Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 May 7;65(Pt 6):o1191. doi: 10.1107/S1600536809015037

2,3-O-Isopropyl­idene-1-O-p-tolyl­sulfonylglycerol

Piotr Kuś a, Marcin Rojkiewicz a, Grzegorz Zięba a, Peter G Jones b,*
PMCID: PMC2969609  PMID: 21583063

Abstract

In the title compound, C13H18O5S, the five-membered ring has an envelope conformation. The packing involves four C—H⋯O inter­actions, three of which combine to form layers of mol­ecules parallel to the bc plane.

Related literature

For related literature, see: Baer & Fischer (1948); Jones et al. (2003); Kazemi et al. (2007); Ouchi et al. (1990). The structure of a related derivative is presented in the following paper, see: Kuś et al. (2009).graphic file with name e-65-o1191-scheme1.jpg

Experimental

Crystal data

  • C13H18O5S

  • M r = 286.33

  • Monoclinic, Inline graphic

  • a = 15.143 (2) Å

  • b = 5.7297 (9) Å

  • c = 15.665 (2) Å

  • β = 90.385 (3)°

  • V = 1359.2 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 133 K

  • 0.40 × 0.20 × 0.05 mm

Data collection

  • Bruker SMART 1000 CCD area-detector diffractometer

  • Absorption correction: none

  • 12509 measured reflections

  • 3357 independent reflections

  • 2339 reflections with I > 2σ(I)

  • R int = 0.111

Refinement

  • R[F 2 > 2σ(F 2)] = 0.051

  • wR(F 2) = 0.114

  • S = 1.05

  • 3357 reflections

  • 175 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.48 e Å−3

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Siemens, 1994); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809015037/bt2935sup1.cif

e-65-o1191-sup1.cif (18.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809015037/bt2935Isup2.hkl

e-65-o1191-Isup2.hkl (164.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C16—H16⋯O1i 0.95 2.60 3.212 (2) 122
C17—H17C⋯O1ii 0.98 2.65 3.369 (3) 131
C17—H17B⋯O1iii 0.98 2.66 3.558 (3) 153
C5—H5A⋯O2iv 0.98 2.64 3.509 (3) 148

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

Financial support by the Polish State Committee for Scientific Research (grant No. R 05 043 03) is gratefully acknowledged.

supplementary crystallographic information

Comment

Isopropylidene and tosyl groups are often used as protecting or activating units in polyhydroxyalkyl compounds used for synthesis of sugar-like derivatives. Recently we described the crystal structure of L-arabitol tosylate protected by two isopropylidene groups (Jones et al., 2003). D,L-Isopropylideneglycerol is an important substrate for the synthesis of many derivatives of glycerol; the isopropylidene protecting group is a convenient form of protection for the two vicinal hydroxyls in the molecule of glycerol. After the reaction at the third, free hydroxyl group, acid hydrolysis of the protecting group leads to 1-O-substituted glycerol derivatives. In our experiments we used commercial (Aldrich) solketal as precursor for the protecting group. Tosylation of this compound leads to compound 1 (Baer & Fischer, 1948; Ouchi et al. 1990; Kazemi et al. 2007).

The molecule is shown in Fig. 1. Bond lengths and angles may be regarded as normal. The five-membered ring displays an envelope conformation, with approximate local mirror symmetry about O5 and the midpoint of C2—O4. The chain of five atoms from S to C3 displays an extended conformation, with torsion angles close to ±180°.

There are four weak C—H···O interactions with H···O between 2.6 and 2.7 Å. Three of these combine to form layers of molecules parallel to the bc plane at x≈ 1/4 (Fig. 2) and 3/4.

The structure of a related derivative is presented in the following paper (Kuś et al., 2009).

Experimental

The compound 1 was obtained according to method described by Kazemi et al. (2007). The analytical and spectroscopic data are consistent with the literature. Single crystals suitable for X-ray analysis were obtained by slow evaporation from petroleum ether.

NMR data: 1H NMR (CDCl3, 400 MHz): δ 7.80 (d, 2H), 7.35 (d, 2H), 4.28 (q, 1H), 4.06–3.95 (m, 3H), 3.78–3.75 (dd, 1H), 2.45 (s, 3H), 1.34 (s, 3H), 1.31 (s, 3H). - 13C NMR (100 MHz): δ 145.21, 132.81, 130.06, 128.15, 110.20, 73.05, 69.62, 66.35, 26.77, 25.28, 21.80.

IR data: —S(O2)—O— vibrations at 1177 (versus) and 1348 cm-1 (s); 1,3-dioxalone ring at 971 cm-1. There are no bands above 2990 cm-1.

Refinement

Methyl H atoms were identified in difference syntheses and refined as idealized rigid groups (C—H 0.98 Å, H—C—H 109.5°) allowed to rotate but not tip. Other H atoms were included at calculated positions and refined using a riding model, with fixed C—H bond lengths of 0.95 Å (CH, aromatic), 0.99 Å (CH2) and 1.00 Å (CH, sp3); Uiso(H) values were fixed at 1.2Ueq of the parent C atom (1.2Ueq for methyl H).

Figures

Fig. 1.

Fig. 1.

The title compound in the crystal structure. Displacement ellipsoids represent 50% probability levels.

Fig. 2.

Fig. 2.

Packing diagram of the title compound in the region x≈ 1/4. H atoms not involved in H bonding (thick dashed lines) are omitted for clarity.

Crystal data

C13H18O5S Dx = 1.399 Mg m3
Mr = 286.33 Melting point: 321 K
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 15.143 (2) Å Cell parameters from 5579 reflections
b = 5.7297 (9) Å θ = 2.6–29.6°
c = 15.665 (2) Å µ = 0.25 mm1
β = 90.385 (3)° T = 133 K
V = 1359.2 (4) Å3 Lath, colourless
Z = 4 0.40 × 0.20 × 0.05 mm
F(000) = 608

Data collection

Bruker SMART 1000 CCD area-detector diffractometer 2339 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.111
graphite θmax = 28.3°, θmin = 1.3°
Detector resolution: 8.192 pixels mm-1 h = −19→20
ω scans k = −7→7
12509 measured reflections l = −20→20
3357 independent reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.114 H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0462P)2 + 0.1472P] where P = (Fo2 + 2Fc2)/3
3357 reflections (Δ/σ)max = 0.001
175 parameters Δρmax = 0.31 e Å3
0 restraints Δρmin = −0.47 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S 0.20851 (4) 0.79423 (9) 0.35153 (3) 0.01847 (14)
O1 0.14179 (11) 0.9403 (3) 0.38666 (8) 0.0271 (4)
O2 0.28879 (11) 0.8986 (3) 0.32446 (9) 0.0287 (4)
O3 0.22741 (10) 0.6118 (2) 0.42410 (8) 0.0194 (3)
O4 0.31609 (11) 0.4304 (3) 0.56622 (8) 0.0278 (4)
O5 0.44258 (10) 0.2270 (3) 0.54736 (8) 0.0243 (4)
C1 0.30372 (15) 0.4563 (4) 0.41503 (12) 0.0229 (5)
H1A 0.3592 0.5478 0.4141 0.027*
H1B 0.2991 0.3661 0.3613 0.027*
C2 0.30289 (15) 0.2953 (4) 0.49053 (11) 0.0210 (4)
H2 0.2455 0.2093 0.4932 0.025*
C3 0.38036 (15) 0.1234 (4) 0.49008 (13) 0.0243 (5)
H3A 0.3618 −0.0325 0.5105 0.029*
H3B 0.4053 0.1077 0.4321 0.029*
C4 0.39249 (14) 0.3442 (4) 0.61038 (12) 0.0197 (5)
C5 0.36304 (18) 0.1785 (4) 0.67969 (13) 0.0322 (6)
H5A 0.3210 0.2579 0.7171 0.048*
H5B 0.4145 0.1280 0.7132 0.048*
H5C 0.3346 0.0420 0.6537 0.048*
C6 0.44515 (18) 0.5465 (5) 0.64354 (15) 0.0371 (6)
H6A 0.4604 0.6501 0.5961 0.056*
H6B 0.4994 0.4889 0.6708 0.056*
H6C 0.4102 0.6327 0.6854 0.056*
C11 0.16470 (14) 0.6269 (3) 0.26750 (11) 0.0162 (4)
C12 0.17492 (14) 0.7085 (4) 0.18417 (11) 0.0184 (4)
H12 0.2062 0.8489 0.1731 0.022*
C13 0.13833 (14) 0.5797 (4) 0.11806 (12) 0.0202 (5)
H13 0.1436 0.6356 0.0612 0.024*
C14 0.09418 (14) 0.3717 (4) 0.13239 (12) 0.0192 (4)
C15 0.08507 (14) 0.2955 (4) 0.21663 (12) 0.0201 (4)
H15 0.0547 0.1537 0.2277 0.024*
C16 0.11935 (14) 0.4224 (4) 0.28417 (12) 0.0188 (4)
H16 0.1119 0.3700 0.3412 0.023*
C17 0.05788 (16) 0.2279 (4) 0.06012 (13) 0.0259 (5)
H17A 0.0939 0.0872 0.0532 0.039*
H17B 0.0591 0.3195 0.0073 0.039*
H17C −0.0031 0.1830 0.0727 0.039*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S 0.0273 (3) 0.0169 (2) 0.0112 (2) −0.0003 (2) −0.00206 (17) 0.0006 (2)
O1 0.0413 (11) 0.0222 (8) 0.0180 (7) 0.0097 (7) −0.0027 (7) −0.0032 (6)
O2 0.0373 (10) 0.0323 (9) 0.0166 (7) −0.0122 (8) −0.0038 (6) 0.0014 (6)
O3 0.0256 (9) 0.0215 (7) 0.0111 (6) 0.0052 (6) −0.0013 (5) 0.0010 (5)
O4 0.0350 (10) 0.0365 (9) 0.0117 (6) 0.0169 (7) −0.0068 (6) −0.0064 (6)
O5 0.0205 (8) 0.0315 (9) 0.0207 (7) 0.0047 (7) −0.0018 (6) −0.0069 (6)
C1 0.0273 (13) 0.0260 (11) 0.0154 (9) 0.0079 (10) 0.0013 (8) −0.0016 (8)
C2 0.0252 (12) 0.0222 (10) 0.0157 (9) 0.0014 (10) −0.0013 (8) −0.0029 (8)
C3 0.0284 (13) 0.0259 (11) 0.0185 (10) 0.0041 (10) −0.0061 (8) −0.0038 (8)
C4 0.0181 (11) 0.0271 (12) 0.0141 (9) 0.0026 (9) −0.0020 (7) −0.0006 (8)
C5 0.0432 (15) 0.0325 (13) 0.0209 (10) 0.0022 (12) 0.0017 (10) 0.0071 (10)
C6 0.0373 (16) 0.0429 (15) 0.0310 (12) −0.0098 (12) 0.0041 (10) −0.0151 (11)
C11 0.0203 (11) 0.0149 (9) 0.0132 (8) 0.0030 (8) −0.0019 (7) −0.0002 (7)
C12 0.0233 (11) 0.0179 (9) 0.0141 (8) −0.0003 (9) 0.0012 (8) 0.0030 (8)
C13 0.0256 (12) 0.0214 (11) 0.0135 (9) 0.0027 (9) −0.0014 (8) 0.0016 (8)
C14 0.0186 (11) 0.0213 (10) 0.0178 (9) 0.0034 (9) −0.0011 (8) −0.0040 (8)
C15 0.0218 (11) 0.0174 (9) 0.0211 (9) −0.0032 (9) 0.0003 (8) −0.0003 (9)
C16 0.0216 (12) 0.0191 (10) 0.0156 (9) 0.0004 (9) 0.0022 (8) 0.0020 (8)
C17 0.0303 (13) 0.0271 (12) 0.0203 (10) −0.0024 (10) −0.0022 (9) −0.0069 (9)

Geometric parameters (Å, °)

S—O2 1.4220 (16) C15—C16 1.382 (3)
S—O1 1.4253 (16) C1—H1A 0.9900
S—O3 1.5694 (14) C1—H1B 0.9900
S—C11 1.7552 (19) C2—H2 1.0000
O3—C1 1.467 (2) C3—H3A 0.9900
O4—C2 1.429 (2) C3—H3B 0.9900
O4—C4 1.432 (2) C5—H5A 0.9800
O5—C4 1.418 (2) C5—H5B 0.9800
O5—C3 1.426 (2) C5—H5C 0.9800
C1—C2 1.500 (3) C6—H6A 0.9800
C2—C3 1.532 (3) C6—H6B 0.9800
C4—C6 1.498 (3) C6—H6C 0.9800
C4—C5 1.512 (3) C12—H12 0.9500
C11—C16 1.384 (3) C13—H13 0.9500
C11—C12 1.396 (2) C15—H15 0.9500
C12—C13 1.384 (3) C16—H16 0.9500
C13—C14 1.386 (3) C17—H17A 0.9800
C14—C15 1.398 (3) C17—H17B 0.9800
C14—C17 1.502 (3) C17—H17C 0.9800
O2—S—O1 118.55 (10) O4—C2—H2 110.4
O2—S—O3 110.12 (9) C1—C2—H2 110.4
O1—S—O3 103.75 (8) C3—C2—H2 110.4
O2—S—C11 109.01 (9) O5—C3—H3A 111.1
O1—S—C11 110.18 (10) C2—C3—H3A 111.1
O3—S—C11 104.21 (8) O5—C3—H3B 111.1
C1—O3—S 118.31 (11) C2—C3—H3B 111.1
C2—O4—C4 108.77 (15) H3A—C3—H3B 109.0
C4—O5—C3 106.32 (16) C4—C5—H5A 109.5
O3—C1—C2 106.63 (16) C4—C5—H5B 109.5
O4—C2—C1 108.62 (17) H5A—C5—H5B 109.5
O4—C2—C3 104.44 (16) C4—C5—H5C 109.5
C1—C2—C3 112.42 (17) H5A—C5—H5C 109.5
O5—C3—C2 103.40 (16) H5B—C5—H5C 109.5
O5—C4—O4 105.15 (14) C4—C6—H6A 109.5
O5—C4—C6 108.76 (18) C4—C6—H6B 109.5
O4—C4—C6 109.08 (19) H6A—C6—H6B 109.5
O5—C4—C5 111.38 (18) C4—C6—H6C 109.5
O4—C4—C5 108.81 (19) H6A—C6—H6C 109.5
C6—C4—C5 113.32 (18) H6B—C6—H6C 109.5
C16—C11—C12 121.23 (18) C13—C12—H12 120.8
C16—C11—S 120.43 (14) C11—C12—H12 120.8
C12—C11—S 118.32 (16) C12—C13—H13 119.1
C13—C12—C11 118.33 (19) C14—C13—H13 119.1
C12—C13—C14 121.90 (18) C16—C15—H15 119.3
C13—C14—C15 118.20 (18) C14—C15—H15 119.3
C13—C14—C17 121.64 (18) C15—C16—H16 120.5
C15—C14—C17 120.16 (19) C11—C16—H16 120.5
C16—C15—C14 121.30 (19) C14—C17—H17A 109.5
C15—C16—C11 119.02 (18) C14—C17—H17B 109.5
O3—C1—H1A 110.4 H17A—C17—H17B 109.5
C2—C1—H1A 110.4 C14—C17—H17C 109.5
O3—C1—H1B 110.4 H17A—C17—H17C 109.5
C2—C1—H1B 110.4 H17B—C17—H17C 109.5
H1A—C1—H1B 108.6
O2—S—O3—C1 −42.19 (16) O2—S—C11—C16 145.72 (17)
O1—S—O3—C1 −170.05 (14) O1—S—C11—C16 −82.58 (19)
C11—S—O3—C1 74.60 (16) O3—S—C11—C16 28.16 (19)
S—O3—C1—C2 −177.32 (13) O2—S—C11—C12 −35.86 (19)
C4—O4—C2—C1 −122.29 (19) O1—S—C11—C12 95.84 (18)
C4—O4—C2—C3 −2.1 (2) O3—S—C11—C12 −153.41 (16)
O3—C1—C2—O4 −64.2 (2) C16—C11—C12—C13 0.1 (3)
O3—C1—C2—C3 −179.29 (16) S—C11—C12—C13 −178.31 (16)
C4—O5—C3—C2 32.7 (2) C11—C12—C13—C14 −1.5 (3)
O4—C2—C3—O5 −18.5 (2) C12—C13—C14—C15 1.6 (3)
C1—C2—C3—O5 99.1 (2) C12—C13—C14—C17 −177.4 (2)
C3—O5—C4—O4 −34.7 (2) C13—C14—C15—C16 −0.3 (3)
C3—O5—C4—C6 −151.42 (19) C17—C14—C15—C16 178.8 (2)
C3—O5—C4—C5 83.0 (2) C14—C15—C16—C11 −1.0 (3)
C2—O4—C4—O5 22.3 (2) C12—C11—C16—C15 1.1 (3)
C2—O4—C4—C6 138.77 (18) S—C11—C16—C15 179.51 (16)
C2—O4—C4—C5 −97.16 (19)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C16—H16···O1i 0.95 2.60 3.212 (2) 122
C17—H17C···O1ii 0.98 2.65 3.369 (3) 131
C17—H17B···O1iii 0.98 2.66 3.558 (3) 153
C5—H5A···O2iv 0.98 2.64 3.509 (3) 148

Symmetry codes: (i) x, y−1, z; (ii) −x, y−1/2, −z+1/2; (iii) x, −y+3/2, z−1/2; (iv) x, −y+3/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2935).

References

  1. Baer, E. & Fischer, H. O. L. (1948). J. Am. Chem. Soc 70, 609–610. [DOI] [PubMed]
  2. Bruker (1998). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Jones, P. G., Kuś, P. & Celinski, R. (2003). Acta Cryst. E59, o117–o118.
  4. Kazemi, F., Massah, A. R. & Javaherian, M. (2007). Tetrahedron, 63, 5083–5087.
  5. Kuś, P., Rojkiewicz, M., Zięba, G., Witoszek, M. & Jones, P. G. (2009). Acta Cryst E65, o1192. [DOI] [PMC free article] [PubMed]
  6. Ouchi, M., Inoue, Y., Liu, Y., Nagamune, S., Nakamura, S., Wada, K. & Hakushi, K. (1990). Bull. Chem. Soc. Jpn, 63, 1260–1262.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Siemens (1994). XP Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809015037/bt2935sup1.cif

e-65-o1191-sup1.cif (18.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809015037/bt2935Isup2.hkl

e-65-o1191-Isup2.hkl (164.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES