Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 May 29;65(Pt 6):o1412. doi: 10.1107/S160053680901931X

2,4,6-Tri-p-tolyl­pyridine

Si-Ping Tang a,*, Dai-Zhi Kuang a, Yong-Lan Feng a, Man-Sheng Chen a, Wei Li a
PMCID: PMC2969604  PMID: 21583255

Abstract

In the title compound, C26H23N, the complete molecule is generated by crystallographic mirror symmetry, with the N atom and four C atoms lying on the reflection plane. The dihedral angles between the pyridine ring and pendant benzene rings are 2.9 (1), 14.1 (1) and 14.1 (1)°. Neighbouring mol­ecules are stabilized through inter­molecular π–π inter­actions along the c axis [centroid-to-centroid distance = 3.804 (2) Å], forming one-dimensional chains.

Related literature

For the syntheses of related 2,4,6-triaryl­pyridine compounds, see: Hou et al. (2005); Huang et al. (2005); Tewari et al. (1981); Yang et al. (2005).graphic file with name e-65-o1412-scheme1.jpg

Experimental

Crystal data

  • C26H23N

  • M r = 349.45

  • Orthorhombic, Inline graphic

  • a = 15.337 (5) Å

  • b = 20.778 (7) Å

  • c = 6.322 (2) Å

  • V = 2014.8 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 295 K

  • 0.24 × 0.16 × 0.15 mm

Data collection

  • Bruker SMART APEX area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.975, T max = 0.986

  • 7912 measured reflections

  • 2037 independent reflections

  • 924 reflections with I > 2σ(I)

  • R int = 0.067

Refinement

  • R[F 2 > 2σ(F 2)] = 0.139

  • wR(F 2) = 0.342

  • S = 1.26

  • 2037 reflections

  • 132 parameters

  • 47 restraints

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.20 e Å−3

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053680901931X/at2790sup1.cif

e-65-o1412-sup1.cif (16.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053680901931X/at2790Isup2.hkl

e-65-o1412-Isup2.hkl (100.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Key Discipline Construct Program of Hunan province and the Foundation of Hunan Province Education Office (grant No. 08 C178) for supporting this study.

supplementary crystallographic information

Comment

2,4,6-Triarylpyridines are used as good building blocks in supramolecular chemistry because of their stacking ability, directional H-bonding and coordination, and which have also been prepared by many procedures (Hou et al., 2005; Huang et al., 2005; Tewari et al., 1981; Yang et al., 2005). We here reported the synthesis and crystal structure of 2,4,6-tri-p-tolylpyridine.

As shown in Fig.1, the title compound is a neutral organic molecule with a mirror symmetry through the methyl C15 atom and N1 atom of the central pyridine. The central pyridine is almost coplanar with the C11-14 benzene ring with a dihedral angle of 2.9 (1) °, however, which form bigger dihedral angles of 14.1 (1) ° with the other two outer benzene rings, thus the whole molecule is nonplanar. In the crystal packing, neighboring molecules form intermolecular π–π interactions with the centroid- to-centroid distances of 3.804 (2) Å to give a one-dimensional chain along the c-axis.

Experimental

The title compound was synthesized with a modified procedure (Yang et al., 2005). A mixture of 5-tri-p-tolyl-pentane-1,5-dione (1.85 g, 5 mmol), ammonium acetate (3.85 g, 50 mmol) and ethanol (60 mL) was refluxed for 20 h. Upon cooling to room temperature, a precipitate was filtered, washed with ethanol/water (1:1) and dried to afford the product, purified by column chromatography on silica with petroleum/ethyl acetate. A white solid was obtained and was further recrystallized from ethanol to give colourless crystals [yield: 0.85 g, 48.6%].

Refinement

The carbon-bound H atoms were placed at calculated positions (C—H = 0.93 and 0.96 Å) and refined as riding, with U(H) = 1.2Ueq(C) for benzenel H atoms, and C—H = 0.96 Å and Uiso = 1.5Ueq (C) for methyl H atoms.

Figures

Fig. 1.

Fig. 1.

The title molecule with displacement ellipsoids drawn at the 30% probability level, and H atoms as spheres of arbitrary radius.

Crystal data

C26H23N F(000) = 744
Mr = 349.45 Dx = 1.152 Mg m3
Orthorhombic, Pnma Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2n Cell parameters from 562 reflections
a = 15.337 (5) Å θ = 2.7–22.4°
b = 20.778 (7) Å µ = 0.07 mm1
c = 6.322 (2) Å T = 295 K
V = 2014.8 (11) Å3 Prism, colourless
Z = 4 0.24 × 0.16 × 0.15 mm

Data collection

Bruker SMART APEX area-detector diffractometer 2037 independent reflections
Radiation source: fine-focus sealed tube 924 reflections with I > 2σ(I)
graphite Rint = 0.067
φ and ω scans θmax = 26.0°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −17→18
Tmin = 0.975, Tmax = 0.986 k = −20→25
7912 measured reflections l = −7→5

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.139 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.342 H-atom parameters constrained
S = 1.26 w = 1/[σ2(Fo2) + (0.0923P)2 + 1.1054P] where P = (Fo2 + 2Fc2)/3
2037 reflections (Δ/σ)max < 0.001
132 parameters Δρmax = 0.27 e Å3
47 restraints Δρmin = −0.20 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
C1 0.4178 (6) 0.5536 (4) 0.7562 (16) 0.180 (4)
H1A 0.4197 0.5501 0.9076 0.270*
H1B 0.3776 0.5869 0.7165 0.270*
H1C 0.4749 0.5639 0.7038 0.270*
C2 0.3882 (5) 0.4900 (4) 0.6625 (15) 0.139 (3)
C3 0.3948 (6) 0.4331 (5) 0.7686 (15) 0.158 (3)
H3 0.4171 0.4334 0.9053 0.190*
C4 0.3696 (5) 0.3750 (4) 0.6812 (13) 0.143 (3)
H4 0.3750 0.3378 0.7624 0.172*
C5 0.3376 (4) 0.3699 (4) 0.4833 (11) 0.098 (2)
C6 0.3283 (6) 0.4267 (5) 0.3786 (13) 0.139 (3)
H6 0.3050 0.4261 0.2428 0.167*
C7 0.3522 (6) 0.4853 (4) 0.4650 (15) 0.163 (4)
H7 0.3435 0.5226 0.3866 0.196*
C8 0.3116 (4) 0.3075 (3) 0.3878 (9) 0.0859 (18)
C9 0.2622 (3) 0.3058 (2) 0.2112 (8) 0.0646 (14)
H9 0.2455 0.3443 0.1479 0.077*
N1 0.3373 (5) 0.2500 0.4758 (13) 0.123 (3)
C10 0.2366 (5) 0.2500 0.1249 (12) 0.075 (2)
C11 0.1802 (4) 0.2500 −0.0662 (12) 0.0673 (19)
C12 0.1525 (4) 0.3049 (3) −0.1594 (11) 0.107 (2)
H12 0.1713 0.3442 −0.1057 0.128*
C13 0.0972 (5) 0.3044 (3) −0.3317 (11) 0.121 (2)
H13 0.0794 0.3438 −0.3873 0.145*
C14 0.0676 (6) 0.2500 −0.4240 (15) 0.103 (3)
C15 0.0081 (6) 0.2500 −0.6115 (15) 0.133 (3)
H15A 0.0335 0.2753 −0.7227 0.199* 0.50
H15B −0.0472 0.2681 −0.5722 0.199* 0.50
H15C −0.0001 0.2066 −0.6600 0.199* 0.50

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.158 (7) 0.165 (7) 0.217 (9) 0.049 (6) −0.066 (7) −0.093 (7)
C2 0.111 (5) 0.149 (7) 0.157 (7) 0.030 (5) −0.054 (5) −0.053 (5)
C3 0.153 (5) 0.181 (7) 0.141 (6) −0.015 (5) −0.063 (5) −0.029 (5)
C4 0.142 (5) 0.165 (6) 0.122 (5) −0.027 (4) −0.049 (5) −0.006 (5)
C5 0.074 (4) 0.142 (5) 0.078 (4) 0.003 (4) −0.022 (3) −0.008 (4)
C6 0.157 (7) 0.141 (7) 0.119 (7) 0.036 (6) −0.052 (5) −0.024 (6)
C7 0.186 (9) 0.132 (7) 0.171 (9) 0.057 (6) −0.061 (8) −0.042 (6)
C8 0.063 (3) 0.120 (5) 0.075 (4) 0.002 (4) 0.002 (3) 0.001 (4)
C9 0.054 (3) 0.080 (3) 0.060 (3) 0.011 (3) −0.013 (3) −0.001 (3)
N1 0.089 (6) 0.180 (9) 0.098 (6) 0.000 0.011 (5) 0.000
C10 0.055 (4) 0.103 (6) 0.065 (5) 0.000 0.011 (4) 0.000
C11 0.060 (4) 0.076 (5) 0.066 (5) 0.000 −0.002 (4) 0.000
C12 0.119 (5) 0.092 (4) 0.110 (5) −0.002 (4) −0.037 (4) 0.003 (4)
C13 0.114 (5) 0.141 (6) 0.108 (5) 0.004 (4) −0.038 (4) 0.031 (4)
C14 0.078 (5) 0.152 (7) 0.079 (5) 0.000 −0.020 (4) 0.000
C15 0.098 (6) 0.216 (9) 0.085 (6) 0.000 −0.022 (5) 0.000

Geometric parameters (Å, °)

C1—C2 1.518 (10) C9—C10 1.340 (6)
C1—H1A 0.9600 C9—H9 0.9300
C1—H1B 0.9600 N1—C8i 1.375 (5)
C1—H1C 0.9600 C10—C9i 1.340 (6)
C2—C3 1.361 (8) C10—C11 1.486 (10)
C2—C7 1.369 (8) C11—C12i 1.352 (6)
C3—C4 1.384 (10) C11—C12 1.352 (6)
C3—H3 0.9300 C12—C13 1.381 (8)
C4—C5 1.348 (9) C12—H12 0.9300
C4—H4 0.9300 C13—C14 1.352 (6)
C5—C6 1.361 (9) C13—H13 0.9300
C5—C8 1.484 (8) C14—C13i 1.352 (6)
C6—C7 1.384 (9) C14—C15 1.495 (12)
C6—H6 0.9300 C15—H15A 0.9600
C7—H7 0.9300 C15—H15B 0.9600
C8—C9 1.350 (7) C15—H15C 0.9600
C8—N1 1.375 (5)
C2—C1—H1A 109.5 N1—C8—C5 121.1 (6)
C2—C1—H1B 109.5 C10—C9—C8 121.5 (6)
H1A—C1—H1B 109.5 C10—C9—H9 119.2
C2—C1—H1C 109.5 C8—C9—H9 119.2
H1A—C1—H1C 109.5 C8i—N1—C8 120.6 (9)
H1B—C1—H1C 109.5 C9—C10—C9i 119.8 (7)
C3—C2—C7 114.7 (9) C9—C10—C11 120.1 (4)
C3—C2—C1 122.7 (8) C9i—C10—C11 120.1 (4)
C7—C2—C1 122.6 (9) C12i—C11—C12 115.0 (8)
C2—C3—C4 122.7 (8) C12i—C11—C10 122.5 (4)
C2—C3—H3 118.7 C12—C11—C10 122.5 (4)
C4—C3—H3 118.7 C11—C12—C13 122.1 (6)
C5—C4—C3 122.7 (9) C11—C12—H12 118.9
C5—C4—H4 118.6 C13—C12—H12 118.9
C3—C4—H4 118.6 C14—C13—C12 123.5 (7)
C4—C5—C6 114.9 (8) C14—C13—H13 118.2
C4—C5—C8 123.0 (7) C12—C13—H13 118.2
C6—C5—C8 122.1 (6) C13—C14—C13i 113.6 (9)
C5—C6—C7 122.9 (8) C13—C14—C15 123.2 (4)
C5—C6—H6 118.5 C13i—C14—C15 123.2 (4)
C7—C6—H6 118.5 C14—C15—H15A 109.5
C2—C7—C6 122.0 (9) C14—C15—H15B 109.5
C2—C7—H7 119.0 H15A—C15—H15B 109.5
C6—C7—H7 119.0 C14—C15—H15C 109.5
C9—C8—N1 118.2 (7) H15A—C15—H15C 109.5
C9—C8—C5 120.6 (5) H15B—C15—H15C 109.5
C7—C2—C3—C4 1.9 (14) C5—C8—C9—C10 −178.7 (6)
C1—C2—C3—C4 −178.5 (8) C9—C8—N1—C8i −1.3 (11)
C2—C3—C4—C5 0.8 (15) C5—C8—N1—C8i 178.9 (5)
C3—C4—C5—C6 −2.7 (12) C8—C9—C10—C9i −1.8 (10)
C3—C4—C5—C8 179.1 (7) C8—C9—C10—C11 178.3 (5)
C4—C5—C6—C7 1.8 (12) C9—C10—C11—C12i −179.9 (6)
C8—C5—C6—C7 180.0 (7) C9i—C10—C11—C12i 0.2 (10)
C3—C2—C7—C6 −2.8 (14) C9—C10—C11—C12 −0.2 (10)
C1—C2—C7—C6 177.6 (8) C9i—C10—C11—C12 179.9 (6)
C5—C6—C7—C2 1.0 (15) C12i—C11—C12—C13 2.5 (12)
C4—C5—C8—C9 164.8 (6) C10—C11—C12—C13 −177.3 (6)
C6—C5—C8—C9 −13.2 (10) C11—C12—C13—C14 −1.3 (12)
C4—C5—C8—N1 −15.4 (10) C12—C13—C14—C13i 0.0 (15)
C6—C5—C8—N1 166.6 (7) C12—C13—C14—C15 −179.6 (8)
N1—C8—C9—C10 1.5 (9)

Symmetry codes: (i) x, −y+1/2, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2790).

References

  1. Bruker (2002). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Hou, L., Li, D., Shi, W. J., Yin, Y. G. & Ng, S. W. (2005). Inorg. Chem.44, 7825–7830. [DOI] [PubMed]
  3. Huang, X. Q., Li, H. X., Wang, J. X. & Jia, X. F. (2005). Chin. Chem. Lett.16, 607–608.
  4. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Tewari, R. S., Dubey, A. K., Misra, N. K. & Dixit, P. D. (1981). J. Chem. Eng. Data, 26, 106–108.
  7. Yang, J. X., Tao, X. T., Yuan, C. X., Yan, Y. X., Wang, L., Liu, Z., Ren, Y. & Jiang, M. H. (2005). J. Am. Chem. Soc.127, 3278–3279. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053680901931X/at2790sup1.cif

e-65-o1412-sup1.cif (16.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053680901931X/at2790Isup2.hkl

e-65-o1412-Isup2.hkl (100.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES