Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 May 14;65(Pt 6):m631. doi: 10.1107/S1600536809016894

5-Cyclo­penta­dien­yl)(η6-mesitylamine)ruthenium(II) hexa­fluorido­phosphate

Eva Becker a, Karl Kirchner a, Kurt Mereiter b,*
PMCID: PMC2969571  PMID: 21582999

Abstract

The title compound, [Ru(η5-C5H5){η6-C6H2(CH3)3NH2}]PF6, contains a sandwich complex with a mesitylamine unit which is significantly non-planar at the ipso-carbon of the amino group due to repulsive electronic effects with Ru. The ipso-carbon deviates by 0.107 (3) Å from the least-squares plane of the remaining five benzene ring atoms, which show an r.m.s. deviation of 0.005 Å. N—H⋯F hydrogen-bonding interactions help to consolidate the crystal packing.

Related literature

For general background and a related structure with —N(CH3)2 instead of —NH2, see: Standfest-Hauser et al. (2003). For related chromium arene complexes, see: Djukic et al. (2000); Hunter et al. (1992). For synthetic details, see: Gill & Mann (1982); Kündig & Monnier (2004).graphic file with name e-65-0m631-scheme1.jpg

Experimental

Crystal data

  • [Ru(C5H5)(C9H13N)]PF6

  • M r = 446.33

  • Orthorhombic, Inline graphic

  • a = 7.5119 (4) Å

  • b = 10.2047 (6) Å

  • c = 21.1818 (12) Å

  • V = 1623.73 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.12 mm−1

  • T = 173 K

  • 0.55 × 0.30 × 0.26 mm

Data collection

  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2003) T min = 0.62, T max = 0.75

  • 24305 measured reflections

  • 4741 independent reflections

  • 4650 reflections with I > 2σ(I)

  • R int = 0.026

Refinement

  • R[F 2 > 2σ(F 2)] = 0.024

  • wR(F 2) = 0.055

  • S = 1.12

  • 4741 reflections

  • 218 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.65 e Å−3

  • Δρmin = −0.41 e Å−3

  • Absolute structure: Flack (1983), 2202 Friedel pairs

  • Flack parameter: 0.21 (3)

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809016894/gk2208sup1.cif

e-65-0m631-sup1.cif (30.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809016894/gk2208Isup2.hkl

e-65-0m631-Isup2.hkl (232.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

Ru—C1 2.179 (2)
Ru—C2 2.164 (2)
Ru—C3 2.179 (3)
Ru—C4 2.181 (3)
Ru—C5 2.187 (3)
Ru—C6 2.314 (2)
Ru—C7 2.212 (2)
Ru—C8 2.178 (2)
Ru—C9 2.214 (2)
Ru—C10 2.185 (2)
Ru—C11 2.229 (2)

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N—H1A⋯F1 0.87 (2) 2.26 (2) 3.106 (3) 163 (3)
N—H1B⋯F5i 0.87 (2) 2.43 (3) 3.174 (3) 143 (3)

Symmetry code: (i) Inline graphic.

Acknowledgments

Financial support by the FWF Austrian Science Fund (project No. P16600-N11) is gratefully acknowledged.

supplementary crystallographic information

Comment

We have shown (Standfest-Hauser et al., 2003) that arene amines hapto-6-coordinated to a cyclopentadienylruthenium fragment (CpRu) are not planar but display a significant shift of the ipso-carbon bearing the amino substituent out of the mean aromatic plane away from the CpRu fragment by about 0.1 to 0.2 Å. This corresponds to a envelope-type folding of the ring by 7–15° for the interplanar angle. The same effect was previously reported for chromium arene complexes (Hunter et al., 1992; Djukic, et al., 2000). Recently, we obtained the title compound, (I), in a crystalline form. This offered the opportunity to study the mentioned effect for a compound with NH2 instead of N(CH3)2. In (I) the cyclopentadienyl ring and the 5-membered ring segment C7—C8—C9—C10—C11 are almost perfectly planar (r.m.s. aplanarities 0.006 and 0.005 Å, respectively) and mutually inclined by 1.0 (1)° (Fig. 1). The ipso-carbon C6 and the amino nitrogen deviate by 0.107 (3) and 0.172 (4) Å, respectively, from ring segment plane and both are bent away from the CpRu fragment. Thus the envelope-type ring folding angle, measured between planes C7—C6—C11 and C7—C8—C9—C10—C11, is 8.3 (3)°. According to FT/B3LYP calculations (Standfest-Hauser et al., 2003) the reason for this envelope deformation of the benzene ring is that the surplus of π-electron density at C6 arising from the π-donor substituent NH2 becomes less pronounced and a 8° folding was predicted for free [CpRu(η6-C6H5NH2)]+. These quantities are comparable with the experimental data of [CpRu(η6-C6H5N(CH3)2)]PF6 (Standfest-Hauser et al., 2003), 0.125 (3) Å (deviation of the ipso-C from the plane of the remaining ring atoms) and 10° (envelope-type ring folding angle), respectively. In this compound and its 2-dimethylamino-pyridine congener, the N-bound methyl groups are bent toward the CpRu moieties due to predicted orbital repulsion effects between dimethylamino nitrogen and ipso-carbon. This differs from (I), where the hydrogen atoms are bent off from the CpRu moiety and the nitrogen behaves more pyramidal. We attribute this deviation to the formation of two N—H···F hydrogen bonds (Fig. 1 and Table 2), absent in the dimethylamino compounds. As shown in Fig. 2, these bonds form zigzag chains along the b axis of (I). Further structural coherence is provided by π-π-stacking between Ru complexes, which form columns along the a axis with short stacking distances such as C4—C6(1 + x,y,z) = 3.482 (4) Å and C3—C7(1 + x,y,z) = 3.572 (4) Å. Weak C—H···F interactions donated by methyl, Cp and arene H-atoms stiffen the structure too, e.g. C3···F6(1 - x,-1/2 + y,1/2 - z) = 3.280 (4) Å.

Experimental

To a solution of [CpRu(CH3CN)3]PF6 (Gill, & Mann, 1982; Kündig & Monnier, 2004; 120 mg, 0.276 mmol) in CH2Cl2 (5 ml) mesitylamine (41 µL, 0.290 mmol) was added. After the mixture was stirred at room temperature for 1 h, the solvent was removed under vacuum and the resulting white solid of (I) was collected on a glass frit and washed twice with diethyl ether (10 ml). Yield: 118 mg (96%). 1H NMR (δ, acetone-d6, 20°C): 6.02 (s, 2H, Mes3,5), 5.13 (bs, 2H, NH2), 5.09 (s, 5H, Cp), 2.31 (s, 6H, Me2,6), 2.17 (s, 3H, Me4). 13C{1H} NMR (δ, acetone-d6, 20°C): 123.3 (1 C, Mes1), 94.9 (1 C, Mes4), 87.0 (2 C, Mes2,6), 83.7 (2 C, Mes3,5), 79.9 (5 C, Cp), 18.5 (1 C, Me4), 16.8 (2 C, Me2,6). Colourless crystals of (I) were grown from CH2Cl2 using vapour diffusion of diethyl ether at room temperature.

Refinement

Refinement of the Flack (1983) parameter with 2202 Friedel pairs led to a value of 0.21 (3); the crystal was thus assumed to be an inversion twin with unequal components and a corresponding twin scale factor was applied. All C-bound H atoms were placed in calculated positions and thereafter treated as riding. A torsional parameter was refined for each methyl group. The two nitrogen bound H atoms were refined in x,y,z restraining both N—H bonds to be identical in lengths. Uiso(H) = 1.2Ueq(Carene,N) and Uiso(H) = 1.5Ueq(Cmethyl) were used.

Figures

Fig. 1.

Fig. 1.

Perspective view of (I). Displacement ellipsoids shown at the 40% probability level. The sideview of the Ru complex on the lower left depicts the out-of-plane displacements of C6 and N. The red numbers give the deviations (Å) of the respective atoms from the least-squares plane C7—C8—C9—C10—C11. F5A corresponds to F5i of Table 2.

Fig. 2.

Fig. 2.

Packing diagram of (I), viewed down a, with N—H···F bonds as dashed lines. Carbon-bound H atoms omitted.

Crystal data

[Ru(C5H5)(C9H13N)]F6P F(000) = 888
Mr = 446.33 Dx = 1.826 Mg m3
Orthorhombic, P212121 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2ab Cell parameters from 7583 reflections
a = 7.5119 (4) Å θ = 2.2–30.0°
b = 10.2047 (6) Å µ = 1.12 mm1
c = 21.1818 (12) Å T = 173 K
V = 1623.73 (16) Å3 Prism, colourless
Z = 4 0.55 × 0.30 × 0.26 mm

Data collection

Bruker SMART CCD diffractometer 4741 independent reflections
Radiation source: fine-focus sealed tube 4650 reflections with I > 2σ(I)
graphite Rint = 0.026
ω scans θmax = 30.0°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Bruker, 2003) h = −10→10
Tmin = 0.62, Tmax = 0.75 k = −14→14
24305 measured reflections l = −29→29

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.024 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.055 w = 1/[σ2(Fo2) + (0.0228P)2 + 0.8717P] where P = (Fo2 + 2Fc2)/3
S = 1.12 (Δ/σ)max = 0.001
4741 reflections Δρmax = 0.65 e Å3
218 parameters Δρmin = −0.41 e Å3
1 restraint Absolute structure: Flack, (1983), 2202 Friedel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: 0.21 (3)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Ru 0.62135 (2) 0.480064 (16) 0.128280 (7) 0.02275 (4)
C1 0.7945 (3) 0.6499 (2) 0.11758 (13) 0.0375 (5)
H1 0.7526 0.7358 0.1088 0.045*
C2 0.8399 (3) 0.5545 (3) 0.07219 (14) 0.0401 (6)
H2 0.8323 0.5645 0.0277 0.048*
C3 0.8987 (4) 0.4415 (3) 0.10452 (14) 0.0431 (6)
H3 0.9400 0.3629 0.0855 0.052*
C4 0.8854 (4) 0.4655 (3) 0.17054 (13) 0.0427 (6)
H4 0.9136 0.4057 0.2034 0.051*
C5 0.8217 (3) 0.5963 (3) 0.17799 (13) 0.0388 (6)
H5 0.8012 0.6397 0.2170 0.047*
N 0.2758 (3) 0.6420 (2) 0.19495 (11) 0.0374 (5)
H1A 0.237 (4) 0.625 (3) 0.2330 (10) 0.045*
H1B 0.219 (4) 0.699 (3) 0.1717 (13) 0.045*
C6 0.3383 (3) 0.5357 (2) 0.16198 (11) 0.0284 (4)
C7 0.3543 (3) 0.5395 (2) 0.09480 (11) 0.0293 (5)
C8 0.4115 (3) 0.4252 (2) 0.06244 (11) 0.0308 (5)
H8 0.4138 0.4263 0.0176 0.037*
C9 0.4649 (3) 0.3105 (2) 0.09396 (11) 0.0299 (5)
C10 0.4628 (3) 0.3137 (2) 0.16078 (11) 0.0278 (4)
H10 0.5012 0.2384 0.1833 0.033*
C11 0.4056 (3) 0.4246 (2) 0.19536 (10) 0.0265 (4)
C12 0.3062 (4) 0.6610 (3) 0.05839 (14) 0.0426 (6)
H12A 0.1773 0.6752 0.0607 0.064*
H12B 0.3416 0.6503 0.0142 0.064*
H12C 0.3683 0.7366 0.0765 0.064*
C13 0.5281 (4) 0.1920 (3) 0.05904 (13) 0.0418 (6)
H13A 0.4266 0.1347 0.0500 0.063*
H13B 0.6149 0.1446 0.0849 0.063*
H13C 0.5840 0.2190 0.0193 0.063*
C14 0.4080 (4) 0.4215 (3) 0.26627 (10) 0.0373 (5)
H14A 0.2864 0.4101 0.2821 0.056*
H14B 0.4570 0.5041 0.2823 0.056*
H14C 0.4822 0.3484 0.2806 0.056*
P −0.05498 (8) 0.52386 (6) 0.36805 (3) 0.02999 (11)
F1 0.0612 (3) 0.6046 (2) 0.31902 (9) 0.0629 (6)
F2 −0.1653 (4) 0.4427 (2) 0.41838 (11) 0.0828 (8)
F3 −0.2304 (3) 0.5675 (2) 0.33379 (11) 0.0746 (7)
F4 0.1256 (3) 0.4786 (2) 0.40177 (8) 0.0631 (5)
F5 −0.0414 (3) 0.39806 (18) 0.32320 (9) 0.0553 (5)
F6 −0.0659 (3) 0.64704 (17) 0.41381 (8) 0.0499 (4)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Ru 0.02249 (6) 0.02258 (7) 0.02320 (7) −0.00058 (6) 0.00164 (6) −0.00027 (6)
C1 0.0313 (11) 0.0299 (11) 0.0513 (16) −0.0078 (9) 0.0047 (11) −0.0006 (10)
C2 0.0343 (13) 0.0432 (15) 0.0427 (14) −0.0109 (10) 0.0131 (10) −0.0033 (11)
C3 0.0276 (12) 0.0408 (13) 0.0611 (16) 0.0041 (10) 0.0135 (11) −0.0093 (11)
C4 0.0251 (10) 0.0511 (16) 0.0518 (14) −0.0046 (14) −0.0064 (11) 0.0103 (12)
C5 0.0288 (11) 0.0484 (16) 0.0390 (13) −0.0084 (10) −0.0021 (10) −0.0113 (12)
N 0.0328 (11) 0.0345 (11) 0.0448 (13) 0.0059 (9) 0.0059 (9) −0.0055 (9)
C6 0.0225 (9) 0.0272 (11) 0.0355 (11) −0.0014 (8) 0.0028 (7) −0.0007 (9)
C7 0.0233 (10) 0.0301 (12) 0.0345 (11) 0.0011 (9) −0.0039 (8) 0.0036 (8)
C8 0.0309 (12) 0.0350 (11) 0.0264 (10) −0.0030 (9) −0.0019 (8) −0.0008 (9)
C9 0.0309 (12) 0.0277 (11) 0.0310 (11) −0.0055 (9) −0.0006 (9) −0.0031 (9)
C10 0.0296 (11) 0.0227 (10) 0.0309 (11) −0.0029 (9) 0.0028 (9) 0.0036 (8)
C11 0.0226 (10) 0.0294 (10) 0.0275 (10) −0.0026 (8) 0.0025 (8) −0.0007 (8)
C12 0.0407 (14) 0.0400 (14) 0.0472 (15) 0.0078 (12) −0.0066 (12) 0.0126 (12)
C13 0.0531 (16) 0.0315 (13) 0.0407 (14) −0.0017 (12) 0.0040 (12) −0.0098 (10)
C14 0.0424 (14) 0.0413 (13) 0.0282 (11) 0.0009 (11) 0.0072 (9) 0.0003 (9)
P 0.0352 (3) 0.0283 (2) 0.0265 (2) −0.0024 (2) 0.0010 (2) −0.0034 (3)
F1 0.0797 (14) 0.0524 (11) 0.0566 (11) −0.0027 (10) 0.0338 (10) 0.0086 (9)
F2 0.113 (2) 0.0541 (12) 0.0812 (14) −0.0239 (12) 0.0484 (15) 0.0043 (10)
F3 0.0539 (11) 0.0992 (17) 0.0708 (13) 0.0344 (12) −0.0239 (10) −0.0324 (12)
F4 0.0666 (11) 0.0686 (12) 0.0541 (10) 0.0186 (13) −0.0253 (9) −0.0099 (9)
F5 0.0627 (11) 0.0458 (10) 0.0574 (11) 0.0050 (9) −0.0066 (9) −0.0271 (9)
F6 0.0722 (12) 0.0392 (8) 0.0381 (8) −0.0013 (8) 0.0039 (8) −0.0153 (7)

Geometric parameters (Å, °)

Ru—C1 2.179 (2) C4—C5 1.427 (4)
Ru—C2 2.164 (2) C4—H4 0.9500
Ru—C3 2.179 (3) C5—H5 0.9500
Ru—C4 2.181 (3) N—H1A 0.87 (2)
Ru—C5 2.187 (3) N—H1B 0.87 (2)
Ru—C6 2.314 (2) C7—C12 1.505 (3)
Ru—C7 2.212 (2) C8—H8 0.9500
Ru—C8 2.178 (2) C9—C13 1.495 (3)
Ru—C9 2.214 (2) C10—H10 0.9500
Ru—C10 2.185 (2) C11—C14 1.503 (3)
Ru—C11 2.229 (2) C12—H12A 0.9800
C6—N 1.373 (3) C12—H12B 0.9800
C6—C7 1.429 (3) C12—H12C 0.9800
C6—C11 1.428 (3) C13—H13A 0.9800
C7—C8 1.419 (3) C13—H13B 0.9800
C11—C10 1.415 (3) C13—H13C 0.9800
C8—C9 1.406 (3) C14—H14A 0.9800
C10—C9 1.416 (3) C14—H14B 0.9800
C1—C5 1.406 (4) C14—H14C 0.9800
C1—C2 1.410 (4) P—F3 1.569 (2)
C1—H1 0.9500 P—F2 1.584 (2)
C2—C3 1.412 (4) P—F1 1.5876 (18)
C2—H2 0.9500 P—F6 1.5894 (16)
C3—C4 1.423 (4) P—F5 1.6002 (17)
C3—H3 0.9500 P—F4 1.6014 (19)
C2—Ru—C8 106.72 (10) C1—C5—C4 108.2 (2)
C2—Ru—C1 37.90 (10) C1—C5—Ru 70.90 (14)
C8—Ru—C1 124.74 (10) C4—C5—Ru 70.72 (16)
C2—Ru—C3 37.94 (11) C1—C5—H5 125.9
C8—Ru—C3 119.84 (10) C4—C5—H5 125.9
C1—Ru—C3 63.19 (10) Ru—C5—H5 124.1
C2—Ru—C4 63.86 (11) C6—N—H1A 115 (2)
C8—Ru—C4 154.62 (10) C6—N—H1B 114 (2)
C1—Ru—C4 63.52 (10) H1A—N—H1B 120 (3)
C3—Ru—C4 38.10 (11) N—C6—C11 119.8 (2)
C2—Ru—C10 149.22 (10) N—C6—C7 120.9 (2)
C8—Ru—C10 66.89 (9) C11—C6—C7 119.0 (2)
C1—Ru—C10 167.48 (9) N—C6—Ru 131.66 (17)
C3—Ru—C10 116.98 (10) C11—C6—Ru 68.45 (12)
C4—Ru—C10 108.27 (10) C7—C6—Ru 67.78 (13)
C2—Ru—C5 63.38 (10) C8—C7—C6 119.0 (2)
C8—Ru—C5 161.08 (10) C8—C7—C12 120.2 (2)
C1—Ru—C5 37.59 (10) C6—C7—C12 120.9 (2)
C3—Ru—C5 63.34 (10) C8—C7—Ru 69.83 (13)
C4—Ru—C5 38.14 (11) C6—C7—Ru 75.51 (13)
C10—Ru—C5 130.17 (10) C12—C7—Ru 127.45 (17)
C2—Ru—C7 114.56 (11) C9—C8—C7 122.7 (2)
C8—Ru—C7 37.71 (9) C9—C8—Ru 72.73 (13)
C1—Ru—C7 106.85 (9) C7—C8—Ru 72.46 (13)
C3—Ru—C7 147.39 (11) C9—C8—H8 118.6
C4—Ru—C7 167.10 (10) C7—C8—H8 118.6
C10—Ru—C7 79.60 (9) Ru—C8—H8 128.6
C5—Ru—C7 129.03 (10) C8—C9—C10 116.9 (2)
C2—Ru—C9 119.77 (10) C8—C9—C13 121.9 (2)
C8—Ru—C9 37.34 (9) C10—C9—C13 121.1 (2)
C1—Ru—C9 154.73 (10) C8—C9—Ru 69.93 (13)
C3—Ru—C9 106.88 (10) C10—C9—Ru 70.12 (14)
C4—Ru—C9 124.33 (10) C13—C9—Ru 128.78 (18)
C10—Ru—C9 37.54 (8) C11—C10—C9 122.7 (2)
C5—Ru—C9 161.32 (10) C11—C10—Ru 72.98 (13)
C7—Ru—C9 68.15 (9) C9—C10—Ru 72.34 (14)
C2—Ru—C11 172.26 (10) C11—C10—H10 118.7
C8—Ru—C11 79.43 (8) C9—C10—H10 118.7
C1—Ru—C11 134.63 (9) Ru—C10—H10 128.4
C3—Ru—C11 142.82 (10) C10—C11—C6 119.1 (2)
C4—Ru—C11 112.48 (10) C10—C11—C14 119.8 (2)
C10—Ru—C11 37.37 (8) C6—C11—C14 121.0 (2)
C5—Ru—C11 109.35 (9) C10—C11—Ru 69.65 (12)
C7—Ru—C11 67.32 (8) C6—C11—Ru 74.95 (12)
C9—Ru—C11 67.97 (9) C14—C11—Ru 129.33 (16)
C2—Ru—C6 141.31 (11) C7—C12—H12A 109.5
C8—Ru—C6 66.13 (8) C7—C12—H12B 109.5
C1—Ru—C6 112.69 (9) H12A—C12—H12B 109.5
C3—Ru—C6 173.84 (10) C7—C12—H12C 109.5
C4—Ru—C6 136.54 (10) H12A—C12—H12C 109.5
C10—Ru—C6 65.93 (9) H12B—C12—H12C 109.5
C5—Ru—C6 110.54 (10) C9—C13—H13A 109.5
C7—Ru—C6 36.71 (8) C9—C13—H13B 109.5
C9—Ru—C6 78.77 (9) H13A—C13—H13B 109.5
C11—Ru—C6 36.59 (8) C9—C13—H13C 109.5
C5—C1—C2 108.5 (2) H13A—C13—H13C 109.5
C5—C1—Ru 71.51 (14) H13B—C13—H13C 109.5
C2—C1—Ru 70.50 (13) C11—C14—H14A 109.5
C5—C1—H1 125.8 C11—C14—H14B 109.5
C2—C1—H1 125.8 H14A—C14—H14B 109.5
Ru—C1—H1 123.8 C11—C14—H14C 109.5
C1—C2—C3 108.0 (2) H14A—C14—H14C 109.5
C1—C2—Ru 71.60 (14) H14B—C14—H14C 109.5
C3—C2—Ru 71.60 (15) F3—P—F2 91.16 (15)
C1—C2—H2 126.0 F3—P—F1 90.68 (13)
C3—C2—H2 126.0 F2—P—F1 178.11 (15)
Ru—C2—H2 122.5 F3—P—F6 90.80 (11)
C2—C3—C4 108.3 (2) F2—P—F6 88.61 (11)
C2—C3—Ru 70.46 (15) F1—P—F6 90.95 (10)
C4—C3—Ru 71.02 (17) F3—P—F5 90.39 (11)
C2—C3—H3 125.8 F2—P—F5 90.78 (12)
C4—C3—H3 125.8 F1—P—F5 89.62 (11)
Ru—C3—H3 124.3 F6—P—F5 178.67 (11)
C3—C4—C5 107.1 (2) F3—P—F4 178.94 (11)
C3—C4—Ru 70.88 (16) F2—P—F4 89.55 (13)
C5—C4—Ru 71.14 (15) F1—P—F4 88.61 (12)
C3—C4—H4 126.5 F6—P—F4 90.00 (10)
C5—C4—H4 126.5 F5—P—F4 88.81 (10)
Ru—C4—H4 123.2
C2—Ru—C1—C5 −118.2 (2) C9—Ru—C7—C8 −28.13 (13)
C8—Ru—C1—C5 170.50 (15) C11—Ru—C7—C8 −102.44 (14)
C3—Ru—C1—C5 −80.34 (18) C6—Ru—C7—C8 −128.9 (2)
C4—Ru—C1—C5 −37.51 (16) C2—Ru—C7—C6 −145.36 (16)
C10—Ru—C1—C5 13.6 (5) C8—Ru—C7—C6 128.9 (2)
C7—Ru—C1—C5 133.24 (16) C1—Ru—C7—C6 −105.54 (16)
C9—Ru—C1—C5 −152.4 (2) C3—Ru—C7—C6 −171.90 (18)
C11—Ru—C1—C5 58.7 (2) C4—Ru—C7—C6 −65.4 (5)
C6—Ru—C1—C5 94.62 (17) C10—Ru—C7—C6 63.41 (15)
C8—Ru—C1—C2 −71.3 (2) C5—Ru—C7—C6 −70.65 (19)
C3—Ru—C1—C2 37.87 (17) C9—Ru—C7—C6 100.76 (16)
C4—Ru—C1—C2 80.71 (19) C11—Ru—C7—C6 26.45 (14)
C10—Ru—C1—C2 131.8 (4) C2—Ru—C7—C12 −27.4 (3)
C5—Ru—C1—C2 118.2 (2) C8—Ru—C7—C12 −113.1 (3)
C7—Ru—C1—C2 −108.54 (18) C1—Ru—C7—C12 12.5 (2)
C9—Ru—C1—C2 −34.2 (3) C3—Ru—C7—C12 −53.9 (3)
C11—Ru—C1—C2 176.94 (17) C4—Ru—C7—C12 52.6 (5)
