Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 May 23;65(Pt 6):o1380. doi: 10.1107/S160053680901873X

Ethyl 3-nitro-4-(n-propyl­amino)benzoate

Guo-Hua Zhang a, Yong-Zhong Wu b, Hao-Yuan Li c, Bo-Nian Liu a, Cheng Guo a,*
PMCID: PMC2969622  PMID: 21583228

Abstract

In the mol­ecule of the title compound, C12H16N2O4, an intra­molecular N—H⋯O hydrogen bond results in the formation of a six-membered ring having an envelope conformation. In the crystal structure, a bifurcated intra/intermolecular N—H⋯(O,O) hydrogen bond generates inversion dimers.

Related literature

For bond-length data, see: Allen et al. (1987). For the synthesis, see: Ates-Alagoz & Buyukbingol (2001); Oezden et al. (2005).graphic file with name e-65-o1380-scheme1.jpg

Experimental

Crystal data

  • C12H16N2O4

  • M r = 252.27

  • Triclinic, Inline graphic

  • a = 4.4400 (9) Å

  • b = 12.606 (3) Å

  • c = 13.209 (3) Å

  • α = 61.710 (19)°

  • β = 83.02 (3)°

  • γ = 81.75 (3)°

  • V = 643.1 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 294 K

  • 0.20 × 0.10 × 0.10 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968) T min = 0.981, T max = 0.990

  • 2593 measured reflections

  • 2281 independent reflections

  • 924 reflections with I > 2σ(I)

  • R int = 0.083

  • 3 standard reflections frequency: 120 min intensity decay: 1%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.067

  • wR(F 2) = 0.165

  • S = 1.00

  • 2281 reflections

  • 157 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.14 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053680901873X/hk2690sup1.cif

e-65-o1380-sup1.cif (17.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053680901873X/hk2690Isup2.hkl

e-65-o1380-Isup2.hkl (112.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O4 0.86 2.02 2.635 (5) 128
N2—H2A⋯O4i 0.86 2.55 3.324 (6) 150

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors thank the Center of Testing and Analysis, Nanjing University, for support.

supplementary crystallographic information

Comment

Some derivatives of benzoic acid are important chemical materials. We report herein the crystal structure of the title compound.

In the molecule of the title compound (Fig 1), the bond lengths (Allen et al., 1987) and angles are within normal ranges. Ring A (C4-C9) is, of course, planar. Intramolecular N-H···O hydrogen bond (Table 1) results in the formation of a six-membered ring B (O4/N1/N2/C6/C7/H2A) having envelope conformation with atom O4 displaced by -0.116 (3) Å from the plane of the other ring atoms.

In the crystal structure, intra- and intermolecular N-H···O interactions (Table 1) link the molecules into centrosymmetric dimers (Fig. 2), in which they may be effective in the stabilization of the structure.

Experimental

For the preparation of the title compound, ethyl 4-chloro-3-nitrobenzoate (5.3 g, 23 mmol) was refluxed in n-propyl amine (25 ml) and tetrahydrofuran (50 ml) for 2 h. Then, solvents were evaporated and water was added to give yellow precipate, which was collected by filtration and washed with cold ethanol (2 × 15 ml) to afford the yellow solid (yield; 4.8 g). Crystals suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution.

Refinement

H atoms were positioned geometrically, with N-H = 0.86 Å (for NH) and C-H = 0.93, 0.97 and 0.96 Å for aromatic, methylene and methyl H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C,N), where x = 1.5 for methyl H and x = 1.2 for all other H atoms.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title molecule, with the atom-numbering scheme. Hydrogen bond is shown as dashed line.

Fig. 2.

Fig. 2.

A partial packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.

Crystal data

C12H16N2O4 Z = 2
Mr = 252.27 F(000) = 268
Triclinic, P1 Dx = 1.303 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 4.4400 (9) Å Cell parameters from 25 reflections
b = 12.606 (3) Å θ = 9–11°
c = 13.209 (3) Å µ = 0.10 mm1
α = 61.710 (19)° T = 294 K
β = 83.02 (3)° Block, colorless
γ = 81.75 (3)° 0.20 × 0.10 × 0.10 mm
V = 643.1 (3) Å3

Data collection

Enraf–Nonius CAD-4 diffractometer 924 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.083
graphite θmax = 25.2°, θmin = 1.8°
ω/2θ scans h = 0→5
Absorption correction: ψ scan (North et al., 1968) k = −14→15
Tmin = 0.981, Tmax = 0.990 l = −15→15
2593 measured reflections 3 standard reflections every 120 min
2281 independent reflections intensity decay: 1%

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.067 H-atom parameters constrained
wR(F2) = 0.165 w = 1/[σ2(Fo2) + (0.057P)2] where P = (Fo2 + 2Fc2)/3
S = 1.00 (Δ/σ)max < 0.001
2281 reflections Δρmax = 0.19 e Å3
157 parameters Δρmin = −0.14 e Å3
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 −0.3870 (7) −0.0274 (2) 0.8647 (2) 0.0865 (10)
O2 −0.2837 (8) −0.1310 (3) 0.7632 (3) 0.1130 (12)
O3 −0.0492 (8) 0.3592 (2) 0.7202 (2) 0.1056 (12)
O4 0.2630 (7) 0.4310 (3) 0.5801 (2) 0.104
N1 0.1072 (8) 0.3526 (3) 0.6413 (3) 0.0706 (10)
N2 0.4396 (8) 0.3293 (3) 0.4457 (3) 0.0842 (11)
H2A 0.4491 0.3936 0.4521 0.101*
C1 −0.3968 (13) −0.2145 (4) 1.0388 (4) 0.127 (2)
H1A −0.5267 −0.2746 1.0918 0.190*
H1B −0.3079 −0.1811 1.0788 0.190*
H1C −0.2379 −0.2511 1.0058 0.190*
C2 −0.5738 (10) −0.1193 (4) 0.9484 (4) 0.1006 (16)
H2B −0.7339 −0.0825 0.9819 0.121*
H2C −0.6696 −0.1538 0.9100 0.121*
C3 −0.2502 (11) −0.0448 (4) 0.7781 (4) 0.0809 (13)
C4 −0.0655 (9) 0.0540 (3) 0.6944 (3) 0.0664 (11)
C5 −0.0537 (8) 0.1582 (3) 0.7019 (3) 0.0592 (10)
H5A −0.1638 0.1678 0.7620 0.071*
C6 0.1163 (8) 0.2486 (3) 0.6230 (3) 0.0584 (10)
C7 0.2859 (8) 0.2413 (3) 0.5268 (3) 0.0588 (10)
C8 0.2554 (10) 0.1315 (4) 0.5233 (3) 0.0820 (13)
H8A 0.3503 0.1217 0.4612 0.098*
C9 0.1030 (11) 0.0445 (4) 0.6018 (4) 0.0834 (14)
H9A 0.1064 −0.0264 0.5961 0.100*
C10 0.5976 (13) 0.3193 (4) 0.3427 (4) 0.129 (2)
H10A 0.8040 0.2821 0.3610 0.155*
H10B 0.4927 0.2659 0.3281 0.155*
C11 0.6104 (14) 0.4292 (5) 0.2425 (4) 0.138 (2)
H11A 0.7199 0.4821 0.2561 0.165*
H11B 0.4046 0.4674 0.2246 0.165*
C12 0.7633 (11) 0.4158 (4) 0.1409 (3) 0.1116 (17)
H12A 0.7768 0.4944 0.0758 0.167*
H12B 0.6465 0.3692 0.1229 0.167*
H12C 0.9645 0.3752 0.1591 0.167*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.082 (2) 0.0819 (19) 0.0924 (19) −0.0227 (18) −0.0007 (18) −0.0351 (17)
O2 0.149 (3) 0.0806 (19) 0.122 (2) −0.028 (2) −0.029 (2) −0.0475 (19)
O3 0.128 (3) 0.103 (2) 0.104 (2) −0.035 (2) 0.038 (2) −0.0672 (19)
O4 0.123 0.115 0.097 −0.056 0.021 −0.063
N1 0.068 (2) 0.076 (2) 0.0711 (19) −0.031 (2) 0.0100 (19) −0.0344 (17)
N2 0.073 (3) 0.088 (2) 0.074 (2) 0.010 (2) 0.006 (2) −0.0304 (18)
C1 0.133 (5) 0.088 (3) 0.104 (3) 0.007 (4) 0.004 (4) −0.007 (3)
C2 0.070 (4) 0.089 (3) 0.126 (4) −0.012 (3) −0.017 (3) −0.033 (3)
C3 0.079 (4) 0.063 (3) 0.094 (3) 0.001 (3) −0.041 (3) −0.025 (3)
C4 0.058 (3) 0.066 (2) 0.084 (3) 0.016 (2) −0.030 (2) −0.041 (2)
C5 0.050 (3) 0.065 (2) 0.067 (2) 0.002 (2) −0.010 (2) −0.034 (2)
C6 0.053 (3) 0.071 (2) 0.059 (2) 0.005 (2) −0.013 (2) −0.037 (2)
C7 0.043 (2) 0.064 (2) 0.054 (2) 0.021 (2) −0.0114 (19) −0.0212 (19)
C8 0.092 (4) 0.090 (3) 0.068 (3) 0.036 (3) −0.019 (3) −0.049 (2)
C9 0.104 (4) 0.069 (3) 0.089 (3) 0.014 (3) −0.023 (3) −0.048 (2)
C10 0.132 (4) 0.115 (4) 0.088 (3) 0.026 (3) 0.038 (3) −0.026 (3)
C11 0.155 (5) 0.133 (4) 0.091 (3) 0.031 (4) 0.014 (4) −0.041 (3)
C12 0.106 (4) 0.132 (4) 0.066 (2) 0.012 (3) 0.005 (3) −0.030 (3)

Geometric parameters (Å, °)

O1—C3 1.326 (5) C4—C9 1.400 (5)
O1—C2 1.446 (4) C5—C6 1.373 (4)
O2—C3 1.223 (4) C5—H5A 0.9300
O3—N1 1.211 (3) C6—C7 1.432 (4)
O4—N1 1.188 (3) C7—C8 1.432 (5)
N1—C6 1.436 (4) C8—C9 1.304 (5)
N2—C7 1.326 (4) C8—H8A 0.9300
N2—C10 1.505 (5) C9—H9A 0.9300
N2—H2A 0.8600 C10—C11 1.393 (5)
C1—C2 1.443 (5) C10—H10A 0.9700
C1—H1A 0.9600 C10—H10B 0.9700
C1—H1B 0.9600 C11—C12 1.500 (5)
C1—H1C 0.9600 C11—H11A 0.9700
C2—H2B 0.9700 C11—H11B 0.9700
C2—H2C 0.9700 C12—H12A 0.9600
C3—C4 1.488 (5) C12—H12B 0.9600
C4—C5 1.372 (4) C12—H12C 0.9600
C3—O1—C2 117.2 (3) C5—C6—N1 115.8 (3)
O4—N1—O3 120.0 (3) C7—C6—N1 121.9 (3)
O4—N1—C6 119.2 (3) N2—C7—C6 123.9 (4)
O3—N1—C6 120.8 (3) N2—C7—C8 123.4 (3)
C7—N2—C10 121.4 (4) C6—C7—C8 112.6 (3)
C7—N2—H2A 119.3 C9—C8—C7 124.2 (4)
C10—N2—H2A 119.3 C9—C8—H8A 117.9
C2—C1—H1A 109.5 C7—C8—H8A 117.9
C2—C1—H1B 109.5 C8—C9—C4 122.3 (4)
H1A—C1—H1B 109.5 C8—C9—H9A 118.8
C2—C1—H1C 109.5 C4—C9—H9A 118.8
H1A—C1—H1C 109.5 C11—C10—N2 114.4 (4)
H1B—C1—H1C 109.5 C11—C10—H10A 108.7
C1—C2—O1 111.7 (4) N2—C10—H10A 108.7
C1—C2—H2B 109.3 C11—C10—H10B 108.7
O1—C2—H2B 109.3 N2—C10—H10B 108.7
C1—C2—H2C 109.3 H10A—C10—H10B 107.6
O1—C2—H2C 109.3 C10—C11—C12 113.1 (4)
H2B—C2—H2C 107.9 C10—C11—H11A 109.0
O2—C3—O1 123.7 (4) C12—C11—H11A 109.0
O2—C3—C4 121.8 (5) C10—C11—H11B 109.0
O1—C3—C4 114.4 (4) C12—C11—H11B 109.0
C5—C4—C9 116.8 (4) H11A—C11—H11B 107.8
C5—C4—C3 122.8 (4) C11—C12—H12A 109.5
C9—C4—C3 120.4 (4) C11—C12—H12B 109.5
C4—C5—C6 121.8 (3) H12A—C12—H12B 109.5
C4—C5—H5A 119.1 C11—C12—H12C 109.5
C6—C5—H5A 119.1 H12A—C12—H12C 109.5
C5—C6—C7 122.2 (3) H12B—C12—H12C 109.5
C3—O1—C2—C1 87.3 (5) C5—C6—C7—N2 176.3 (4)
C2—O1—C3—O2 3.0 (6) N1—C6—C7—N2 −2.0 (6)
C2—O1—C3—C4 179.2 (3) C5—C6—C7—C8 0.2 (5)
O2—C3—C4—C5 172.1 (4) N1—C6—C7—C8 −178.1 (3)
O1—C3—C4—C5 −4.1 (6) N2—C7—C8—C9 −179.4 (4)
O2—C3—C4—C9 −6.9 (7) C6—C7—C8—C9 −3.2 (6)
O1—C3—C4—C9 176.9 (4) C7—C8—C9—C4 4.6 (7)
C9—C4—C5—C6 −0.4 (6) C5—C4—C9—C8 −2.6 (6)
C3—C4—C5—C6 −179.4 (4) C3—C4—C9—C8 176.5 (4)
C4—C5—C6—C7 1.5 (6) C7—N2—C10—C11 148.5 (5)
C4—C5—C6—N1 179.9 (3) N2—C10—C11—C12 −178.8 (4)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N2—H2A···O4 0.86 2.02 2.635 (5) 128
N2—H2A···O4i 0.86 2.55 3.324 (6) 150

Symmetry codes: (i) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2690).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Ates-Alagoz, Z. & Buyukbingol, E. (2001). Heterocycl. Commun.7, 455–460.
  3. Enraf–Nonius (1989). CAD-4 Software Enraf–Nonius, Delft, The Netherlands.
  4. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  5. Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  6. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  7. Oezden, S., Atabey, D., Yildiz, S. & Goeker, H. (2005). Bioorg. Med. Chem.13, 1587–1597. [DOI] [PubMed]
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053680901873X/hk2690sup1.cif

e-65-o1380-sup1.cif (17.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053680901873X/hk2690Isup2.hkl

e-65-o1380-Isup2.hkl (112.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES