Abstract
In the title compound, C26H23N, the complete molecule is generated by crystallographic mirror symmetry, with the N atom and four C atoms lying on the reflection plane. The dihedral angles between the pyridine ring and pendant benzene rings are 2.9 (1), 14.1 (1) and 14.1 (1)°. Neighbouring molecules are stabilized through intermolecular π–π interactions along the c axis [centroid-to-centroid distance = 3.804 (2) Å], forming one-dimensional chains.
Related literature
For the syntheses of related 2,4,6-triarylpyridine compounds, see: Hou et al. (2005 ▶); Huang et al. (2005 ▶); Tewari et al. (1981 ▶); Yang et al. (2005 ▶).
Experimental
Crystal data
C26H23N
M r = 349.45
Orthorhombic,
a = 15.337 (5) Å
b = 20.778 (7) Å
c = 6.322 (2) Å
V = 2014.8 (11) Å3
Z = 4
Mo Kα radiation
μ = 0.07 mm−1
T = 295 K
0.24 × 0.16 × 0.15 mm
Data collection
Bruker SMART APEX area-detector diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 1996 ▶) T min = 0.975, T max = 0.986
7912 measured reflections
2037 independent reflections
924 reflections with I > 2σ(I)
R int = 0.067
Refinement
R[F 2 > 2σ(F 2)] = 0.139
wR(F 2) = 0.342
S = 1.26
2037 reflections
132 parameters
47 restraints
H-atom parameters constrained
Δρmax = 0.27 e Å−3
Δρmin = −0.20 e Å−3
Data collection: SMART (Bruker, 2002 ▶); cell refinement: SAINT (Bruker, 2002 ▶); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 ▶); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 ▶); molecular graphics: SHELXTL (Sheldrick, 2008 ▶); software used to prepare material for publication: SHELXTL.
Supplementary Material
Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053680901931X/at2790sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S160053680901931X/at2790Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
Acknowledgments
The authors thank the Key Discipline Construct Program of Hunan province and the Foundation of Hunan Province Education Office (grant No. 08 C178) for supporting this study.
supplementary crystallographic information
Comment
2,4,6-Triarylpyridines are used as good building blocks in supramolecular chemistry because of their stacking ability, directional H-bonding and coordination, and which have also been prepared by many procedures (Hou et al., 2005; Huang et al., 2005; Tewari et al., 1981; Yang et al., 2005). We here reported the synthesis and crystal structure of 2,4,6-tri-p-tolylpyridine.
As shown in Fig.1, the title compound is a neutral organic molecule with a mirror symmetry through the methyl C15 atom and N1 atom of the central pyridine. The central pyridine is almost coplanar with the C11-14 benzene ring with a dihedral angle of 2.9 (1) °, however, which form bigger dihedral angles of 14.1 (1) ° with the other two outer benzene rings, thus the whole molecule is nonplanar. In the crystal packing, neighboring molecules form intermolecular π–π interactions with the centroid- to-centroid distances of 3.804 (2) Å to give a one-dimensional chain along the c-axis.
Experimental
The title compound was synthesized with a modified procedure (Yang et al., 2005). A mixture of 5-tri-p-tolyl-pentane-1,5-dione (1.85 g, 5 mmol), ammonium acetate (3.85 g, 50 mmol) and ethanol (60 mL) was refluxed for 20 h. Upon cooling to room temperature, a precipitate was filtered, washed with ethanol/water (1:1) and dried to afford the product, purified by column chromatography on silica with petroleum/ethyl acetate. A white solid was obtained and was further recrystallized from ethanol to give colourless crystals [yield: 0.85 g, 48.6%].
Refinement
The carbon-bound H atoms were placed at calculated positions (C—H = 0.93 and 0.96 Å) and refined as riding, with U(H) = 1.2Ueq(C) for benzenel H atoms, and C—H = 0.96 Å and Uiso = 1.5Ueq (C) for methyl H atoms.
Figures
Fig. 1.
The title molecule with displacement ellipsoids drawn at the 30% probability level, and H atoms as spheres of arbitrary radius.
Crystal data
| C26H23N | F(000) = 744 |
| Mr = 349.45 | Dx = 1.152 Mg m−3 |
| Orthorhombic, Pnma | Mo Kα radiation, λ = 0.71073 Å |
| Hall symbol: -P 2ac 2n | Cell parameters from 562 reflections |
| a = 15.337 (5) Å | θ = 2.7–22.4° |
| b = 20.778 (7) Å | µ = 0.07 mm−1 |
| c = 6.322 (2) Å | T = 295 K |
| V = 2014.8 (11) Å3 | Prism, colourless |
| Z = 4 | 0.24 × 0.16 × 0.15 mm |
Data collection
| Bruker SMART APEX area-detector diffractometer | 2037 independent reflections |
| Radiation source: fine-focus sealed tube | 924 reflections with I > 2σ(I) |
| graphite | Rint = 0.067 |
| φ and ω scans | θmax = 26.0°, θmin = 2.0° |
| Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −17→18 |
| Tmin = 0.975, Tmax = 0.986 | k = −20→25 |
| 7912 measured reflections | l = −7→5 |
Refinement
| Refinement on F2 | Primary atom site location: structure-invariant direct methods |
| Least-squares matrix: full | Secondary atom site location: difference Fourier map |
| R[F2 > 2σ(F2)] = 0.139 | Hydrogen site location: inferred from neighbouring sites |
| wR(F2) = 0.342 | H-atom parameters constrained |
| S = 1.26 | w = 1/[σ2(Fo2) + (0.0923P)2 + 1.1054P] where P = (Fo2 + 2Fc2)/3 |
| 2037 reflections | (Δ/σ)max < 0.001 |
| 132 parameters | Δρmax = 0.27 e Å−3 |
| 47 restraints | Δρmin = −0.20 e Å−3 |
Special details
| Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
| Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | Occ. (<1) | |
| C1 | 0.4178 (6) | 0.5536 (4) | 0.7562 (16) | 0.180 (4) | |
| H1A | 0.4197 | 0.5501 | 0.9076 | 0.270* | |
| H1B | 0.3776 | 0.5869 | 0.7165 | 0.270* | |
| H1C | 0.4749 | 0.5639 | 0.7038 | 0.270* | |
| C2 | 0.3882 (5) | 0.4900 (4) | 0.6625 (15) | 0.139 (3) | |
| C3 | 0.3948 (6) | 0.4331 (5) | 0.7686 (15) | 0.158 (3) | |
| H3 | 0.4171 | 0.4334 | 0.9053 | 0.190* | |
| C4 | 0.3696 (5) | 0.3750 (4) | 0.6812 (13) | 0.143 (3) | |
| H4 | 0.3750 | 0.3378 | 0.7624 | 0.172* | |
| C5 | 0.3376 (4) | 0.3699 (4) | 0.4833 (11) | 0.098 (2) | |
| C6 | 0.3283 (6) | 0.4267 (5) | 0.3786 (13) | 0.139 (3) | |
| H6 | 0.3050 | 0.4261 | 0.2428 | 0.167* | |
| C7 | 0.3522 (6) | 0.4853 (4) | 0.4650 (15) | 0.163 (4) | |
| H7 | 0.3435 | 0.5226 | 0.3866 | 0.196* | |
| C8 | 0.3116 (4) | 0.3075 (3) | 0.3878 (9) | 0.0859 (18) | |
| C9 | 0.2622 (3) | 0.3058 (2) | 0.2112 (8) | 0.0646 (14) | |
| H9 | 0.2455 | 0.3443 | 0.1479 | 0.077* | |
| N1 | 0.3373 (5) | 0.2500 | 0.4758 (13) | 0.123 (3) | |
| C10 | 0.2366 (5) | 0.2500 | 0.1249 (12) | 0.075 (2) | |
| C11 | 0.1802 (4) | 0.2500 | −0.0662 (12) | 0.0673 (19) | |
| C12 | 0.1525 (4) | 0.3049 (3) | −0.1594 (11) | 0.107 (2) | |
| H12 | 0.1713 | 0.3442 | −0.1057 | 0.128* | |
| C13 | 0.0972 (5) | 0.3044 (3) | −0.3317 (11) | 0.121 (2) | |
| H13 | 0.0794 | 0.3438 | −0.3873 | 0.145* | |
| C14 | 0.0676 (6) | 0.2500 | −0.4240 (15) | 0.103 (3) | |
| C15 | 0.0081 (6) | 0.2500 | −0.6115 (15) | 0.133 (3) | |
| H15A | 0.0335 | 0.2753 | −0.7227 | 0.199* | 0.50 |
| H15B | −0.0472 | 0.2681 | −0.5722 | 0.199* | 0.50 |
| H15C | −0.0001 | 0.2066 | −0.6600 | 0.199* | 0.50 |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| C1 | 0.158 (7) | 0.165 (7) | 0.217 (9) | 0.049 (6) | −0.066 (7) | −0.093 (7) |
| C2 | 0.111 (5) | 0.149 (7) | 0.157 (7) | 0.030 (5) | −0.054 (5) | −0.053 (5) |
| C3 | 0.153 (5) | 0.181 (7) | 0.141 (6) | −0.015 (5) | −0.063 (5) | −0.029 (5) |
| C4 | 0.142 (5) | 0.165 (6) | 0.122 (5) | −0.027 (4) | −0.049 (5) | −0.006 (5) |
| C5 | 0.074 (4) | 0.142 (5) | 0.078 (4) | 0.003 (4) | −0.022 (3) | −0.008 (4) |
| C6 | 0.157 (7) | 0.141 (7) | 0.119 (7) | 0.036 (6) | −0.052 (5) | −0.024 (6) |
| C7 | 0.186 (9) | 0.132 (7) | 0.171 (9) | 0.057 (6) | −0.061 (8) | −0.042 (6) |
| C8 | 0.063 (3) | 0.120 (5) | 0.075 (4) | 0.002 (4) | 0.002 (3) | 0.001 (4) |
| C9 | 0.054 (3) | 0.080 (3) | 0.060 (3) | 0.011 (3) | −0.013 (3) | −0.001 (3) |
| N1 | 0.089 (6) | 0.180 (9) | 0.098 (6) | 0.000 | 0.011 (5) | 0.000 |
| C10 | 0.055 (4) | 0.103 (6) | 0.065 (5) | 0.000 | 0.011 (4) | 0.000 |
| C11 | 0.060 (4) | 0.076 (5) | 0.066 (5) | 0.000 | −0.002 (4) | 0.000 |
| C12 | 0.119 (5) | 0.092 (4) | 0.110 (5) | −0.002 (4) | −0.037 (4) | 0.003 (4) |
| C13 | 0.114 (5) | 0.141 (6) | 0.108 (5) | 0.004 (4) | −0.038 (4) | 0.031 (4) |
| C14 | 0.078 (5) | 0.152 (7) | 0.079 (5) | 0.000 | −0.020 (4) | 0.000 |
| C15 | 0.098 (6) | 0.216 (9) | 0.085 (6) | 0.000 | −0.022 (5) | 0.000 |
Geometric parameters (Å, °)
| C1—C2 | 1.518 (10) | C9—C10 | 1.340 (6) |
| C1—H1A | 0.9600 | C9—H9 | 0.9300 |
| C1—H1B | 0.9600 | N1—C8i | 1.375 (5) |
| C1—H1C | 0.9600 | C10—C9i | 1.340 (6) |
| C2—C3 | 1.361 (8) | C10—C11 | 1.486 (10) |
| C2—C7 | 1.369 (8) | C11—C12i | 1.352 (6) |
| C3—C4 | 1.384 (10) | C11—C12 | 1.352 (6) |
| C3—H3 | 0.9300 | C12—C13 | 1.381 (8) |
| C4—C5 | 1.348 (9) | C12—H12 | 0.9300 |
| C4—H4 | 0.9300 | C13—C14 | 1.352 (6) |
| C5—C6 | 1.361 (9) | C13—H13 | 0.9300 |
| C5—C8 | 1.484 (8) | C14—C13i | 1.352 (6) |
| C6—C7 | 1.384 (9) | C14—C15 | 1.495 (12) |
| C6—H6 | 0.9300 | C15—H15A | 0.9600 |
| C7—H7 | 0.9300 | C15—H15B | 0.9600 |
| C8—C9 | 1.350 (7) | C15—H15C | 0.9600 |
| C8—N1 | 1.375 (5) | ||
| C2—C1—H1A | 109.5 | N1—C8—C5 | 121.1 (6) |
| C2—C1—H1B | 109.5 | C10—C9—C8 | 121.5 (6) |
| H1A—C1—H1B | 109.5 | C10—C9—H9 | 119.2 |
| C2—C1—H1C | 109.5 | C8—C9—H9 | 119.2 |
| H1A—C1—H1C | 109.5 | C8i—N1—C8 | 120.6 (9) |
| H1B—C1—H1C | 109.5 | C9—C10—C9i | 119.8 (7) |
| C3—C2—C7 | 114.7 (9) | C9—C10—C11 | 120.1 (4) |
| C3—C2—C1 | 122.7 (8) | C9i—C10—C11 | 120.1 (4) |
| C7—C2—C1 | 122.6 (9) | C12i—C11—C12 | 115.0 (8) |
| C2—C3—C4 | 122.7 (8) | C12i—C11—C10 | 122.5 (4) |
| C2—C3—H3 | 118.7 | C12—C11—C10 | 122.5 (4) |
| C4—C3—H3 | 118.7 | C11—C12—C13 | 122.1 (6) |
| C5—C4—C3 | 122.7 (9) | C11—C12—H12 | 118.9 |
| C5—C4—H4 | 118.6 | C13—C12—H12 | 118.9 |
| C3—C4—H4 | 118.6 | C14—C13—C12 | 123.5 (7) |
| C4—C5—C6 | 114.9 (8) | C14—C13—H13 | 118.2 |
| C4—C5—C8 | 123.0 (7) | C12—C13—H13 | 118.2 |
| C6—C5—C8 | 122.1 (6) | C13—C14—C13i | 113.6 (9) |
| C5—C6—C7 | 122.9 (8) | C13—C14—C15 | 123.2 (4) |
| C5—C6—H6 | 118.5 | C13i—C14—C15 | 123.2 (4) |
| C7—C6—H6 | 118.5 | C14—C15—H15A | 109.5 |
| C2—C7—C6 | 122.0 (9) | C14—C15—H15B | 109.5 |
| C2—C7—H7 | 119.0 | H15A—C15—H15B | 109.5 |
| C6—C7—H7 | 119.0 | C14—C15—H15C | 109.5 |
| C9—C8—N1 | 118.2 (7) | H15A—C15—H15C | 109.5 |
| C9—C8—C5 | 120.6 (5) | H15B—C15—H15C | 109.5 |
| C7—C2—C3—C4 | 1.9 (14) | C5—C8—C9—C10 | −178.7 (6) |
| C1—C2—C3—C4 | −178.5 (8) | C9—C8—N1—C8i | −1.3 (11) |
| C2—C3—C4—C5 | 0.8 (15) | C5—C8—N1—C8i | 178.9 (5) |
| C3—C4—C5—C6 | −2.7 (12) | C8—C9—C10—C9i | −1.8 (10) |
| C3—C4—C5—C8 | 179.1 (7) | C8—C9—C10—C11 | 178.3 (5) |
| C4—C5—C6—C7 | 1.8 (12) | C9—C10—C11—C12i | −179.9 (6) |
| C8—C5—C6—C7 | 180.0 (7) | C9i—C10—C11—C12i | 0.2 (10) |
| C3—C2—C7—C6 | −2.8 (14) | C9—C10—C11—C12 | −0.2 (10) |
| C1—C2—C7—C6 | 177.6 (8) | C9i—C10—C11—C12 | 179.9 (6) |
| C5—C6—C7—C2 | 1.0 (15) | C12i—C11—C12—C13 | 2.5 (12) |
| C4—C5—C8—C9 | 164.8 (6) | C10—C11—C12—C13 | −177.3 (6) |
| C6—C5—C8—C9 | −13.2 (10) | C11—C12—C13—C14 | −1.3 (12) |
| C4—C5—C8—N1 | −15.4 (10) | C12—C13—C14—C13i | 0.0 (15) |
| C6—C5—C8—N1 | 166.6 (7) | C12—C13—C14—C15 | −179.6 (8) |
| N1—C8—C9—C10 | 1.5 (9) |
Symmetry codes: (i) x, −y+1/2, z.
Footnotes
Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2790).
References
- Bruker (2002). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
- Hou, L., Li, D., Shi, W. J., Yin, Y. G. & Ng, S. W. (2005). Inorg. Chem.44, 7825–7830. [DOI] [PubMed]
- Huang, X. Q., Li, H. X., Wang, J. X. & Jia, X. F. (2005). Chin. Chem. Lett.16, 607–608.
- Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
- Tewari, R. S., Dubey, A. K., Misra, N. K. & Dixit, P. D. (1981). J. Chem. Eng. Data, 26, 106–108.
- Yang, J. X., Tao, X. T., Yuan, C. X., Yan, Y. X., Wang, L., Liu, Z., Ren, Y. & Jiang, M. H. (2005). J. Am. Chem. Soc.127, 3278–3279. [DOI] [PubMed]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053680901931X/at2790sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S160053680901931X/at2790Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report