C6—Ru—C1—C2 −147.16 (17) C10—Ru—C7—C12 −178.6 (2)
C5—C1—C2—C3 −1.0 (3) C5—Ru—C7—C12 47.3 (3)
Ru—C1—C2—C3 −62.76 (18) C9—Ru—C7—C12 −141.3 (2)
C5—C1—C2—Ru 61.77 (17) C11—Ru—C7—C12 144.4 (2)
C8—Ru—C2—C1 125.65 (17) C6—Ru—C7—C12 118.0 (3)
C3—Ru—C2—C1 −117.0 (2) C6—C7—C8—C9 −4.4 (3)
C4—Ru—C2—C1 −79.74 (18) C12—C7—C8—C9 177.4 (2)
C10—Ru—C2—C1 −161.60 (18) Ru—C7—C8—C9 55.0 (2)
C5—Ru—C2—C1 −36.96 (16) C6—C7—C8—Ru −59.47 (19)
C7—Ru—C2—C1 86.09 (18) C12—C7—C8—Ru 122.4 (2)
C9—Ru—C2—C1 163.97 (15) C2—Ru—C8—C9 117.45 (16)
C6—Ru—C2—C1 53.2 (2) C1—Ru—C8—C9 154.86 (14)
C8—Ru—C2—C3 −117.38 (16) C3—Ru—C8—C9 78.45 (17)
C1—Ru—C2—C3 117.0 (2) C4—Ru—C8—C9 53.6 (3)
C4—Ru—C2—C3 37.23 (17) C10—Ru—C8—C9 −30.45 (14)
C10—Ru—C2—C3 −44.6 (3) C5—Ru—C8—C9 172.9 (3)
C5—Ru—C2—C3 80.01 (18) C7—Ru—C8—C9 −133.8 (2)
C7—Ru—C2—C3 −156.94 (16) C11—Ru—C8—C9 −67.38 (14)
C9—Ru—C2—C3 −79.06 (18) C6—Ru—C8—C9 −103.23 (15)
C6—Ru—C2—C3 170.13 (16) C2—Ru—C8—C7 −108.73 (15)
C1—C2—C3—C4 1.5 (3) C1—Ru—C8—C7 −71.33 (16)
Ru—C2—C3—C4 −61.3 (2) C3—Ru—C8—C7 −147.74 (14)
C1—C2—C3—Ru 62.76 (17) C4—Ru—C8—C7 −172.6 (2)
C8—Ru—C3—C2 78.66 (18) C10—Ru—C8—C7 103.36 (15)
C1—Ru—C3—C2 −37.84 (16) C5—Ru—C8—C7 −53.2 (3)
C4—Ru—C3—C2 −118.3 (2) C9—Ru—C8—C7 133.8 (2)
C10—Ru—C3—C2 156.21 (15) C11—Ru—C8—C7 66.43 (13)
C5—Ru—C3—C2 −80.13 (18) C6—Ru—C8—C7 30.58 (13)
C7—Ru—C3—C2 41.4 (3) C7—C8—C9—C10 −1.1 (4)
C9—Ru—C3—C2 117.05 (16) Ru—C8—C9—C10 53.8 (2)
C11—Ru—C3—C2 −167.35 (16) C7—C8—C9—C13 −178.8 (2)
C2—Ru—C3—C4 118.3 (2) Ru—C8—C9—C13 −123.9 (2)
C8—Ru—C3—C4 −163.01 (16) C7—C8—C9—Ru −54.9 (2)
C1—Ru—C3—C4 80.49 (18) C2—Ru—C9—C8 −78.26 (18)
C10—Ru—C3—C4 −85.46 (18) C1—Ru—C9—C8 −54.8 (3)
C5—Ru—C3—C4 38.20 (17) C3—Ru—C9—C8 −117.37 (16)
C7—Ru—C3—C4 159.71 (16) C4—Ru—C9—C8 −155.31 (15)
C9—Ru—C3—C4 −124.62 (16) C10—Ru—C9—C8 130.1 (2)
C11—Ru—C3—C4 −49.0 (2) C5—Ru—C9—C8 −172.9 (3)
C2—C3—C4—C5 −1.4 (3) C7—Ru—C9—C8 28.40 (13)
Ru—C3—C4—C5 −62.34 (18) C11—Ru—C9—C8 101.79 (14)
C2—C3—C4—Ru 60.90 (19) C6—Ru—C9—C8 65.17 (14)
C2—Ru—C4—C3 −37.07 (16) C2—Ru—C9—C10 151.65 (16)
C8—Ru—C4—C3 36.3 (3) C8—Ru—C9—C10 −130.1 (2)
C1—Ru—C4—C3 −79.55 (17) C1—Ru—C9—C10 175.1 (2)
C10—Ru—C4—C3 110.69 (16) C3—Ru—C9—C10 112.54 (17)
C5—Ru—C4—C3 −116.5 (2) C4—Ru—C9—C10 74.59 (19)
C7—Ru—C4—C3 −123.1 (4) C5—Ru—C9—C10 57.1 (4)
C9—Ru—C4—C3 72.48 (19) C7—Ru—C9—C10 −101.70 (17)
C11—Ru—C4—C3 150.41 (16) C11—Ru—C9—C10 −28.30 (15)
C6—Ru—C4—C3 −175.33 (16) C6—Ru—C9—C10 −64.92 (16)
C2—Ru—C4—C5 79.45 (17) C2—Ru—C9—C13 37.1 (3)
C8—Ru—C4—C5 152.8 (2) C8—Ru—C9—C13 115.4 (3)
C1—Ru—C4—C5 36.97 (16) C1—Ru—C9—C13 60.6 (3)
C3—Ru—C4—C5 116.5 (2) C3—Ru—C9—C13 −2.0 (3)
C10—Ru—C4—C5 −132.79 (16) C4—Ru—C9—C13 −39.9 (3)
C7—Ru—C4—C5 −6.6 (5) C10—Ru—C9—C13 −114.5 (3)
C9—Ru—C4—C5 −171.01 (15) C5—Ru—C9—C13 −57.5 (4)
C11—Ru—C4—C5 −93.07 (17) C7—Ru—C9—C13 143.8 (2)
C6—Ru—C4—C5 −58.8 (2) C11—Ru—C9—C13 −142.8 (3)
C2—C1—C5—C4 0.1 (3) C6—Ru—C9—C13 −179.4 (2)
Ru—C1—C5—C4 61.23 (18) C8—C9—C10—C11 1.7 (4)
C2—C1—C5—Ru −61.13 (17) C13—C9—C10—C11 179.4 (2)
C3—C4—C5—C1 0.8 (3) Ru—C9—C10—C11 55.3 (2)
Ru—C4—C5—C1 −61.34 (17) C8—C9—C10—Ru −53.7 (2)
C3—C4—C5—Ru 62.16 (19) C13—C9—C10—Ru 124.0 (2)
C2—Ru—C5—C1 37.26 (16) C2—Ru—C10—C11 172.73 (19)
C8—Ru—C5—C1 −24.7 (4) C8—Ru—C10—C11 −103.31 (14)
C3—Ru—C5—C1 79.91 (17) C1—Ru—C10—C11 56.2 (5)
C4—Ru—C5—C1 118.1 (2) C3—Ru—C10—C11 143.74 (15)
C10—Ru—C5—C1 −176.17 (15) C4—Ru—C10—C11 103.37 (15)
C7—Ru—C5—C1 −63.83 (19) C5—Ru—C10—C11 66.99 (18)
C9—Ru—C5—C1 141.8 (3) C7—Ru—C10—C11 −66.08 (14)
C11—Ru—C5—C1 −139.86 (15) C9—Ru—C10—C11 −133.6 (2)
C6—Ru—C5—C1 −100.86 (16) C6—Ru—C10—C11 −30.24 (13)
C2—Ru—C5—C4 −80.81 (17) C2—Ru—C10—C9 −53.7 (3)
C8—Ru—C5—C4 −142.8 (3) C8—Ru—C10—C9 30.29 (15)
C1—Ru—C5—C4 −118.1 (2) C1—Ru—C10—C9 −170.2 (4)
C3—Ru—C5—C4 −38.16 (16) C3—Ru—C10—C9 −82.65 (18)
C10—Ru—C5—C4 65.76 (19) C4—Ru—C10—C9 −123.03 (17)
C7—Ru—C5—C4 178.10 (15) C5—Ru—C10—C9 −159.41 (16)
C9—Ru—C5—C4 23.8 (4) C7—Ru—C10—C9 67.52 (16)
C11—Ru—C5—C4 102.07 (16) C11—Ru—C10—C9 133.6 (2)
C6—Ru—C5—C4 141.07 (16) C6—Ru—C10—C9 103.36 (17)
C2—Ru—C6—N −56.5 (3) C9—C10—C11—C6 3.4 (4)
C8—Ru—C6—N −143.7 (3) Ru—C10—C11—C6 58.46 (18)
C1—Ru—C6—N −24.3 (3) C9—C10—C11—C14 −179.6 (2)
C4—Ru—C6—N 50.5 (3) Ru—C10—C11—C14 −124.5 (2)
C10—Ru—C6—N 142.1 (3) C9—C10—C11—Ru −55.0 (2)
C5—Ru—C6—N 16.2 (3) N—C6—C11—C10 177.5 (2)
C7—Ru—C6—N −112.3 (3) C7—C6—C11—C10 −9.0 (3)
C9—Ru—C6—N 179.3 (3) Ru—C6—C11—C10 −55.84 (18)
C11—Ru—C6—N 111.3 (3) N—C6—C11—C14 0.5 (3)
C2—Ru—C6—C11 −167.79 (16) C7—C6—C11—C14 174.0 (2)
C8—Ru—C6—C11 105.04 (14) Ru—C6—C11—C14 127.2 (2)
C1—Ru—C6—C11 −135.59 (14) N—C6—C11—Ru −126.7 (2)
C4—Ru—C6—C11 −60.7 (2) C7—C6—C11—Ru 46.86 (19)
C10—Ru—C6—C11 30.85 (13) C8—Ru—C11—C10 65.58 (14)
C5—Ru—C6—C11 −95.09 (15) C1—Ru—C11—C10 −165.34 (15)
C7—Ru—C6—C11 136.4 (2) C3—Ru—C11—C10 −60.7 (2)
C9—Ru—C6—C11 68.03 (13) C4—Ru—C11—C10 −90.98 (15)
C2—Ru—C6—C7 55.8 (2) C5—Ru—C11—C10 −131.80 (15)
C8—Ru—C6—C7 −31.37 (15) C7—Ru—C11—C10 102.99 (15)
C1—Ru—C6—C7 88.00 (17) C9—Ru—C11—C10 28.42 (14)
C4—Ru—C6—C7 162.84 (15) C6—Ru—C11—C10 129.52 (19)
C10—Ru—C6—C7 −105.56 (16) C8—Ru—C11—C6 −63.94 (13)
C5—Ru—C6—C7 128.49 (16) C1—Ru—C11—C6 65.14 (18)
C9—Ru—C6—C7 −68.38 (15) C3—Ru—C11—C6 169.78 (16)
C11—Ru—C6—C7 −136.4 (2) C4—Ru—C11—C6 139.50 (15)
N—C6—C7—C8 −177.1 (2) C10—Ru—C11—C6 −129.52 (19)
C11—C6—C7—C8 9.5 (3) C5—Ru—C11—C6 98.68 (15)
Ru—C6—C7—C8 56.62 (18) C7—Ru—C11—C6 −26.53 (13)
N—C6—C7—C12 1.1 (4) C9—Ru—C11—C6 −101.10 (14)
C11—C6—C7—C12 −172.4 (2) C8—Ru—C11—C14 178.0 (2)
Ru—C6—C7—C12 −125.3 (2) C1—Ru—C11—C14 −52.9 (3)
N—C6—C7—Ru 126.3 (2) C3—Ru—C11—C14 51.7 (3)
C11—C6—C7—Ru −47.15 (19) C4—Ru—C11—C14 21.5 (2)
C2—Ru—C7—C8 85.75 (15) C10—Ru—C11—C14 112.4 (3)
C1—Ru—C7—C8 125.57 (14) C5—Ru—C11—C14 −19.3 (2)
C3—Ru—C7—C8 59.2 (2) C7—Ru—C11—C14 −144.6 (2)
C4—Ru—C7—C8 165.7 (4) C9—Ru—C11—C14 140.9 (2)
C10—Ru—C7—C8 −65.48 (14) C6—Ru—C11—C14 −118.0 (3)
C5—Ru—C7—C8 160.46 (14)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N—H1A···F1 0.87 (2) 2.26 (2) 3.106 (3) 163 (3)
N—H1B···F5i 0.87 (2) 2.43 (3) 3.174 (3) 143 (3)

Symmetry codes: (i) −x, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GK2208).

References

  1. Bruker (2003). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Djukic, J.-P., Rose-Munch, F., Rose, E. & Vaissermann, J. (2000). Eur. J. Inorg. Chem. pp. 1295–1306.
  3. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  4. Gill, T. P. & Mann, K. R. (1982). Organometallics, 1, 485–458.
  5. Hunter, A. D., Shilliday, L., Furey, W. S. & Zaworotko, M. J. (1992). Organometallics, 11, 1550–1560.
  6. Kündig, E. P. & Monnier, F. R. (2004). Adv. Synth. Catal.346, 901–904.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Standfest-Hauser, C. M., Mereiter, K., Schmid, R. & Kirchner, K. (2003). J. Chem. Soc. Dalton Trans. pp. 2329–2334.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809016894/gk2208sup1.cif

e-65-0m631-sup1.cif (30.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809016894/gk2208Isup2.hkl

e-65-0m631-Isup2.hkl (232.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES