (2009). Acta Cryst. E65, m555. [DOI] [PMC free article] [PubMed]
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809019266/cv2561sup1.cif

e-65-0m693-sup1.cif (15.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809019266/cv2561Isup2.hkl

e-65-0m693-Isup2.hkl (72KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES