Abstract
The CoII atom in the title monomeric Schiff base complex, [CoCl2(C21H22N2)], is bonded to two Cl atoms and to two N atoms of the Schiff base ligand N,N′-bis[(E)-3-phenylprop-2-en-1-ylidene]propane-1,3-diamine in a distorted tetrahedral geometry. The molecule has an idealised mirror symmetry, but is not located on a crystallographic mirror plane.
Related literature
For transition metal complexes with Schiff base ligands, see: Yamada (1999 ▶). For related structures, see: Amirnasr et al. (2003 ▶); Blonk et al. (1985 ▶); Habibi et al. (2007a
▶,b
▶); Meghdadi et al. (2002 ▶); Scheidt et al. (1969 ▶).
Experimental
Crystal data
[CoCl2(C21H22N2)]
M r = 432.24
Monoclinic,
a = 7.4976 (5) Å
b = 16.1594 (8) Å
c = 16.6238 (10) Å
β = 91.531 (2)°
V = 2013.4 (2) Å3
Z = 4
Mo Kα radiation
μ = 1.13 mm−1
T = 193 K
0.30 × 0.30 × 0.20 mm
Data collection
Rigaku R-AXIS RAPID diffractometer
Absorption correction: multi-scan (ABSCOR; Higashi, 1995 ▶) T min = 0.729, T max = 0.806
23596 measured reflections
5826 independent reflections
4806 reflections with I > 2σ(I)
R int = 0.034
Refinement
R[F 2 > 2σ(F 2)] = 0.036
wR(F 2) = 0.091
S = 1.09
5826 reflections
236 parameters
H-atom parameters constrained
Δρmax = 0.53 e Å−3
Δρmin = −0.46 e Å−3
Data collection: PROCESS-AUTO (Rigaku, 1998 ▶); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004 ▶); program(s) used to solve structure: SIR2004 (Burla et al., 2005 ▶); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 ▶); molecular graphics: ORTEP-3 (Farrugia, 1997 ▶); software used to prepare material for publication: SHELXL97.
Supplementary Material
Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809016274/bt2939sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536809016274/bt2939Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
Table 1. Selected geometric parameters (Å, °).
| Co1—N1 | 2.0368 (13) |
| Co1—N2 | 2.0392 (13) |
| Co1—Cl1 | 2.2399 (5) |
| Co1—Cl2 | 2.2559 (5) |
| N1—Co1—N2 | 93.21 (5) |
| N1—Co1—Cl1 | 117.36 (4) |
| N2—Co1—Cl1 | 118.07 (4) |
| N1—Co1—Cl2 | 106.31 (4) |
| N2—Co1—Cl2 | 106.71 (4) |
| Cl1—Co1—Cl2 | 112.965 (19) |
Acknowledgments
Partial support of this work by Yasouj University is acknowledged.
supplementary crystallographic information
Comment
Transition metal complexes with Schiff base ligands have attracted substantial interest for many years (Yamada, 1999). Cinnamaldehyde and its substituted derivatives condense with diamines to supply a range of Schiff base compounds; a small number of such bis(cinnamaldehyde)ethylenediimine ligands have been used to prepare adducts with transition metals. Among such complexes whose structures have been described are, for example, the copper(I) iodide (Habibi et al., 2007a), (triphenylphosphine)(halogen/pseudohalogeno)- copper(I) (Habibi et al., 2007b), copper(I) perchlorate (Meghdadi et al., 2002), and the cobalt(II) chloride, cobalt(II) bromide and nickel bromide (Amirnasr et al., 2003) adducts. The title complex, (I), was prepared by the reaction of CoCl2 with the bidentate ligand N,N'-bis[(E)-3-phenylprop-2-en-1-ylidene]propane-1,3-diamine (ca2pn). The molecular structure of complex (I) and the ORTEP structure are shown in Fig. 1. The metal centre has a tetrahedral coordination which shows signficant distortion, mainly due to the presence of the six-membered chelate ring (Table 1): the endocyclic N1—Co1—N2 angle is much narrower than the ideal tetrahedral angle of 109.5° whereas the opposite Cl1—Co1—Cl2 angle is much wider than the ideal tetrahedral angle. The Co1—Cl1 and Co1—Cl2 bond lengths are in good agreement with Co—Cl distances in other tetrahedral cobalt complexes, e.g. 2.229 (3) Å in Co(ethylenedimorpholine) Cl2 (Scheidt et al., 1969), and 2.2434 (8) and 2.2266 (8) Å in Co[N,N-bis(3,5-dimethylpyrazol-1-ylmethyl)- aminobenzene]Cl2 (Blonk et al., 1985). π-Conjugation within the azadiene fragments is consistent with the observed pattern of C—C bond distances; the predominantly double C7=C8 and C14=C15 bonds are substantially shorter than the C8—C9 and C13—C14 bonds, which have a significant π-component; the latter bonds in their turn are much shorter than the single C10—C11 and C11—C12 bonds in the propylene bridge.
Experimental
The bidentate Schiff base ligand of N, N'-bis((E)-3-phenyl-propenylidene)-1,3-diaminopropane was synthesized by the condensation reaction of 2 mmol of (E)-3-phenypropenal and 1 mmol 1,3-diaminopropane in 10 ml dichloromethane in an ice bath for 1 h. The solution then was added drop wise to a solution of 1 mmol anhydrous CoCl2 in 10 ml dichloromethane under nitrogen atmosphere. The mixture was stirred for3 h and then filtered. To the filtrate, 20 ml chloroform was added and kept overnight. The crystals suitable for X-ray were filtered off and washed with chloroform (68% yield). Elemental analysis for C21H22Cl2CoN2%: Calcd.: C, 58.35; H, 5.13; N, 6.48; Found: C, 58.31; H, 5.11; N, 6.42.
Refinement
All H atoms were placed in calculated positions and refined using a riding-model, with C—H = 0.95–0.99 Å and with Uiso(H) = 1.2Ueq(C).
Figures
Fig. 1.
A view of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
Crystal data
| [CoCl2(C21H22N2)] | F(000) = 892 |
| Mr = 432.24 | Dx = 1.426 Mg m−3 |
| Monoclinic, P21/n | Mo Kα radiation, λ = 0.71075 Å |
| a = 7.4976 (5) Å | Cell parameters from 16882 reflections |
| b = 16.1594 (8) Å | θ = 3.0–29.9° |
| c = 16.6238 (10) Å | µ = 1.13 mm−1 |
| β = 91.531 (2)° | T = 193 K |
| V = 2013.4 (2) Å3 | Cubic, green |
| Z = 4 | 0.30 × 0.30 × 0.20 mm |
Data collection
| Rigaku R-AXIS RAPID diffractometer | 5826 independent reflections |
| Radiation source: fine-focus sealed tube | 4806 reflections with I > 2σ(I) |
| graphite | Rint = 0.034 |
| Detector resolution: 10.00 pixels mm-1 | θmax = 30.0°, θmin = 3.0° |
| ω scans | h = −10→10 |
| Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | k = −22→22 |
| Tmin = 0.729, Tmax = 0.806 | l = −23→23 |
| 23596 measured reflections |
Refinement
| Refinement on F2 | Primary atom site location: structure-invariant direct methods |
| Least-squares matrix: full | Secondary atom site location: difference Fourier map |
| R[F2 > 2σ(F2)] = 0.036 | Hydrogen site location: inferred from neighbouring sites |
| wR(F2) = 0.091 | H-atom parameters constrained |
| S = 1.09 | w = 1/[σ2(Fo2) + (0.0428P)2 + 0.5035P] where P = (Fo2 + 2Fc2)/3 |
| 5826 reflections | (Δ/σ)max = 0.002 |
| 236 parameters | Δρmax = 0.53 e Å−3 |
| 0 restraints | Δρmin = −0.46 e Å−3 |
Special details
| Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
| Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| Co1 | 0.25070 (3) | 0.193360 (13) | 0.243448 (12) | 0.02719 (7) | |
| Cl1 | 0.28692 (6) | 0.05592 (2) | 0.25023 (2) | 0.03655 (10) | |
| Cl2 | 0.49842 (6) | 0.26032 (3) | 0.20514 (3) | 0.03852 (11) | |
| N1 | 0.04670 (18) | 0.23684 (8) | 0.17195 (8) | 0.0291 (3) | |
| N2 | 0.16292 (18) | 0.25318 (8) | 0.34289 (8) | 0.0291 (3) | |
| C1 | −0.2001 (2) | −0.01609 (10) | 0.05017 (9) | 0.0304 (3) | |
| C2 | −0.1150 (2) | −0.07521 (11) | 0.09975 (11) | 0.0377 (4) | |
| H2 | −0.0448 | −0.0578 | 0.1451 | 0.045* | |
| C3 | −0.1329 (3) | −0.15844 (12) | 0.08302 (12) | 0.0426 (4) | |
| H3 | −0.0745 | −0.1981 | 0.1167 | 0.051* | |
| C4 | −0.2360 (3) | −0.18448 (11) | 0.01710 (12) | 0.0419 (4) | |
| H4 | −0.2488 | −0.2419 | 0.0063 | 0.050* | |
| C5 | −0.3203 (2) | −0.12722 (10) | −0.03290 (11) | 0.0364 (4) | |
| H5 | −0.3900 | −0.1452 | −0.0781 | 0.044* | |
| C6 | −0.3020 (2) | −0.04375 (10) | −0.01645 (10) | 0.0330 (3) | |
| H6 | −0.3595 | −0.0045 | −0.0509 | 0.040* | |
| C7 | −0.1865 (2) | 0.07272 (11) | 0.06595 (10) | 0.0325 (3) | |
| H7 | −0.2680 | 0.1076 | 0.0373 | 0.039* | |
| C8 | −0.0703 (2) | 0.10972 (10) | 0.11696 (9) | 0.0304 (3) | |
| H8 | 0.0122 | 0.0768 | 0.1473 | 0.037* | |
| C9 | −0.0678 (2) | 0.19798 (10) | 0.12681 (10) | 0.0320 (3) | |
| H9 | −0.1558 | 0.2296 | 0.0984 | 0.038* | |
| C10 | 0.0290 (2) | 0.32742 (10) | 0.17794 (10) | 0.0342 (3) | |
| H10A | −0.0620 | 0.3469 | 0.1380 | 0.041* | |
| H10B | 0.1440 | 0.3538 | 0.1653 | 0.041* | |
| C11 | −0.0252 (2) | 0.35316 (10) | 0.26220 (10) | 0.0340 (3) | |
| H11A | −0.0595 | 0.4123 | 0.2608 | 0.041* | |
| H11B | −0.1321 | 0.3210 | 0.2767 | 0.041* | |
| C12 | 0.1177 (2) | 0.34122 (9) | 0.32822 (10) | 0.0342 (3) | |
| H12A | 0.2269 | 0.3712 | 0.3131 | 0.041* | |
| H12B | 0.0753 | 0.3659 | 0.3788 | 0.041* | |
| C13 | 0.1347 (2) | 0.22441 (10) | 0.41378 (9) | 0.0299 (3) | |
| H13 | 0.0819 | 0.2604 | 0.4515 | 0.036* | |
| C14 | 0.1777 (2) | 0.14149 (10) | 0.43997 (9) | 0.0301 (3) | |
| H14 | 0.2322 | 0.1041 | 0.4041 | 0.036* | |
| C15 | 0.1409 (2) | 0.11698 (10) | 0.51492 (10) | 0.0299 (3) | |
| H15 | 0.0783 | 0.1550 | 0.5474 | 0.036* | |
| C16 | 0.1881 (2) | 0.03716 (10) | 0.55142 (9) | 0.0303 (3) | |
| C17 | 0.1433 (3) | 0.02236 (11) | 0.63139 (10) | 0.0383 (4) | |
| H17 | 0.0757 | 0.0621 | 0.6596 | 0.046* | |
| C18 | 0.1975 (3) | −0.05030 (12) | 0.66951 (12) | 0.0470 (5) | |
| H18 | 0.1663 | −0.0600 | 0.7237 | 0.056* | |
| C19 | 0.2957 (3) | −0.10810 (12) | 0.62942 (13) | 0.0460 (5) | |
| H19 | 0.3343 | −0.1572 | 0.6561 | 0.055* | |
| C20 | 0.3386 (2) | −0.09457 (11) | 0.54975 (13) | 0.0420 (4) | |
| H20 | 0.4057 | −0.1348 | 0.5219 | 0.050* | |
| C21 | 0.2844 (2) | −0.02314 (10) | 0.51072 (11) | 0.0345 (3) | |
| H21 | 0.3126 | −0.0149 | 0.4559 | 0.041* |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| Co1 | 0.02769 (12) | 0.02684 (12) | 0.02693 (12) | 0.00036 (7) | −0.00153 (8) | 0.00003 (8) |
| Cl1 | 0.0445 (2) | 0.02843 (19) | 0.0363 (2) | 0.00604 (15) | −0.00552 (17) | −0.00140 (15) |
| Cl2 | 0.0328 (2) | 0.0447 (2) | 0.0381 (2) | −0.00778 (17) | 0.00149 (16) | 0.00277 (18) |
| N1 | 0.0300 (7) | 0.0313 (6) | 0.0258 (6) | 0.0031 (5) | −0.0003 (5) | −0.0008 (5) |
| N2 | 0.0313 (7) | 0.0270 (6) | 0.0287 (6) | −0.0016 (5) | −0.0015 (5) | −0.0009 (5) |
| C1 | 0.0258 (7) | 0.0354 (8) | 0.0300 (7) | −0.0005 (6) | 0.0016 (6) | −0.0011 (6) |
| C2 | 0.0357 (9) | 0.0430 (9) | 0.0344 (8) | −0.0002 (7) | −0.0020 (7) | 0.0037 (7) |
| C3 | 0.0413 (10) | 0.0407 (10) | 0.0461 (10) | 0.0037 (8) | 0.0050 (8) | 0.0120 (8) |
| C4 | 0.0403 (10) | 0.0341 (9) | 0.0518 (11) | −0.0037 (7) | 0.0119 (8) | −0.0011 (8) |
| C5 | 0.0299 (8) | 0.0413 (9) | 0.0381 (9) | −0.0053 (7) | 0.0050 (7) | −0.0070 (7) |
| C6 | 0.0288 (8) | 0.0394 (8) | 0.0308 (8) | 0.0007 (6) | 0.0003 (6) | 0.0001 (7) |
| C7 | 0.0285 (8) | 0.0363 (8) | 0.0324 (8) | 0.0030 (6) | −0.0030 (6) | −0.0008 (7) |
| C8 | 0.0274 (7) | 0.0356 (8) | 0.0283 (7) | 0.0021 (6) | 0.0002 (6) | −0.0009 (6) |
| C9 | 0.0282 (8) | 0.0388 (9) | 0.0288 (7) | 0.0036 (6) | −0.0016 (6) | −0.0010 (6) |
| C10 | 0.0386 (9) | 0.0302 (8) | 0.0335 (8) | 0.0038 (7) | −0.0050 (7) | 0.0028 (7) |
| C11 | 0.0364 (9) | 0.0265 (7) | 0.0390 (9) | 0.0030 (6) | −0.0007 (7) | −0.0016 (7) |
| C12 | 0.0450 (10) | 0.0237 (7) | 0.0339 (8) | −0.0014 (6) | −0.0025 (7) | −0.0018 (6) |
| C13 | 0.0297 (8) | 0.0315 (8) | 0.0285 (7) | 0.0010 (6) | −0.0012 (6) | −0.0030 (6) |
| C14 | 0.0307 (8) | 0.0319 (7) | 0.0277 (7) | 0.0000 (6) | −0.0007 (6) | −0.0016 (6) |
| C15 | 0.0288 (8) | 0.0325 (8) | 0.0282 (7) | −0.0005 (6) | −0.0016 (6) | −0.0024 (6) |
| C16 | 0.0273 (8) | 0.0332 (8) | 0.0302 (7) | −0.0047 (6) | −0.0041 (6) | 0.0007 (6) |
| C17 | 0.0447 (10) | 0.0380 (9) | 0.0322 (8) | −0.0032 (7) | −0.0010 (7) | 0.0012 (7) |
| C18 | 0.0596 (13) | 0.0467 (11) | 0.0343 (9) | −0.0085 (9) | −0.0065 (8) | 0.0105 (8) |
| C19 | 0.0425 (10) | 0.0384 (9) | 0.0563 (12) | −0.0044 (8) | −0.0131 (9) | 0.0140 (9) |
| C20 | 0.0330 (9) | 0.0337 (9) | 0.0593 (12) | −0.0006 (7) | −0.0008 (8) | 0.0020 (8) |
| C21 | 0.0310 (8) | 0.0341 (8) | 0.0384 (9) | −0.0038 (6) | 0.0015 (6) | 0.0022 (7) |
Geometric parameters (Å, °)
| Co1—N1 | 2.0368 (13) | C10—C11 | 1.527 (2) |
| Co1—N2 | 2.0392 (13) | C10—H10A | 0.9900 |
| Co1—Cl1 | 2.2399 (5) | C10—H10B | 0.9900 |
| Co1—Cl2 | 2.2559 (5) | C11—C12 | 1.525 (2) |
| N1—C9 | 1.289 (2) | C11—H11A | 0.9900 |
| N1—C10 | 1.473 (2) | C11—H11B | 0.9900 |
| N2—C13 | 1.289 (2) | C12—H12A | 0.9900 |
| N2—C12 | 1.481 (2) | C12—H12B | 0.9900 |
| C1—C6 | 1.402 (2) | C13—C14 | 1.443 (2) |
| C1—C2 | 1.404 (2) | C13—H13 | 0.9500 |
| C1—C7 | 1.462 (2) | C14—C15 | 1.343 (2) |
| C2—C3 | 1.379 (3) | C14—H14 | 0.9500 |
| C2—H2 | 0.9500 | C15—C16 | 1.465 (2) |
| C3—C4 | 1.389 (3) | C15—H15 | 0.9500 |
| C3—H3 | 0.9500 | C16—C21 | 1.398 (2) |
| C4—C5 | 1.385 (3) | C16—C17 | 1.401 (2) |
| C4—H4 | 0.9500 | C17—C18 | 1.390 (2) |
| C5—C6 | 1.382 (2) | C17—H17 | 0.9500 |
| C5—H5 | 0.9500 | C18—C19 | 1.373 (3) |
| C6—H6 | 0.9500 | C18—H18 | 0.9500 |
| C7—C8 | 1.340 (2) | C19—C20 | 1.389 (3) |
| C7—H7 | 0.9500 | C19—H19 | 0.9500 |
| C8—C9 | 1.436 (2) | C20—C21 | 1.380 (2) |
| C8—H8 | 0.9500 | C20—H20 | 0.9500 |
| C9—H9 | 0.9500 | C21—H21 | 0.9500 |
| N1—Co1—N2 | 93.21 (5) | N1—C10—H10B | 109.4 |
| N1—Co1—Cl1 | 117.36 (4) | C11—C10—H10B | 109.4 |
| N2—Co1—Cl1 | 118.07 (4) | H10A—C10—H10B | 108.0 |
| N1—Co1—Cl2 | 106.31 (4) | C12—C11—C10 | 115.27 (14) |
| N2—Co1—Cl2 | 106.71 (4) | C12—C11—H11A | 108.5 |
| Cl1—Co1—Cl2 | 112.965 (19) | C10—C11—H11A | 108.5 |
| C9—N1—C10 | 117.61 (13) | C12—C11—H11B | 108.5 |
| C9—N1—Co1 | 130.55 (11) | C10—C11—H11B | 108.5 |
| C10—N1—Co1 | 111.78 (10) | H11A—C11—H11B | 107.5 |
| C13—N2—C12 | 117.02 (13) | N2—C12—C11 | 113.16 (13) |
| C13—N2—Co1 | 129.36 (11) | N2—C12—H12A | 108.9 |
| C12—N2—Co1 | 113.53 (10) | C11—C12—H12A | 108.9 |
| C6—C1—C2 | 118.44 (15) | N2—C12—H12B | 108.9 |
| C6—C1—C7 | 119.26 (14) | C11—C12—H12B | 108.9 |
| C2—C1—C7 | 122.30 (15) | H12A—C12—H12B | 107.8 |
| C3—C2—C1 | 120.34 (16) | N2—C13—C14 | 124.76 (15) |
| C3—C2—H2 | 119.8 | N2—C13—H13 | 117.6 |
| C1—C2—H2 | 119.8 | C14—C13—H13 | 117.6 |
| C2—C3—C4 | 120.22 (17) | C15—C14—C13 | 120.29 (15) |
| C2—C3—H3 | 119.9 | C15—C14—H14 | 119.9 |
| C4—C3—H3 | 119.9 | C13—C14—H14 | 119.9 |
| C5—C4—C3 | 120.42 (17) | C14—C15—C16 | 126.20 (15) |
| C5—C4—H4 | 119.8 | C14—C15—H15 | 116.9 |
| C3—C4—H4 | 119.8 | C16—C15—H15 | 116.9 |
| C6—C5—C4 | 119.47 (16) | C21—C16—C17 | 118.72 (16) |
| C6—C5—H5 | 120.3 | C21—C16—C15 | 122.38 (15) |
| C4—C5—H5 | 120.3 | C17—C16—C15 | 118.82 (15) |
| C5—C6—C1 | 121.10 (16) | C18—C17—C16 | 120.16 (18) |
| C5—C6—H6 | 119.4 | C18—C17—H17 | 119.9 |
| C1—C6—H6 | 119.4 | C16—C17—H17 | 119.9 |
| C8—C7—C1 | 126.34 (15) | C19—C18—C17 | 120.49 (19) |
| C8—C7—H7 | 116.8 | C19—C18—H18 | 119.8 |
| C1—C7—H7 | 116.8 | C17—C18—H18 | 119.8 |
| C7—C8—C9 | 121.45 (15) | C18—C19—C20 | 119.78 (17) |
| C7—C8—H8 | 119.3 | C18—C19—H19 | 120.1 |
| C9—C8—H8 | 119.3 | C20—C19—H19 | 120.1 |
| N1—C9—C8 | 123.85 (15) | C21—C20—C19 | 120.49 (18) |
| N1—C9—H9 | 118.1 | C21—C20—H20 | 119.8 |
| C8—C9—H9 | 118.1 | C19—C20—H20 | 119.8 |
| N1—C10—C11 | 111.07 (13) | C20—C21—C16 | 120.33 (17) |
| N1—C10—H10A | 109.4 | C20—C21—H21 | 119.8 |
| C11—C10—H10A | 109.4 | C16—C21—H21 | 119.8 |
| N2—Co1—N1—C9 | −125.65 (15) | C10—N1—C9—C8 | −178.17 (15) |
| Cl1—Co1—N1—C9 | −1.63 (16) | Co1—N1—C9—C8 | −1.2 (3) |
| Cl2—Co1—N1—C9 | 125.90 (14) | C7—C8—C9—N1 | −176.41 (17) |
| N2—Co1—N1—C10 | 51.43 (11) | C9—N1—C10—C11 | 112.10 (16) |
| Cl1—Co1—N1—C10 | 175.45 (9) | Co1—N1—C10—C11 | −65.40 (15) |
| Cl2—Co1—N1—C10 | −57.02 (11) | N1—C10—C11—C12 | 69.65 (18) |
| N1—Co1—N2—C13 | 128.77 (14) | C13—N2—C12—C11 | −118.87 (16) |
| Cl1—Co1—N2—C13 | 5.30 (16) | Co1—N2—C12—C11 | 58.15 (16) |
| Cl2—Co1—N2—C13 | −123.14 (14) | C10—C11—C12—N2 | −65.56 (19) |
| N1—Co1—N2—C12 | −47.80 (11) | C12—N2—C13—C14 | −177.22 (14) |
| Cl1—Co1—N2—C12 | −171.27 (9) | Co1—N2—C13—C14 | 6.3 (2) |
| Cl2—Co1—N2—C12 | 60.29 (11) | N2—C13—C14—C15 | −179.13 (16) |
| C6—C1—C2—C3 | −0.3 (3) | C13—C14—C15—C16 | −175.37 (14) |
| C7—C1—C2—C3 | 179.37 (17) | C14—C15—C16—C21 | 1.8 (3) |
| C1—C2—C3—C4 | −0.3 (3) | C14—C15—C16—C17 | 178.41 (16) |
| C2—C3—C4—C5 | 0.7 (3) | C21—C16—C17—C18 | 1.4 (3) |
| C3—C4—C5—C6 | −0.4 (3) | C15—C16—C17—C18 | −175.39 (16) |
| C4—C5—C6—C1 | −0.2 (3) | C16—C17—C18—C19 | 0.2 (3) |
| C2—C1—C6—C5 | 0.6 (2) | C17—C18—C19—C20 | −1.2 (3) |
| C7—C1—C6—C5 | −179.12 (15) | C18—C19—C20—C21 | 0.5 (3) |
| C6—C1—C7—C8 | −166.72 (17) | C19—C20—C21—C16 | 1.1 (3) |
| C2—C1—C7—C8 | 13.6 (3) | C17—C16—C21—C20 | −2.0 (2) |
| C1—C7—C8—C9 | 179.17 (16) | C15—C16—C21—C20 | 174.62 (16) |
Footnotes
Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2939).
References
- Amirnasr, M., Schenk, K. J., Salavati, M., Dehghanpour, S., Taeb, A. & Tadjarodi, A. (2003). J. Coord. Chem.56, 231–243.
- Blonk, H. I., Driessen, W. L. & Reedijk, J. (1985). J. Chem. Soc. Dalton Trans. pp. 1699–1704.
- Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst.38, 381–388.
- Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
- Habibi, M. H., Lalegani, A., Mokhtari, R. & Suzuki, T. (2007a). Acta Cryst. E63, m2472.
- Habibi, M. H., Lalegani, A., Mokhtari, R. & Suzuki, T. (2007b). Acta Cryst. E63, m2580.
- Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
- Meghdadi, S., Amirnasr, M., Schenk, K. J. & Dehghanpour, S. (2002). Helv. Chim. Acta, 85, 2807–2816.
- Rigaku (1998). PROCESS-AUTO Rigaku Corporation, Tokyo, Japan.
- Rigaku/MSC (2004). CrystalStructure Rigaku/MSC, The Woodlands, Texas, USA.
- Scheidt, W. R., Hanson, J. C. & Rasmussen, P. G. (1969). Inorg. Chem.8, 2398–2401.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
- Yamada, S. (1999). Coord. Chem. Rev.190, 537-555.
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809016274/bt2939sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536809016274/bt2939Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report

