Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1991 Jun;87(6):2056–2066. doi: 10.1172/JCI115236

Oxygen radicals generated at reflow induce peroxidation of membrane lipids in reperfused hearts.

G Ambrosio 1, J T Flaherty 1, C Duilio 1, I Tritto 1, G Santoro 1, P P Elia 1, M Condorelli 1, M Chiariello 1
PMCID: PMC296962  PMID: 1645750

Abstract

To test whether generation of oxygen radicals during postischemic reperfusion might promote peroxidation of cardiac membrane lipids, four groups of Langendorff-perfused rabbit hearts were processed at the end of (a) control perfusion, (b) 30 min of total global ischemia at 37 degrees C without reperfusion, (c) 30 min of ischemia followed by reperfusion with standard perfusate, (d) 30 min of ischemia followed by reperfusion with the oxygen radical scavenger human recombinant superoxide dismutase (h-SOD). The left ventricle was homogenized and tissue content of malonyldialdehyde (MDA), an end product of lipid peroxidation, was measured on the whole homogenate as well as on various subcellular fractions. Reperfusion was accompanied by a significant increase in MDA content of the whole homogenate and of the fraction enriched in mitochondria and lysosomes. This phenomenon was not observed in hearts subjected to ischemia but not reperfused, and was similarly absent in those hearts which received h-SOD at reflow. Reperfused hearts also had significantly greater levels of conjugated dienes (another marker of lipid peroxidation) in the mitochondrial-lysosomal fraction. Again, this phenomenon did not occur in ischemic hearts or in reperfused hearts treated with h-SOD. Unlike the effect on tissue MDA and conjugated dienes, reperfusion did not significantly stimulate release of MDA in the cardiac effluent. Treatment with h-SOD was also associated with significant improvement in the recovery of cardiac function. In conclusion, these data directly demonstrate that postischemic reperfusion results in enhanced lipid peroxidation of cardiac membranes, which can be blocked by h-SOD, and therefore is most likely secondary to oxygen radical generation at reflow.

Full text

PDF
2056

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ambrosio G., Becker L. C., Hutchins G. M., Weisman H. F., Weisfeldt M. L. Reduction in experimental infarct size by recombinant human superoxide dismutase: insights into the pathophysiology of reperfusion injury. Circulation. 1986 Dec;74(6):1424–1433. doi: 10.1161/01.cir.74.6.1424. [DOI] [PubMed] [Google Scholar]
  2. Ambrosio G., Weisfeldt M. L., Jacobus W. E., Flaherty J. T. Evidence for a reversible oxygen radical-mediated component of reperfusion injury: reduction by recombinant human superoxide dismutase administered at the time of reflow. Circulation. 1987 Jan;75(1):282–291. doi: 10.1161/01.cir.75.1.282. [DOI] [PubMed] [Google Scholar]
  3. Ambrosio G., Zweier J. L., Jacobus W. E., Weisfeldt M. L., Flaherty J. T. Improvement of postischemic myocardial function and metabolism induced by administration of deferoxamine at the time of reflow: the role of iron in the pathogenesis of reperfusion injury. Circulation. 1987 Oct;76(4):906–915. doi: 10.1161/01.cir.76.4.906. [DOI] [PubMed] [Google Scholar]
  4. Arroyo C. M., Kramer J. H., Leiboff R. H., Mergner G. W., Dickens B. F., Weglicki W. B. Spin trapping of oxygen and carbon-centered free radicals in ischemic canine myocardium. Free Radic Biol Med. 1987;3(5):313–316. doi: 10.1016/s0891-5849(87)80037-0. [DOI] [PubMed] [Google Scholar]
  5. Bernier M., Hearse D. J., Manning A. S. Reperfusion-induced arrhythmias and oxygen-derived free radicals. Studies with "anti-free radical" interventions and a free radical-generating system in the isolated perfused rat heart. Circ Res. 1986 Mar;58(3):331–340. doi: 10.1161/01.res.58.3.331. [DOI] [PubMed] [Google Scholar]
  6. Bird R. P., Draper H. H. Comparative studies on different methods of malonaldehyde determination. Methods Enzymol. 1984;105:299–305. doi: 10.1016/s0076-6879(84)05038-2. [DOI] [PubMed] [Google Scholar]
  7. Bolli R., Jeroudi M. O., Patel B. S., Aruoma O. I., Halliwell B., Lai E. K., McCay P. B. Marked reduction of free radical generation and contractile dysfunction by antioxidant therapy begun at the time of reperfusion. Evidence that myocardial "stunning" is a manifestation of reperfusion injury. Circ Res. 1989 Sep;65(3):607–622. doi: 10.1161/01.res.65.3.607. [DOI] [PubMed] [Google Scholar]
  8. Bolli R., Patel B. S., Jeroudi M. O., Lai E. K., McCay P. B. Demonstration of free radical generation in "stunned" myocardium of intact dogs with the use of the spin trap alpha-phenyl N-tert-butyl nitrone. J Clin Invest. 1988 Aug;82(2):476–485. doi: 10.1172/JCI113621. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Brasch H., Schoenberg M. H., Younes M. No evidence for an increased lipid peroxidation during reoxygenation in Langendorff hearts and isolated atria of rats. J Mol Cell Cardiol. 1989 Jul;21(7):697–707. doi: 10.1016/0022-2828(89)90611-1. [DOI] [PubMed] [Google Scholar]
  10. Buege J. A., Aust S. D. Microsomal lipid peroxidation. Methods Enzymol. 1978;52:302–310. doi: 10.1016/s0076-6879(78)52032-6. [DOI] [PubMed] [Google Scholar]
  11. Capdevila J., Marnett L. J., Chacos N., Prough R. A., Estabrook R. W. Cytochrome P-450-dependent oxygenation of arachidonic acid to hydroxyicosatetraenoic acids. Proc Natl Acad Sci U S A. 1982 Feb;79(3):767–770. doi: 10.1073/pnas.79.3.767. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Chambers D. E., Parks D. A., Patterson G., Roy R., McCord J. M., Yoshida S., Parmley L. F., Downey J. M. Xanthine oxidase as a source of free radical damage in myocardial ischemia. J Mol Cell Cardiol. 1985 Feb;17(2):145–152. doi: 10.1016/s0022-2828(85)80017-1. [DOI] [PubMed] [Google Scholar]
  13. Das D. K., Engelman R. M., Rousou J. A., Breyer R. H., Otani H., Lemeshow S. Pathophysiology of superoxide radical as potential mediator of reperfusion injury in pig heart. Basic Res Cardiol. 1986 Mar-Apr;81(2):155–166. doi: 10.1007/BF01907380. [DOI] [PubMed] [Google Scholar]
  14. FOLCH J., LEES M., SLOANE STANLEY G. H. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957 May;226(1):497–509. [PubMed] [Google Scholar]
  15. Gross G. J., Farber N. E., Hardman H. F., Warltier D. C. Beneficial actions of superoxide dismutase and catalase in stunned myocardium of dogs. Am J Physiol. 1986 Mar;250(3 Pt 2):H372–H377. doi: 10.1152/ajpheart.1986.250.3.H372. [DOI] [PubMed] [Google Scholar]
  16. Grum C. M., Ragsdale R. A., Ketai L. H., Shlafer M. Absence of xanthine oxidase or xanthine dehydrogenase in the rabbit myocardium. Biochem Biophys Res Commun. 1986 Dec 30;141(3):1104–1108. doi: 10.1016/s0006-291x(86)80157-7. [DOI] [PubMed] [Google Scholar]
  17. Guarnieri C., Flamigni F., Caldarera C. M. Role of oxygen in the cellular damage induced by re-oxygenation of hypoxic heart. J Mol Cell Cardiol. 1980 Aug;12(8):797–808. doi: 10.1016/0022-2828(80)90081-4. [DOI] [PubMed] [Google Scholar]
  18. Guarnieri C., Muscari C., Ceconi C., Flamigni F., Caldarera C. M. Effect of superoxide generation on rat heart mitochondrial pyruvate utilization. J Mol Cell Cardiol. 1983 Dec;15(12):859–862. doi: 10.1016/0022-2828(83)90348-6. [DOI] [PubMed] [Google Scholar]
  19. Gupta M., Singal P. K. Higher antioxidative capacity during a chronic stable heart hypertrophy. Circ Res. 1989 Feb;64(2):398–406. doi: 10.1161/01.res.64.2.398. [DOI] [PubMed] [Google Scholar]
  20. Hall E. D., Pazara K. E., Braughler J. M. 21-Aminosteroid lipid peroxidation inhibitor U74006F protects against cerebral ischemia in gerbils. Stroke. 1988 Aug;19(8):997–1002. doi: 10.1161/01.str.19.8.997. [DOI] [PubMed] [Google Scholar]
  21. Halliwell B. Oxidants and human disease: some new concepts. FASEB J. 1987 Nov;1(5):358–364. [PubMed] [Google Scholar]
  22. Harris E. J., Booth R., Cooper M. B. The effect of superoxide generation on the ability of mitochondria to take up and retain Ca2+. FEBS Lett. 1982 Sep 20;146(2):267–272. doi: 10.1016/0014-5793(82)80932-0. [DOI] [PubMed] [Google Scholar]
  23. Hemler M. E., Cook H. W., Lands W. E. Prostaglandin biosynthesis can be triggered by lipid peroxides. Arch Biochem Biophys. 1979 Apr 1;193(2):340–345. doi: 10.1016/0003-9861(79)90038-9. [DOI] [PubMed] [Google Scholar]
  24. Herbaczyńska-Cedro K., Gordon-Majszak W. Evidence for increased lipid peroxidation in the non-ischaemic portion of the heart with coronary occlusion. Cardiovasc Res. 1989 Feb;23(2):98–103. doi: 10.1093/cvr/23.2.98. [DOI] [PubMed] [Google Scholar]
  25. Hess M. L., Manson N. H. Molecular oxygen: friend and foe. The role of the oxygen free radical system in the calcium paradox, the oxygen paradox and ischemia/reperfusion injury. J Mol Cell Cardiol. 1984 Nov;16(11):969–985. doi: 10.1016/s0022-2828(84)80011-5. [DOI] [PubMed] [Google Scholar]
  26. Hochstein P., Jain S. K. Association of lipid peroxidation and polymerization of membrane proteins with erythrocyte aging. Fed Proc. 1981 Feb;40(2):183–188. [PubMed] [Google Scholar]
  27. Jolly S. R., Kane W. J., Bailie M. B., Abrams G. D., Lucchesi B. R. Canine myocardial reperfusion injury. Its reduction by the combined administration of superoxide dismutase and catalase. Circ Res. 1984 Mar;54(3):277–285. doi: 10.1161/01.res.54.3.277. [DOI] [PubMed] [Google Scholar]
  28. Julicher R. H., Tijburg L. B., Sterrenberg L., Bast A., Koomen J. M., Noordhoek J. Decreased defence against free radicals in rat heart during normal reperfusion after hypoxic, ischemic and calcium-free perfusion. Life Sci. 1984 Sep 17;35(12):1281–1288. doi: 10.1016/0024-3205(84)90099-7. [DOI] [PubMed] [Google Scholar]
  29. Kako K., Kato M., Matsuoka T., Mustapha A. Depression of membrane-bound Na+-K+-ATPase activity induced by free radicals and by ischemia of kidney. Am J Physiol. 1988 Feb;254(2 Pt 1):C330–C337. doi: 10.1152/ajpcell.1988.254.2.C330. [DOI] [PubMed] [Google Scholar]
  30. Koller P. T., Bergmann S. R. Reduction of lipid peroxidation in reperfused isolated rabbit hearts by diltiazem. Circ Res. 1989 Sep;65(3):838–846. doi: 10.1161/01.res.65.3.838. [DOI] [PubMed] [Google Scholar]
  31. Kramer J. H., Arroyo C. M., Dickens B. F., Weglicki W. B. Spin-trapping evidence that graded myocardial ischemia alters post-ischemic superoxide production. Free Radic Biol Med. 1987;3(2):153–159. doi: 10.1016/s0891-5849(87)80011-4. [DOI] [PubMed] [Google Scholar]
  32. Kramer J. H., Mak I. T., Weglicki W. B. Differential sensitivity of canine cardiac sarcolemmal and microsomal enzymes to inhibition by free radical-induced lipid peroxidation. Circ Res. 1984 Jul;55(1):120–124. doi: 10.1161/01.res.55.1.120. [DOI] [PubMed] [Google Scholar]
  33. Kuehl F. A., Jr, Humes J. L., Egan R. W., Ham E. A., Beveridge G. C., Van Arman C. G. Role of prostaglandin endoperoxide PGG2 in inflammatory processes. Nature. 1977 Jan 13;265(5590):170–173. doi: 10.1038/265170a0. [DOI] [PubMed] [Google Scholar]
  34. Kukreja R. C., Okabe E., Schrier G. M., Hess M. L. Oxygen radical-mediated lipid peroxidation and inhibition of Ca2+-ATPase activity of cardiac sarcoplasmic reticulum. Arch Biochem Biophys. 1988 Mar;261(2):447–457. doi: 10.1016/0003-9861(88)90361-x. [DOI] [PubMed] [Google Scholar]
  35. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  36. Lamers J. M., Hartog J. M., Guarnieri C., Vaona I., Verdouw P. D., Koster J. F. Lipid peroxidation in normoxic and ischaemic-reperfused hearts of fish oil and lard fat fed pigs. J Mol Cell Cardiol. 1988 Jul;20(7):605–615. doi: 10.1016/s0022-2828(88)80118-4. [DOI] [PubMed] [Google Scholar]
  37. Liedtke A. J., Mahar C. Q., Ytrehus K., Mjøs O. D. Estimates of free-radical production in rat and swine hearts: method and application of measuring malondialdehyde levels in fresh and frozen myocardium. Basic Res Cardiol. 1984 Sep-Oct;79(5):513–518. doi: 10.1007/BF01910480. [DOI] [PubMed] [Google Scholar]
  38. Mak I. T., Misra H. P., Weglicki W. B. Temporal relationship of free radical-induced lipid peroxidation and loss of latent enzyme activity in highly enriched hepatic lysosomes. J Biol Chem. 1983 Nov 25;258(22):13733–13737. [PubMed] [Google Scholar]
  39. Mak I. T., Weglicki W. B. Protection by beta-blocking agents against free radical-mediated sarcolemmal lipid peroxidation. Circ Res. 1988 Jul;63(1):262–266. doi: 10.1161/01.res.63.1.262. [DOI] [PubMed] [Google Scholar]
  40. Malis C. D., Bonventre J. V. Mechanism of calcium potentiation of oxygen free radical injury to renal mitochondria. A model for post-ischemic and toxic mitochondrial damage. J Biol Chem. 1986 Oct 25;261(30):14201–14208. [PubMed] [Google Scholar]
  41. Marshall P. J., Kulmacz R. J., Lands W. E. Constraints on prostaglandin biosynthesis in tissues. J Biol Chem. 1987 Mar 15;262(8):3510–3517. [PubMed] [Google Scholar]
  42. Mehta J. L., Lawson D. L., Nichols W. W. Attenuated coronary relaxation after reperfusion: effects of superoxide dismutase and TxA2 inhibitor U 63557A. Am J Physiol. 1989 Oct;257(4 Pt 2):H1240–H1246. doi: 10.1152/ajpheart.1989.257.4.H1240. [DOI] [PubMed] [Google Scholar]
  43. Myers M. L., Bolli R., Lekich R. F., Hartley C. J., Roberts R. Enhancement of recovery of myocardial function by oxygen free-radical scavengers after reversible regional ischemia. Circulation. 1985 Oct;72(4):915–921. doi: 10.1161/01.cir.72.4.915. [DOI] [PubMed] [Google Scholar]
  44. Nejima J., Knight D. R., Fallon J. T., Uemura N., Manders W. T., Canfield D. R., Cohen M. V., Vatner S. F. Superoxide dismutase reduces reperfusion arrhythmias but fails to salvage regional function or myocardium at risk in conscious dogs. Circulation. 1989 Jan;79(1):143–153. doi: 10.1161/01.cir.79.1.143. [DOI] [PubMed] [Google Scholar]
  45. Nohl H., Breuninger V., Hegner D. Influence of mitochondrial radical formation on energy-linked respiration. Eur J Biochem. 1978 Oct;90(2):385–390. doi: 10.1111/j.1432-1033.1978.tb12615.x. [DOI] [PubMed] [Google Scholar]
  46. Nohl H., Hegner D. Do mitochondria produce oxygen radicals in vivo? Eur J Biochem. 1978 Jan 16;82(2):563–567. doi: 10.1111/j.1432-1033.1978.tb12051.x. [DOI] [PubMed] [Google Scholar]
  47. Ohkawa H., Ohishi N., Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem. 1979 Jun;95(2):351–358. doi: 10.1016/0003-2697(79)90738-3. [DOI] [PubMed] [Google Scholar]
  48. Otani H., Engelman R. M., Rousou J. A., Breyer R. H., Das D. K. Enhanced prostaglandin synthesis due to phospholipid breakdown in ischemic-reperfused myocardium. Control of its production by a phospholipase inhibitor or free radical scavengers. J Mol Cell Cardiol. 1986 Sep;18(9):953–961. doi: 10.1016/s0022-2828(86)80009-8. [DOI] [PubMed] [Google Scholar]
  49. Otani H., Tanaka H., Inoue T., Umemoto M., Omoto K., Tanaka K., Sato T., Osako T., Masuda A., Nonoyama A. In vitro study on contribution of oxidative metabolism of isolated rabbit heart mitochondria to myocardial reperfusion injury. Circ Res. 1984 Aug;55(2):168–175. doi: 10.1161/01.res.55.2.168. [DOI] [PubMed] [Google Scholar]
  50. Paller M. S., Hoidal J. R., Ferris T. F. Oxygen free radicals in ischemic acute renal failure in the rat. J Clin Invest. 1984 Oct;74(4):1156–1164. doi: 10.1172/JCI111524. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Przyklenk K., Kloner R. A. Superoxide dismutase plus catalase improve contractile function in the canine model of the "stunned myocardium". Circ Res. 1986 Jan;58(1):148–156. doi: 10.1161/01.res.58.1.148. [DOI] [PubMed] [Google Scholar]
  52. Reiter R., Burk R. F. Effect of oxygen tension on the generation of alkanes and malondialdehyde by peroxidizing rat liver microsomes. Biochem Pharmacol. 1987 Mar 15;36(6):925–929. doi: 10.1016/0006-2952(87)90186-9. [DOI] [PubMed] [Google Scholar]
  53. Romaschin A. D., Rebeyka I., Wilson G. J., Mickle D. A. Conjugated dienes in ischemic and reperfused myocardium: an in vivo chemical signature of oxygen free radical mediated injury. J Mol Cell Cardiol. 1987 Mar;19(3):289–302. doi: 10.1016/s0022-2828(87)80596-5. [DOI] [PubMed] [Google Scholar]
  54. Ruth R. C., Weglicki W. B. The temperature-dependence of the loss of latency of lysosomal enzymes. Biochem J. 1978 Apr 15;172(1):163–173. doi: 10.1042/bj1720163. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Röth E., Török B., Zsoldos T., Matkovics B. Lipid peroxidation and scavenger mechanism in experimentally induced heart infarcts. Basic Res Cardiol. 1985 Sep-Oct;80(5):530–536. doi: 10.1007/BF01907916. [DOI] [PubMed] [Google Scholar]
  56. Scherer N. M., Deamer D. W. Oxidative stress impairs the function of sarcoplasmic reticulum by oxidation of sulfhydryl groups in the Ca2+-ATPase. Arch Biochem Biophys. 1986 May 1;246(2):589–601. doi: 10.1016/0003-9861(86)90314-0. [DOI] [PubMed] [Google Scholar]
  57. Sevanian A., Stein R. A., Mead J. F. Metabolism of epoxidized phosphatidylcholine by phospholipase A2 and epoxide hydrolase. Lipids. 1981 Nov;16(11):781–789. doi: 10.1007/BF02535029. [DOI] [PubMed] [Google Scholar]
  58. Shlafer M., Kane P. F., Kirsh M. M. Superoxide dismutase plus catalase enhances the efficacy of hypothermic cardioplegia to protect the globally ischemic, reperfused heart. J Thorac Cardiovasc Surg. 1982 Jun;83(6):830–839. [PubMed] [Google Scholar]
  59. Slater T. F. Free-radical mechanisms in tissue injury. Biochem J. 1984 Aug 15;222(1):1–15. doi: 10.1042/bj2220001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Slater T. F. Overview of methods used for detecting lipid peroxidation. Methods Enzymol. 1984;105:283–293. doi: 10.1016/s0076-6879(84)05036-9. [DOI] [PubMed] [Google Scholar]
  61. Sottocasa G. L., Kuylenstierna B., Ernster L., Bergstrand A. An electron-transport system associated with the outer membrane of liver mitochondria. A biochemical and morphological study. J Cell Biol. 1967 Feb;32(2):415–438. doi: 10.1083/jcb.32.2.415. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Török B., Röth E., Bär V., Pollák Z. Effects of antioxidant therapy in experimentally induced heart infarcts. Basic Res Cardiol. 1986 Mar-Apr;81(2):167–179. doi: 10.1007/BF01907381. [DOI] [PubMed] [Google Scholar]
  63. Vander Heide R. S., Sobotka P. A., Ganote C. E. Effects of the free radical scavenger DMTU and mannitol on the oxygen paradox in perfused rat hearts. J Mol Cell Cardiol. 1987 Jun;19(6):615–625. doi: 10.1016/s0022-2828(87)80367-x. [DOI] [PubMed] [Google Scholar]
  64. Watson B. D., Busto R., Goldberg W. J., Santiso M., Yoshida S., Ginsberg M. D. Lipid peroxidation in vivo induced by reversible global ischemia in rat brain. J Neurochem. 1984 Jan;42(1):268–274. doi: 10.1111/j.1471-4159.1984.tb09728.x. [DOI] [PubMed] [Google Scholar]
  65. Weglicki W. B., Dickens B. F., Mak I. T. Enhanced lysosomal phospholipid degradation and lysophospholipid production due to free radicals. Biochem Biophys Res Commun. 1984 Oct 15;124(1):229–235. doi: 10.1016/0006-291x(84)90941-0. [DOI] [PubMed] [Google Scholar]
  66. Weglicki W. B., Owens K., Kennett F. F., Kessner A., Harris L., Wise R. M. Preparation and properties of highly enriched cardiac sarcolemma from isolated adult myocytes. J Biol Chem. 1980 Apr 25;255(8):3605–3609. [PubMed] [Google Scholar]
  67. Welman E., Peters T. J. Properties of lysosomes in guinea pig heart: subcellular distribution and in vitro stability. J Mol Cell Cardiol. 1976 Jun;8(6):443–463. doi: 10.1016/0022-2828(76)90019-5. [DOI] [PubMed] [Google Scholar]
  68. Williams R. E., Zweier J. L., Flaherty J. T. Treatment with deferoxamine during ischemia improves functional and metabolic recovery and reduces reperfusion-induced oxygen radical generation in rabbit hearts. Circulation. 1991 Mar;83(3):1006–1014. doi: 10.1161/01.cir.83.3.1006. [DOI] [PubMed] [Google Scholar]
  69. Young W., Wojak J. C., DeCrescito V. 21-Aminosteroid reduces ion shifts and edema in the rat middle cerebral artery occlusion model of regional ischemia. Stroke. 1988 Aug;19(8):1013–1019. doi: 10.1161/01.str.19.8.1013. [DOI] [PubMed] [Google Scholar]
  70. Zager R. A. Hypoperfusion-induced acute renal failure in the rat: an evaluation of oxidant tissue injury. Circ Res. 1988 Mar;62(3):430–435. doi: 10.1161/01.res.62.3.430. [DOI] [PubMed] [Google Scholar]
  71. Zweier J. L., Flaherty J. T., Weisfeldt M. L. Direct measurement of free radical generation following reperfusion of ischemic myocardium. Proc Natl Acad Sci U S A. 1987 Mar;84(5):1404–1407. doi: 10.1073/pnas.84.5.1404. [DOI] [PMC free article] [PubMed] [Google Scholar]
  72. Zweier J. L., Kuppusamy P., Williams R., Rayburn B. K., Smith D., Weisfeldt M. L., Flaherty J. T. Measurement and characterization of postischemic free radical generation in the isolated perfused heart. J Biol Chem. 1989 Nov 15;264(32):18890–18895. [PubMed] [Google Scholar]
  73. Zweier J. L., Rayburn B. K., Flaherty J. T., Weisfeldt M. L. Recombinant superoxide dismutase reduces oxygen free radical concentrations in reperfused myocardium. J Clin Invest. 1987 Dec;80(6):1728–1734. doi: 10.1172/JCI113264. [DOI] [PMC free article] [PubMed] [Google Scholar]
  74. de Jong J. W., van der Meer P., Nieukoop A. S., Huizer T., Stroeve R. J., Bos E. Xanthine oxidoreductase activity in perfused hearts of various species, including humans. Circ Res. 1990 Sep;67(3):770–773. doi: 10.1161/01.res.67.3.770. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES