Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1991 Jun;87(6):2029–2035. doi: 10.1172/JCI115232

Rearrangements of the tal-1 locus as clonal markers for T cell acute lymphoblastic leukemia.

O G Jonsson 1, R L Kitchens 1, R J Baer 1, G R Buchanan 1, R G Smith 1
PMCID: PMC296958  PMID: 2040693

Abstract

Normal and aberrant immune receptor gene assembly each produce site-specific DNA rearrangements in leukemic lymphoblasts. In either case, these rearrangements provide useful clonal markers for the leukemias in question. In the t(1;14)(p34;q11) translocation associated with T cell acute lymphoblastic leukemia (T-ALL), the breakpoints on chromosome 1 interrupt the tal-1 gene. A site-specific deletion interrupts the same gene in an additional 26% of T-ALL. Thus, nearly one-third of these leukemias contain clustered rearrangements of the tal-1 locus. To test whether these rearrangements can serve as markers for residual disease, we monitored four patients with T-ALL; three of the leukemias contained a deleted (tald) and one a translocated (talt) tal-1 allele. These alleles were recognized by a sensitive amplification/hybridization assay. tald alleles were found in the blood of one patient during the 4th mo of treatment but not thereafter. Using a quantitative assay to measure the fraction of tald alleles in DNA extracts, we estimated that this month 4 sample contained 150 tald copies per 10(6) genome copies. The patient with t(1;14)(p34;q11) (talt) leukemia developed a positive assay during the 20th mo of treatment. By standard criteria, all four patients remain in complete remission 11-20 mo into treatment. We conclude that tal-1 rearrangements provide useful clonal markers for approximately 30% of T-ALLs.

Full text

PDF
2029

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arthur C. K., Apperley J. F., Guo A. P., Rassool F., Gao L. M., Goldman J. M. Cytogenetic events after bone marrow transplantation for chronic myeloid leukemia in chronic phase. Blood. 1988 May;71(5):1179–1186. [PubMed] [Google Scholar]
  2. Brown L., Cheng J. T., Chen Q., Siciliano M. J., Crist W., Buchanan G., Baer R. Site-specific recombination of the tal-1 gene is a common occurrence in human T cell leukemia. EMBO J. 1990 Oct;9(10):3343–3351. doi: 10.1002/j.1460-2075.1990.tb07535.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Campana D., Yokota S., Coustan-Smith E., Hansen-Hagge T. E., Janossy G., Bartram C. R. The detection of residual acute lymphoblastic leukemia cells with immunologic methods and polymerase chain reaction: a comparative study. Leukemia. 1990 Sep;4(9):609–614. [PubMed] [Google Scholar]
  4. Carroll A. J., Crist W. M., Link M. P., Amylon M. D., Pullen D. J., Ragab A. H., Buchanan G. R., Wimmer R. S., Vietti T. J. The t(1;14)(p34;q11) is nonrandom and restricted to T-cell acute lymphoblastic leukemia: a Pediatric Oncology Group study. Blood. 1990 Sep 15;76(6):1220–1224. [PubMed] [Google Scholar]
  5. Chen Q., Cheng J. T., Tasi L. H., Schneider N., Buchanan G., Carroll A., Crist W., Ozanne B., Siciliano M. J., Baer R. The tal gene undergoes chromosome translocation in T cell leukemia and potentially encodes a helix-loop-helix protein. EMBO J. 1990 Feb;9(2):415–424. doi: 10.1002/j.1460-2075.1990.tb08126.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chen Q., Yang C. Y., Tsan J. T., Xia Y., Ragab A. H., Peiper S. C., Carroll A., Baer R. Coding sequences of the tal-1 gene are disrupted by chromosome translocation in human T cell leukemia. J Exp Med. 1990 Nov 1;172(5):1403–1408. doi: 10.1084/jem.172.5.1403. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gabert J., Thuret I., Lafage M., Carcassonne Y., Maraninchi D., Mannoni P. Detection of residual bcr/abl translocation by polymerase chain reaction in chronic myeloid leukaemia patients after bone-marrow transplantation. Lancet. 1989 Nov 11;2(8672):1125–1128. doi: 10.1016/s0140-6736(89)91490-6. [DOI] [PubMed] [Google Scholar]
  8. Gaynor J., Chapman D., Little C., McKenzie S., Miller W., Andreeff M., Arlin Z., Berman E., Kempin S., Gee T. A cause-specific hazard rate analysis of prognostic factors among 199 adults with acute lymphoblastic leukemia: the Memorial Hospital experience since 1969. J Clin Oncol. 1988 Jun;6(6):1014–1030. doi: 10.1200/JCO.1988.6.6.1014. [DOI] [PubMed] [Google Scholar]
  9. Gilliland G., Perrin S., Blanchard K., Bunn H. F. Analysis of cytokine mRNA and DNA: detection and quantitation by competitive polymerase chain reaction. Proc Natl Acad Sci U S A. 1990 Apr;87(7):2725–2729. doi: 10.1073/pnas.87.7.2725. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gyllensten U. B., Erlich H. A. Generation of single-stranded DNA by the polymerase chain reaction and its application to direct sequencing of the HLA-DQA locus. Proc Natl Acad Sci U S A. 1988 Oct;85(20):7652–7656. doi: 10.1073/pnas.85.20.7652. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hansen-Hagge T. E., Yokota S., Bartram C. R. Detection of minimal residual disease in acute lymphoblastic leukemia by in vitro amplification of rearranged T-cell receptor delta chain sequences. Blood. 1989 Oct;74(5):1762–1767. [PubMed] [Google Scholar]
  12. Herrmann B. G., Frischauf A. M. Isolation of genomic DNA. Methods Enzymol. 1987;152:180–183. doi: 10.1016/0076-6879(87)52018-3. [DOI] [PubMed] [Google Scholar]
  13. Hoelzer D., Thiel E., Löffler H., Büchner T., Ganser A., Heil G., Koch P., Freund M., Diedrich H., Rühl H. Prognostic factors in a multicenter study for treatment of acute lymphoblastic leukemia in adults. Blood. 1988 Jan;71(1):123–131. [PubMed] [Google Scholar]
  14. Jonsson O. G., Kitchens R. L., Scott F. C., Smith R. G. Detection of minimal residual disease in acute lymphoblastic leukemia using immunoglobulin hypervariable region specific oligonucleotide probes. Blood. 1990 Nov 15;76(10):2072–2079. [PubMed] [Google Scholar]
  15. Kamps M. P., Murre C., Sun X. H., Baltimore D. A new homeobox gene contributes the DNA binding domain of the t(1;19) translocation protein in pre-B ALL. Cell. 1990 Feb 23;60(4):547–555. doi: 10.1016/0092-8674(90)90658-2. [DOI] [PubMed] [Google Scholar]
  16. Kaneko Y., Frizzera G., Shikano T., Kobayashi H., Maseki N., Sakurai M. Chromosomal and immunophenotypic patterns in T cell acute lymphoblastic leukemia (T ALL) and lymphoblastic lymphoma (LBL). Leukemia. 1989 Dec;3(12):886–892. [PubMed] [Google Scholar]
  17. Kohler S., Galili N., Sklar J. L., Donlon T. A., Blume K. G., Cleary M. L. Expression of bcr-abl fusion transcripts following bone marrow transplantation for Philadelphia chromosome-positive leukemia. Leukemia. 1990 Aug;4(8):541–547. [PubMed] [Google Scholar]
  18. Kwok S., Higuchi R. Avoiding false positives with PCR. Nature. 1989 May 18;339(6221):237–238. doi: 10.1038/339237a0. [DOI] [PubMed] [Google Scholar]
  19. Lange W., Snyder D. S., Castro R., Rossi J. J., Blume K. G. Detection by enzymatic amplification of bcr-abl mRNA in peripheral blood and bone marrow cells of patients with chronic myelogenous leukemia. Blood. 1989 May 1;73(6):1735–1741. [PubMed] [Google Scholar]
  20. Leder P., Battey J., Lenoir G., Moulding C., Murphy W., Potter H., Stewart T., Taub R. Translocations among antibody genes in human cancer. Science. 1983 Nov 18;222(4625):765–771. doi: 10.1126/science.6356357. [DOI] [PubMed] [Google Scholar]
  21. Linker C. A., Levitt L. J., O'Donnell M., Ries C. A., Link M. P., Forman S. J., Farbstein M. J. Improved results of treatment of adult acute lymphoblastic leukemia. Blood. 1987 Apr;69(4):1242–1248. [PubMed] [Google Scholar]
  22. Mellentin J. D., Murre C., Donlon T. A., McCaw P. S., Smith S. D., Carroll A. J., McDonald M. E., Baltimore D., Cleary M. L. The gene for enhancer binding proteins E12/E47 lies at the t(1;19) breakpoint in acute leukemias. Science. 1989 Oct 20;246(4928):379–382. doi: 10.1126/science.2799390. [DOI] [PubMed] [Google Scholar]
  23. Mellentin J. D., Smith S. D., Cleary M. L. lyl-1, a novel gene altered by chromosomal translocation in T cell leukemia, codes for a protein with a helix-loop-helix DNA binding motif. Cell. 1989 Jul 14;58(1):77–83. doi: 10.1016/0092-8674(89)90404-2. [DOI] [PubMed] [Google Scholar]
  24. Minowada J., Moore G. E. T-lymphocyte cell lines derived from patients with acute lymphoblastic leukemia. Bibl Haematol. 1975;(40):251–261. doi: 10.1159/000397540. [DOI] [PubMed] [Google Scholar]
  25. Murre C., McCaw P. S., Baltimore D. A new DNA binding and dimerization motif in immunoglobulin enhancer binding, daughterless, MyoD, and myc proteins. Cell. 1989 Mar 10;56(5):777–783. doi: 10.1016/0092-8674(89)90682-x. [DOI] [PubMed] [Google Scholar]
  26. Nourse J., Mellentin J. D., Galili N., Wilkinson J., Stanbridge E., Smith S. D., Cleary M. L. Chromosomal translocation t(1;19) results in synthesis of a homeobox fusion mRNA that codes for a potential chimeric transcription factor. Cell. 1990 Feb 23;60(4):535–545. doi: 10.1016/0092-8674(90)90657-z. [DOI] [PubMed] [Google Scholar]
  27. Pui C. H., Behm F. G., Raimondi S. C., Dodge R. K., George S. L., Rivera G. K., Mirro J., Jr, Kalwinsky D. K., Dahl G. V., Murphy S. B. Secondary acute myeloid leukemia in children treated for acute lymphoid leukemia. N Engl J Med. 1989 Jul 20;321(3):136–142. doi: 10.1056/NEJM198907203210302. [DOI] [PubMed] [Google Scholar]
  28. Pui C. H., Behm F. G., Singh B., Schell M. J., Williams D. L., Rivera G. K., Kalwinsky D. K., Sandlund J. T., Crist W. M., Raimondi S. C. Heterogeneity of presenting features and their relation to treatment outcome in 120 children with T-cell acute lymphoblastic leukemia. Blood. 1990 Jan 1;75(1):174–179. [PubMed] [Google Scholar]
  29. Raimondi S. C., Behm F. G., Roberson P. K., Pui C. H., Rivera G. K., Murphy S. B., Williams D. L. Cytogenetics of childhood T-cell leukemia. Blood. 1988 Nov;72(5):1560–1566. [PubMed] [Google Scholar]
  30. Roper M., Crist W. M., Metzgar R., Ragab A. H., Smith S., Starling K., Pullen J., Leventhal B., Bartolucci A. A., Cooper M. D. Monoclonal antibody characterization of surface antigens in childhood T-cell lymphoid malignancies. Blood. 1983 May;61(5):830–837. [PubMed] [Google Scholar]
  31. Sawyers C. L., Timson L., Kawasaki E. S., Clark S. S., Witte O. N., Champlin R. Molecular relapse in chronic myelogenous leukemia patients after bone marrow transplantation detected by polymerase chain reaction. Proc Natl Acad Sci U S A. 1990 Jan;87(2):563–567. doi: 10.1073/pnas.87.2.563. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Sen L., Borella L. Clinical importance of lymphoblasts with T markers in childhood acute leukemia. N Engl J Med. 1975 Apr 17;292(16):828–832. doi: 10.1056/NEJM197504172921604. [DOI] [PubMed] [Google Scholar]
  33. Shuster J. J., Falletta J. M., Pullen D. J., Crist W. M., Humphrey G. B., Dowell B. L., Wharam M. D., Borowitz M. Prognostic factors in childhood T-cell acute lymphoblastic leukemia: a Pediatric Oncology Group study. Blood. 1990 Jan 1;75(1):166–173. [PubMed] [Google Scholar]
  34. Tsukimoto I., Wong K. Y., Lampkin B. C. Surface markers and prognostic factors in acute lymphoblastic leukemia. N Engl J Med. 1976 Jan 29;294(5):245–248. doi: 10.1056/NEJM197601292940503. [DOI] [PubMed] [Google Scholar]
  35. Tycko B., Palmer J. D., Sklar J. T cell receptor gene trans-rearrangements: chimeric gamma-delta genes in normal lymphoid tissues. Science. 1989 Sep 15;245(4923):1242–1246. doi: 10.1126/science.2551037. [DOI] [PubMed] [Google Scholar]
  36. Uckun F. M., Gajl-Peczalska K. J., Provisor A. J., Heerema N. A. Immunophenotype-karyotype associations in human acute lymphoblastic leukemia. Blood. 1989 Jan;73(1):271–280. [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES