Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 May 7;65(Pt 6):m617. doi: 10.1107/S1600536809016274

{N,N′-Bis[(E)-3-phenyl­prop-2-en-1-yl­idene]propane-1,3-diamine-κ2 N,N′]dichloridocobalt(II)

Morteza Montazerozohori a, Mohammad Hossein Habibi b,*, Mehdi Amirnasr c, Keita Ariyoshi d, Takayoshi Suzuki d
PMCID: PMC2969584  PMID: 21582987

Abstract

The CoII atom in the title monomeric Schiff base complex, [CoCl2(C21H22N2)], is bonded to two Cl atoms and to two N atoms of the Schiff base ligand N,N′-bis­[(E)-3-phenyl­prop-2-en-1-yl­idene]propane-1,3-diamine in a distorted tetra­hedral geometry. The mol­ecule has an idealised mirror symmetry, but is not located on a crystallographic mirror plane.

Related literature

For transition metal complexes with Schiff base ligands, see: Yamada (1999). For related structures, see: Amirnasr et al. (2003); Blonk et al. (1985); Habibi et al. (2007a ,b ); Meghdadi et al. (2002); Scheidt et al. (1969).graphic file with name e-65-0m617-scheme1.jpg

Experimental

Crystal data

  • [CoCl2(C21H22N2)]

  • M r = 432.24

  • Monoclinic, Inline graphic

  • a = 7.4976 (5) Å

  • b = 16.1594 (8) Å

  • c = 16.6238 (10) Å

  • β = 91.531 (2)°

  • V = 2013.4 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.13 mm−1

  • T = 193 K

  • 0.30 × 0.30 × 0.20 mm

Data collection

  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995) T min = 0.729, T max = 0.806

  • 23596 measured reflections

  • 5826 independent reflections

  • 4806 reflections with I > 2σ(I)

  • R int = 0.034

Refinement

  • R[F 2 > 2σ(F 2)] = 0.036

  • wR(F 2) = 0.091

  • S = 1.09

  • 5826 reflections

  • 236 parameters

  • H-atom parameters constrained

  • Δρmax = 0.53 e Å−3

  • Δρmin = −0.46 e Å−3

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809016274/bt2939sup1.cif

e-65-0m617-sup1.cif (20.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809016274/bt2939Isup2.hkl

e-65-0m617-Isup2.hkl (285.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected geometric parameters (Å, °).

Co1—N1 2.0368 (13)
Co1—N2 2.0392 (13)
Co1—Cl1 2.2399 (5)
Co1—Cl2 2.2559 (5)
N1—Co1—N2 93.21 (5)
N1—Co1—Cl1 117.36 (4)
N2—Co1—Cl1 118.07 (4)
N1—Co1—Cl2 106.31 (4)
N2—Co1—Cl2 106.71 (4)
Cl1—Co1—Cl2 112.965 (19)

Acknowledgments

Partial support of this work by Yasouj University is acknowledged.

supplementary crystallographic information

Comment

Transition metal complexes with Schiff base ligands have attracted substantial interest for many years (Yamada, 1999). Cinnamaldehyde and its substituted derivatives condense with diamines to supply a range of Schiff base compounds; a small number of such bis(cinnamaldehyde)ethylenediimine ligands have been used to prepare adducts with transition metals. Among such complexes whose structures have been described are, for example, the copper(I) iodide (Habibi et al., 2007a), (triphenylphosphine)(halogen/pseudohalogeno)- copper(I) (Habibi et al., 2007b), copper(I) perchlorate (Meghdadi et al., 2002), and the cobalt(II) chloride, cobalt(II) bromide and nickel bromide (Amirnasr et al., 2003) adducts. The title complex, (I), was prepared by the reaction of CoCl2 with the bidentate ligand N,N'-bis[(E)-3-phenylprop-2-en-1-ylidene]propane-1,3-diamine (ca2pn). The molecular structure of complex (I) and the ORTEP structure are shown in Fig. 1. The metal centre has a tetrahedral coordination which shows signficant distortion, mainly due to the presence of the six-membered chelate ring (Table 1): the endocyclic N1—Co1—N2 angle is much narrower than the ideal tetrahedral angle of 109.5° whereas the opposite Cl1—Co1—Cl2 angle is much wider than the ideal tetrahedral angle. The Co1—Cl1 and Co1—Cl2 bond lengths are in good agreement with Co—Cl distances in other tetrahedral cobalt complexes, e.g. 2.229 (3) Å in Co(ethylenedimorpholine) Cl2 (Scheidt et al., 1969), and 2.2434 (8) and 2.2266 (8) Å in Co[N,N-bis(3,5-dimethylpyrazol-1-ylmethyl)- aminobenzene]Cl2 (Blonk et al., 1985). π-Conjugation within the azadiene fragments is consistent with the observed pattern of C—C bond distances; the predominantly double C7=C8 and C14=C15 bonds are substantially shorter than the C8—C9 and C13—C14 bonds, which have a significant π-component; the latter bonds in their turn are much shorter than the single C10—C11 and C11—C12 bonds in the propylene bridge.

Experimental

The bidentate Schiff base ligand of N, N'-bis((E)-3-phenyl-propenylidene)-1,3-diaminopropane was synthesized by the condensation reaction of 2 mmol of (E)-3-phenypropenal and 1 mmol 1,3-diaminopropane in 10 ml dichloromethane in an ice bath for 1 h. The solution then was added drop wise to a solution of 1 mmol anhydrous CoCl2 in 10 ml dichloromethane under nitrogen atmosphere. The mixture was stirred for3 h and then filtered. To the filtrate, 20 ml chloroform was added and kept overnight. The crystals suitable for X-ray were filtered off and washed with chloroform (68% yield). Elemental analysis for C21H22Cl2CoN2%: Calcd.: C, 58.35; H, 5.13; N, 6.48; Found: C, 58.31; H, 5.11; N, 6.42.

Refinement

All H atoms were placed in calculated positions and refined using a riding-model, with C—H = 0.95–0.99 Å and with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

A view of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.

Crystal data

[CoCl2(C21H22N2)] F(000) = 892
Mr = 432.24 Dx = 1.426 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71075 Å
a = 7.4976 (5) Å Cell parameters from 16882 reflections
b = 16.1594 (8) Å θ = 3.0–29.9°
c = 16.6238 (10) Å µ = 1.13 mm1
β = 91.531 (2)° T = 193 K
V = 2013.4 (2) Å3 Cubic, green
Z = 4 0.30 × 0.30 × 0.20 mm

Data collection

Rigaku R-AXIS RAPID diffractometer 5826 independent reflections
Radiation source: fine-focus sealed tube 4806 reflections with I > 2σ(I)
graphite Rint = 0.034
Detector resolution: 10.00 pixels mm-1 θmax = 30.0°, θmin = 3.0°
ω scans h = −10→10
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) k = −22→22
Tmin = 0.729, Tmax = 0.806 l = −23→23
23596 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.091 H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0428P)2 + 0.5035P] where P = (Fo2 + 2Fc2)/3
5826 reflections (Δ/σ)max = 0.002
236 parameters Δρmax = 0.53 e Å3
0 restraints Δρmin = −0.46 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Co1 0.25070 (3) 0.193360 (13) 0.243448 (12) 0.02719 (7)
Cl1 0.28692 (6) 0.05592 (2) 0.25023 (2) 0.03655 (10)
Cl2 0.49842 (6) 0.26032 (3) 0.20514 (3) 0.03852 (11)
N1 0.04670 (18) 0.23684 (8) 0.17195 (8) 0.0291 (3)
N2 0.16292 (18) 0.25318 (8) 0.34289 (8) 0.0291 (3)
C1 −0.2001 (2) −0.01609 (10) 0.05017 (9) 0.0304 (3)
C2 −0.1150 (2) −0.07521 (11) 0.09975 (11) 0.0377 (4)
H2 −0.0448 −0.0578 0.1451 0.045*
C3 −0.1329 (3) −0.15844 (12) 0.08302 (12) 0.0426 (4)
H3 −0.0745 −0.1981 0.1167 0.051*
C4 −0.2360 (3) −0.18448 (11) 0.01710 (12) 0.0419 (4)
H4 −0.2488 −0.2419 0.0063 0.050*
C5 −0.3203 (2) −0.12722 (10) −0.03290 (11) 0.0364 (4)
H5 −0.3900 −0.1452 −0.0781 0.044*
C6 −0.3020 (2) −0.04375 (10) −0.01645 (10) 0.0330 (3)
H6 −0.3595 −0.0045 −0.0509 0.040*
C7 −0.1865 (2) 0.07272 (11) 0.06595 (10) 0.0325 (3)
H7 −0.2680 0.1076 0.0373 0.039*
C8 −0.0703 (2) 0.10972 (10) 0.11696 (9) 0.0304 (3)
H8 0.0122 0.0768 0.1473 0.037*
C9 −0.0678 (2) 0.19798 (10) 0.12681 (10) 0.0320 (3)
H9 −0.1558 0.2296 0.0984 0.038*
C10 0.0290 (2) 0.32742 (10) 0.17794 (10) 0.0342 (3)
H10A −0.0620 0.3469 0.1380 0.041*
H10B 0.1440 0.3538 0.1653 0.041*
C11 −0.0252 (2) 0.35316 (10) 0.26220 (10) 0.0340 (3)
H11A −0.0595 0.4123 0.2608 0.041*
H11B −0.1321 0.3210 0.2767 0.041*
C12 0.1177 (2) 0.34122 (9) 0.32822 (10) 0.0342 (3)
H12A 0.2269 0.3712 0.3131 0.041*
H12B 0.0753 0.3659 0.3788 0.041*
C13 0.1347 (2) 0.22441 (10) 0.41378 (9) 0.0299 (3)
H13 0.0819 0.2604 0.4515 0.036*
C14 0.1777 (2) 0.14149 (10) 0.43997 (9) 0.0301 (3)
H14 0.2322 0.1041 0.4041 0.036*
C15 0.1409 (2) 0.11698 (10) 0.51492 (10) 0.0299 (3)
H15 0.0783 0.1550 0.5474 0.036*
C16 0.1881 (2) 0.03716 (10) 0.55142 (9) 0.0303 (3)
C17 0.1433 (3) 0.02236 (11) 0.63139 (10) 0.0383 (4)
H17 0.0757 0.0621 0.6596 0.046*
C18 0.1975 (3) −0.05030 (12) 0.66951 (12) 0.0470 (5)
H18 0.1663 −0.0600 0.7237 0.056*
C19 0.2957 (3) −0.10810 (12) 0.62942 (13) 0.0460 (5)
H19 0.3343 −0.1572 0.6561 0.055*
C20 0.3386 (2) −0.09457 (11) 0.54975 (13) 0.0420 (4)
H20 0.4057 −0.1348 0.5219 0.050*
C21 0.2844 (2) −0.02314 (10) 0.51072 (11) 0.0345 (3)
H21 0.3126 −0.0149 0.4559 0.041*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Co1 0.02769 (12) 0.02684 (12) 0.02693 (12) 0.00036 (7) −0.00153 (8) 0.00003 (8)
Cl1 0.0445 (2) 0.02843 (19) 0.0363 (2) 0.00604 (15) −0.00552 (17) −0.00140 (15)
Cl2 0.0328 (2) 0.0447 (2) 0.0381 (2) −0.00778 (17) 0.00149 (16) 0.00277 (18)
N1 0.0300 (7) 0.0313 (6) 0.0258 (6) 0.0031 (5) −0.0003 (5) −0.0008 (5)
N2 0.0313 (7) 0.0270 (6) 0.0287 (6) −0.0016 (5) −0.0015 (5) −0.0009 (5)
C1 0.0258 (7) 0.0354 (8) 0.0300 (7) −0.0005 (6) 0.0016 (6) −0.0011 (6)
C2 0.0357 (9) 0.0430 (9) 0.0344 (8) −0.0002 (7) −0.0020 (7) 0.0037 (7)
C3 0.0413 (10) 0.0407 (10) 0.0461 (10) 0.0037 (8) 0.0050 (8) 0.0120 (8)
C4 0.0403 (10) 0.0341 (9) 0.0518 (11) −0.0037 (7) 0.0119 (8) −0.0011 (8)
C5 0.0299 (8) 0.0413 (9) 0.0381 (9) −0.0053 (7) 0.0050 (7) −0.0070 (7)
C6 0.0288 (8) 0.0394 (8) 0.0308 (8) 0.0007 (6) 0.0003 (6) 0.0001 (7)
C7 0.0285 (8) 0.0363 (8) 0.0324 (8) 0.0030 (6) −0.0030 (6) −0.0008 (7)
C8 0.0274 (7) 0.0356 (8) 0.0283 (7) 0.0021 (6) 0.0002 (6) −0.0009 (6)
C9 0.0282 (8) 0.0388 (9) 0.0288 (7) 0.0036 (6) −0.0016 (6) −0.0010 (6)
C10 0.0386 (9) 0.0302 (8) 0.0335 (8) 0.0038 (7) −0.0050 (7) 0.0028 (7)
C11 0.0364 (9) 0.0265 (7) 0.0390 (9) 0.0030 (6) −0.0007 (7) −0.0016 (7)
C12 0.0450 (10) 0.0237 (7) 0.0339 (8) −0.0014 (6) −0.0025 (7) −0.0018 (6)
C13 0.0297 (8) 0.0315 (8) 0.0285 (7) 0.0010 (6) −0.0012 (6) −0.0030 (6)
C14 0.0307 (8) 0.0319 (7) 0.0277 (7) 0.0000 (6) −0.0007 (6) −0.0016 (6)
C15 0.0288 (8) 0.0325 (8) 0.0282 (7) −0.0005 (6) −0.0016 (6) −0.0024 (6)
C16 0.0273 (8) 0.0332 (8) 0.0302 (7) −0.0047 (6) −0.0041 (6) 0.0007 (6)
C17 0.0447 (10) 0.0380 (9) 0.0322 (8) −0.0032 (7) −0.0010 (7) 0.0012 (7)
C18 0.0596 (13) 0.0467 (11) 0.0343 (9) −0.0085 (9) −0.0065 (8) 0.0105 (8)
C19 0.0425 (10) 0.0384 (9) 0.0563 (12) −0.0044 (8) −0.0131 (9) 0.0140 (9)
C20 0.0330 (9) 0.0337 (9) 0.0593 (12) −0.0006 (7) −0.0008 (8) 0.0020 (8)
C21 0.0310 (8) 0.0341 (8) 0.0384 (9) −0.0038 (6) 0.0015 (6) 0.0022 (7)

Geometric parameters (Å, °)

Co1—N1 2.0368 (13) C10—C11 1.527 (2)
Co1—N2 2.0392 (13) C10—H10A 0.9900
Co1—Cl1 2.2399 (5) C10—H10B 0.9900
Co1—Cl2 2.2559 (5) C11—C12 1.525 (2)
N1—C9 1.289 (2) C11—H11A 0.9900
N1—C10 1.473 (2) C11—H11B 0.9900
N2—C13 1.289 (2) C12—H12A 0.9900
N2—C12 1.481 (2) C12—H12B 0.9900
C1—C6 1.402 (2) C13—C14 1.443 (2)
C1—C2 1.404 (2) C13—H13 0.9500
C1—C7 1.462 (2) C14—C15 1.343 (2)
C2—C3 1.379 (3) C14—H14 0.9500
C2—H2 0.9500 C15—C16 1.465 (2)
C3—C4 1.389 (3) C15—H15 0.9500
C3—H3 0.9500 C16—C21 1.398 (2)
C4—C5 1.385 (3) C16—C17 1.401 (2)
C4—H4 0.9500 C17—C18 1.390 (2)
C5—C6 1.382 (2) C17—H17 0.9500
C5—H5 0.9500 C18—C19 1.373 (3)
C6—H6 0.9500 C18—H18 0.9500
C7—C8 1.340 (2) C19—C20 1.389 (3)
C7—H7 0.9500 C19—H19 0.9500
C8—C9 1.436 (2) C20—C21 1.380 (2)
C8—H8 0.9500 C20—H20 0.9500
C9—H9 0.9500 C21—H21 0.9500
N1—Co1—N2 93.21 (5) N1—C10—H10B 109.4
N1—Co1—Cl1 117.36 (4) C11—C10—H10B 109.4
N2—Co1—Cl1 118.07 (4) H10A—C10—H10B 108.0
N1—Co1—Cl2 106.31 (4) C12—C11—C10 115.27 (14)
N2—Co1—Cl2 106.71 (4) C12—C11—H11A 108.5
Cl1—Co1—Cl2 112.965 (19) C10—C11—H11A 108.5
C9—N1—C10 117.61 (13) C12—C11—H11B 108.5
C9—N1—Co1 130.55 (11) C10—C11—H11B 108.5
C10—N1—Co1 111.78 (10) H11A—C11—H11B 107.5
C13—N2—C12 117.02 (13) N2—C12—C11 113.16 (13)
C13—N2—Co1 129.36 (11) N2—C12—H12A 108.9
C12—N2—Co1 113.53 (10) C11—C12—H12A 108.9
C6—C1—C2 118.44 (15) N2—C12—H12B 108.9
C6—C1—C7 119.26 (14) C11—C12—H12B 108.9
C2—C1—C7 122.30 (15) H12A—C12—H12B 107.8
C3—C2—C1 120.34 (16) N2—C13—C14 124.76 (15)
C3—C2—H2 119.8 N2—C13—H13 117.6
C1—C2—H2 119.8 C14—C13—H13 117.6
C2—C3—C4 120.22 (17) C15—C14—C13 120.29 (15)
C2—C3—H3 119.9 C15—C14—H14 119.9
C4—C3—H3 119.9 C13—C14—H14 119.9
C5—C4—C3 120.42 (17) C14—C15—C16 126.20 (15)
C5—C4—H4 119.8 C14—C15—H15 116.9
C3—C4—H4 119.8 C16—C15—H15 116.9
C6—C5—C4 119.47 (16) C21—C16—C17 118.72 (16)
C6—C5—H5 120.3 C21—C16—C15 122.38 (15)
C4—C5—H5 120.3 C17—C16—C15 118.82 (15)
C5—C6—C1 121.10 (16) C18—C17—C16 120.16 (18)
C5—C6—H6 119.4 C18—C17—H17 119.9
C1—C6—H6 119.4 C16—C17—H17 119.9
C8—C7—C1 126.34 (15) C19—C18—C17 120.49 (19)
C8—C7—H7 116.8 C19—C18—H18 119.8
C1—C7—H7 116.8 C17—C18—H18 119.8
C7—C8—C9 121.45 (15) C18—C19—C20 119.78 (17)
C7—C8—H8 119.3 C18—C19—H19 120.1
C9—C8—H8 119.3 C20—C19—H19 120.1
N1—C9—C8 123.85 (15) C21—C20—C19 120.49 (18)
N1—C9—H9 118.1 C21—C20—H20 119.8
C8—C9—H9 118.1 C19—C20—H20 119.8
N1—C10—C11 111.07 (13) C20—C21—C16 120.33 (17)
N1—C10—H10A 109.4 C20—C21—H21 119.8
C11—C10—H10A 109.4 C16—C21—H21 119.8
N2—Co1—N1—C9 −125.65 (15) C10—N1—C9—C8 −178.17 (15)
Cl1—Co1—N1—C9 −1.63 (16) Co1—N1—C9—C8 −1.2 (3)
Cl2—Co1—N1—C9 125.90 (14) C7—C8—C9—N1 −176.41 (17)
N2—Co1—N1—C10 51.43 (11) C9—N1—C10—C11 112.10 (16)
Cl1—Co1—N1—C10 175.45 (9) Co1—N1—C10—C11 −65.40 (15)
Cl2—Co1—N1—C10 −57.02 (11) N1—C10—C11—C12 69.65 (18)
N1—Co1—N2—C13 128.77 (14) C13—N2—C12—C11 −118.87 (16)
Cl1—Co1—N2—C13 5.30 (16) Co1—N2—C12—C11 58.15 (16)
Cl2—Co1—N2—C13 −123.14 (14) C10—C11—C12—N2 −65.56 (19)
N1—Co1—N2—C12 −47.80 (11) C12—N2—C13—C14 −177.22 (14)
Cl1—Co1—N2—C12 −171.27 (9) Co1—N2—C13—C14 6.3 (2)
Cl2—Co1—N2—C12 60.29 (11) N2—C13—C14—C15 −179.13 (16)
C6—C1—C2—C3 −0.3 (3) C13—C14—C15—C16 −175.37 (14)
C7—C1—C2—C3 179.37 (17) C14—C15—C16—C21 1.8 (3)
C1—C2—C3—C4 −0.3 (3) C14—C15—C16—C17 178.41 (16)
C2—C3—C4—C5 0.7 (3) C21—C16—C17—C18 1.4 (3)
C3—C4—C5—C6 −0.4 (3) C15—C16—C17—C18 −175.39 (16)
C4—C5—C6—C1 −0.2 (3) C16—C17—C18—C19 0.2 (3)
C2—C1—C6—C5 0.6 (2) C17—C18—C19—C20 −1.2 (3)
C7—C1—C6—C5 −179.12 (15) C18—C19—C20—C21 0.5 (3)
C6—C1—C7—C8 −166.72 (17) C19—C20—C21—C16 1.1 (3)
C2—C1—C7—C8 13.6 (3) C17—C16—C21—C20 −2.0 (2)
C1—C7—C8—C9 179.17 (16) C15—C16—C21—C20 174.62 (16)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2939).

References

  1. Amirnasr, M., Schenk, K. J., Salavati, M., Dehghanpour, S., Taeb, A. & Tadjarodi, A. (2003). J. Coord. Chem.56, 231–243.
  2. Blonk, H. I., Driessen, W. L. & Reedijk, J. (1985). J. Chem. Soc. Dalton Trans. pp. 1699–1704.
  3. Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst.38, 381–388.
  4. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  5. Habibi, M. H., Lalegani, A., Mokhtari, R. & Suzuki, T. (2007a). Acta Cryst. E63, m2472.
  6. Habibi, M. H., Lalegani, A., Mokhtari, R. & Suzuki, T. (2007b). Acta Cryst. E63, m2580.
  7. Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  8. Meghdadi, S., Amirnasr, M., Schenk, K. J. & Dehghanpour, S. (2002). Helv. Chim. Acta, 85, 2807–2816.
  9. Rigaku (1998). PROCESS-AUTO Rigaku Corporation, Tokyo, Japan.
  10. Rigaku/MSC (2004). CrystalStructure Rigaku/MSC, The Woodlands, Texas, USA.
  11. Scheidt, W. R., Hanson, J. C. & Rasmussen, P. G. (1969). Inorg. Chem.8, 2398–2401.
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  13. Yamada, S. (1999). Coord. Chem. Rev.190, 537-555.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809016274/bt2939sup1.cif

e-65-0m617-sup1.cif (20.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809016274/bt2939Isup2.hkl

e-65-0m617-Isup2.hkl (285.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES