Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 May 14;65(Pt 6):o1294–o1295. doi: 10.1107/S1600536809017334

7,7′,8,8′-Tetra­meth­oxy-4,4′-dimethyl-3,3′-bicoumarin

Hoong-Kun Fun a,*,, Samuel Robinson Jebas a,§, Mehtab Parveen b, Zakia Khanam b, Raza Murad Ghalib b
PMCID: PMC2969639  PMID: 21583154

Abstract

In the crystal structure, the title compound, C24H22O8, lies on a twofold rotation axis and the asymmetric unit comprises one half-mol­ecule. The dihedral angle formed by the coumarin unit with the symmetry-related part is 74.78 (14)°. One of the meth­oxy groups attached to the coumarin unit is considerably twisted, making an angle of 87.17 (17)° with respect to the coumarin unit; the other is twisted by 0.66 (19)°. No classical hydrogen bonds are found in the sturcture; only a weak C—H⋯π inter­action and short intra­molecular O⋯O contacts [2.683 (2)–2.701 (2) Å] are observed.

Related literature

For the biological activity of coumarins, see: El-Agrody et al. (2001); El-Farargy (1991); Emmanuel-Giota et al. (2001); Ghate et al. (2005); Laakso et al. (1994); Nofal et al. (2000); Pratibha & Shreeya (1999); Shaker (1996); Yang et al. (2005). For the pharmaceutical properties of coumarin derivatives, see: Kennedy & Thornes (1997). For natural and synthetic coumarins, see: Carlton et al. (1996); Zhou et al. (2000). For related bond-length data, see: Allen et al. (1987). For stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).graphic file with name e-65-o1294-scheme1.jpg

Experimental

Crystal data

  • C24H22O8

  • M r = 438.42

  • Monoclinic, Inline graphic

  • a = 21.715 (9) Å

  • b = 7.138 (3) Å

  • c = 15.511 (6) Å

  • β = 121.801 (5)°

  • V = 2043.3 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 100 K

  • 0.28 × 0.19 × 0.06 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.971, T max = 0.994

  • 27961 measured reflections

  • 3527 independent reflections

  • 2710 reflections with I > 2σ(I)

  • R int = 0.065

Refinement

  • R[F 2 > 2σ(F 2)] = 0.059

  • wR(F 2) = 0.155

  • S = 1.08

  • 3527 reflections

  • 189 parameters

  • All H-atom parameters refined

  • Δρmax = 0.50 e Å−3

  • Δρmin = −0.21 e Å−3

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809017334/is2417sup1.cif

e-65-o1294-sup1.cif (17.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809017334/is2417Isup2.hkl

e-65-o1294-Isup2.hkl (169.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯Cg1i 0.96 (2) 2.86 (2) 3.676 (2) 143.5 (18)

Symmetry code: (i) Inline graphic. Cg1 is the centroid of the C4–C9 ring.

Acknowledgments

HKF and SRJ thank the Malaysian Government and Universiti Sains Malaysia for the Science Fund grant No. 305/PFIZIK/613312. SRJ thanks Universiti Sains Malaysia for a post–doctoral research fellowship. HKF also thanks Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012.

supplementary crystallographic information

Comment

Coumarins are a large group of naturally occurring oxygen heterocycles representing 2H-1-benzopyran-2-one derivative. Many natural coumarins are reputed for their wide range of biological activites such as antibacterial (El-Agrody et al., 2001; Pratibha & Shreeya, 1999), antifungal (Shaker, 1996; El-Farargy, 1991), antioxidant (Yang et al., 2005), analgesic (Ghate et al., 2005), anti-inflammatory (Emmanuel-Giota et al., 2001) and antitumor (Nofal et al., 2000) properties. Bi and tri-coumarins are comparatively new groups which are widely spread in nature and their biological properties are also well known (Laakso et al., 1994). One of the characteristic pharmacological properties of coumarin derivatives is the anticoagulant action (Kennedy & Thornes, 1997). A large number of natural and semisynthetic coumarin and bicoumarin derivatives have been reported to demonstrate chemopreventive (Carlton et al., 1996) and anti-HIV (Zhou et al., 2000) activities. Keeping in view of these biological importance of coumarins and their dimers, we have synthesized the title compound (I) and report here its structure.

The asymmetric unit of (I) (Fig. 1), contains half of the 7,7',8,8'-4,4'-dimethyl-3,3'-bicoumarin molecule. The other half is symmetry generated [symmetry code: -x, y, -z + 1/2]. The coumarin unit is planar with the maximum deviation from the mean plane of 0.0295 (15) Å for atom C2. One of the methyl group attached to the coumarin unit is twisted as evidenced by the torsion angle of C10—O3—C8—C9 = 87.17 (17)°. The dihedral angle formed by the coumarin unit (O1/C1—C9) with the symmetry related coumarin unit (O1A/C1A—C9A) is 74.78 (14)°, indicating that they are almost perpendicular to each other. The bond lengths (Allen et al., 1987) and bond angles are normal.

The crystal packing (Fig. 2) (Table 1) is stabilized by weak C—H···π interactions and intramolecular O···O = 2.683 (2) to 2.701 (2) Å short contacts.

Experimental

A mixture of 7,8-dimethoxy-4-methyl coumarin (2.20 g, 10 mmol) and manganese(III) acetate (0.774 g, 1 mmol) was stirred at room temperature, then 70% perchloric acid (0.8 g, 6 mmol) was added. The reaction mixture was heated under reflux at 114°C with stirring in the atmosphere of nitrogen for 3 h. The reaction mixture was cooled and diluted with 50 ml of benzene. The benzene solution was washed with water and aq. NaHCO3, dried over anhydrous Na2SO4 and left to evaporate. The residue showed two major compounds which were separated by column chromatography followed by preparative thin layer chromatography (Benzene: EtOAc, 9:1) into the title compound (I) (260 mg, 12%).

Refinement

All the hydrogen atoms were located from the Fourier map and allowed to refine freely.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I), showing 50% probability displacement ellipsoids and the atom numbering scheme. [Symmetry code: -x, y, -z + 1/2 to generate equivalent atoms].

Fig. 2.

Fig. 2.

The crystal packing of (I). Molecules are stacked along the b axis.

Crystal data

C24H22O8 F(000) = 920
Mr = 438.42 Dx = 1.425 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yc Cell parameters from 6562 reflections
a = 21.715 (9) Å θ = 2.7–31.8°
b = 7.138 (3) Å µ = 0.11 mm1
c = 15.511 (6) Å T = 100 K
β = 121.801 (5)° Plate, colourless
V = 2043.3 (14) Å3 0.28 × 0.19 × 0.06 mm
Z = 4

Data collection

Bruker SMART APEXII CCD area-detector diffractometer 3527 independent reflections
Radiation source: fine-focus sealed tube 2710 reflections with I > 2σ(I)
graphite Rint = 0.065
φ and ω scans θmax = 32.0°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Bruker, 2005) h = −32→32
Tmin = 0.971, Tmax = 0.994 k = −10→10
27961 measured reflections l = −23→23

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.155 All H-atom parameters refined
S = 1.08 w = 1/[σ2(Fo2) + (0.0752P)2 + 1.2567P] where P = (Fo2 + 2Fc2)/3
3527 reflections (Δ/σ)max < 0.001
189 parameters Δρmax = 0.50 e Å3
0 restraints Δρmin = −0.21 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.15443 (5) 0.04445 (13) 0.38705 (7) 0.0178 (2)
O2 0.05473 (6) −0.06775 (15) 0.37300 (8) 0.0242 (2)
O3 0.30066 (5) 0.03278 (14) 0.48961 (7) 0.0212 (2)
O4 0.37511 (5) 0.26053 (15) 0.43926 (8) 0.0221 (2)
C1 0.08045 (7) 0.05014 (19) 0.34517 (10) 0.0175 (3)
C2 0.03949 (7) 0.19639 (19) 0.27048 (10) 0.0163 (3)
C3 0.07228 (7) 0.32194 (19) 0.24158 (10) 0.0168 (3)
C4 0.15015 (7) 0.31354 (18) 0.28870 (10) 0.0161 (3)
C5 0.19034 (8) 0.44106 (19) 0.26927 (10) 0.0185 (3)
C6 0.26498 (8) 0.42852 (19) 0.31768 (11) 0.0194 (3)
C7 0.30199 (7) 0.28719 (19) 0.38881 (10) 0.0174 (3)
C8 0.26401 (7) 0.15966 (18) 0.41265 (9) 0.0164 (3)
C9 0.18892 (7) 0.17416 (18) 0.36139 (10) 0.0154 (2)
C10 0.30773 (13) −0.1493 (2) 0.45770 (15) 0.0362 (4)
C11 0.41539 (8) 0.3869 (2) 0.41549 (13) 0.0267 (3)
C12 0.02974 (8) 0.4697 (2) 0.16315 (12) 0.0247 (3)
H5 0.1654 (10) 0.540 (3) 0.2226 (15) 0.024 (5)*
H6 0.2908 (11) 0.516 (3) 0.3016 (16) 0.033 (5)*
H10A 0.3396 (14) −0.139 (4) 0.429 (2) 0.063 (8)*
H10B 0.3324 (13) −0.224 (3) 0.514 (2) 0.046 (6)*
H10C 0.2573 (16) −0.202 (4) 0.410 (2) 0.067 (8)*
H11A 0.3985 (12) 0.382 (3) 0.3405 (19) 0.044 (6)*
H11B 0.4125 (11) 0.519 (3) 0.4338 (15) 0.028 (5)*
H11C 0.4642 (10) 0.340 (3) 0.4535 (14) 0.022 (4)*
H12A 0.0472 (11) 0.483 (3) 0.1149 (17) 0.035 (5)*
H12B 0.0359 (12) 0.591 (3) 0.1955 (18) 0.041 (6)*
H12C −0.0217 (12) 0.440 (3) 0.1264 (17) 0.036 (5)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0162 (5) 0.0193 (5) 0.0163 (4) 0.0013 (3) 0.0074 (4) 0.0050 (4)
O2 0.0213 (5) 0.0253 (5) 0.0244 (5) −0.0003 (4) 0.0111 (4) 0.0083 (4)
O3 0.0217 (5) 0.0219 (5) 0.0134 (4) 0.0047 (4) 0.0048 (4) 0.0029 (4)
O4 0.0144 (5) 0.0250 (5) 0.0230 (5) −0.0015 (4) 0.0071 (4) −0.0020 (4)
C1 0.0167 (6) 0.0199 (6) 0.0149 (6) 0.0003 (5) 0.0076 (5) 0.0008 (5)
C2 0.0155 (6) 0.0179 (6) 0.0140 (6) 0.0004 (4) 0.0067 (5) −0.0003 (4)
C3 0.0166 (6) 0.0176 (6) 0.0145 (6) 0.0013 (4) 0.0071 (5) 0.0018 (4)
C4 0.0166 (6) 0.0174 (6) 0.0133 (5) 0.0013 (4) 0.0072 (5) 0.0009 (4)
C5 0.0199 (6) 0.0185 (6) 0.0165 (6) 0.0007 (5) 0.0091 (5) 0.0027 (5)
C6 0.0202 (6) 0.0200 (6) 0.0186 (6) −0.0016 (5) 0.0106 (5) −0.0002 (5)
C7 0.0142 (6) 0.0211 (6) 0.0143 (6) −0.0007 (4) 0.0058 (5) −0.0037 (5)
C8 0.0168 (6) 0.0176 (6) 0.0108 (5) 0.0018 (4) 0.0045 (5) −0.0003 (4)
C9 0.0175 (6) 0.0155 (6) 0.0125 (5) −0.0012 (4) 0.0075 (5) −0.0006 (4)
C10 0.0564 (12) 0.0239 (8) 0.0302 (9) 0.0173 (8) 0.0241 (9) 0.0093 (7)
C11 0.0188 (7) 0.0267 (8) 0.0339 (8) −0.0059 (6) 0.0134 (6) −0.0047 (6)
C12 0.0183 (7) 0.0265 (7) 0.0254 (7) 0.0030 (5) 0.0089 (6) 0.0112 (6)

Geometric parameters (Å, °)

O1—C9 1.3750 (16) C5—H5 0.952 (19)
O1—C1 1.3801 (17) C6—C7 1.395 (2)
O2—C1 1.2085 (17) C6—H6 0.96 (2)
O3—C8 1.3701 (16) C7—C8 1.4025 (19)
O3—C10 1.428 (2) C8—C9 1.3912 (19)
O4—C7 1.3640 (17) C10—H10A 1.01 (3)
O4—C11 1.4334 (19) C10—H10B 0.92 (3)
C1—C2 1.4618 (19) C10—H10C 1.02 (3)
C2—C3 1.3592 (19) C11—H11A 1.02 (2)
C2—C2i 1.482 (3) C11—H11B 1.00 (2)
C3—C4 1.4472 (19) C11—H11C 0.963 (19)
C3—C12 1.5036 (19) C12—H12A 1.01 (2)
C4—C5 1.3993 (19) C12—H12B 0.97 (2)
C4—C9 1.4034 (18) C12—H12C 0.97 (2)
C5—C6 1.384 (2)
C9—O1—C1 121.36 (10) O3—C8—C9 121.00 (12)
C8—O3—C10 114.77 (12) O3—C8—C7 120.42 (12)
C7—O4—C11 116.63 (12) C9—C8—C7 118.42 (12)
O2—C1—O1 116.99 (12) O1—C9—C8 115.95 (11)
O2—C1—C2 125.28 (13) O1—C9—C4 121.49 (12)
O1—C1—C2 117.72 (11) C8—C9—C4 122.56 (12)
C3—C2—C1 121.77 (12) O3—C10—H10A 108.3 (16)
C3—C2—C2i 123.20 (11) O3—C10—H10B 108.3 (15)
C1—C2—C2i 115.03 (10) H10A—C10—H10B 106 (2)
C2—C3—C4 118.80 (12) O3—C10—H10C 108.6 (16)
C2—C3—C12 121.60 (13) H10A—C10—H10C 115 (2)
C4—C3—C12 119.59 (12) H10B—C10—H10C 110 (2)
C5—C4—C9 117.13 (12) O4—C11—H11A 111.7 (13)
C5—C4—C3 124.03 (12) O4—C11—H11B 112.6 (11)
C9—C4—C3 118.80 (12) H11A—C11—H11B 108.8 (17)
C6—C5—C4 121.74 (13) O4—C11—H11C 104.2 (11)
C6—C5—H5 119.7 (11) H11A—C11—H11C 107.7 (16)
C4—C5—H5 118.6 (11) H11B—C11—H11C 111.8 (16)
C5—C6—C7 119.83 (13) C3—C12—H12A 111.0 (12)
C5—C6—H6 119.7 (13) C3—C12—H12B 110.3 (14)
C7—C6—H6 120.5 (13) H12A—C12—H12B 107.2 (17)
O4—C7—C6 124.46 (12) C3—C12—H12C 110.3 (12)
O4—C7—C8 115.26 (12) H12A—C12—H12C 110.5 (18)
C6—C7—C8 120.28 (13) H12B—C12—H12C 107.4 (17)
C9—O1—C1—O2 −179.03 (12) C5—C6—C7—O4 178.75 (12)
C9—O1—C1—C2 1.45 (18) C5—C6—C7—C8 −1.0 (2)
O2—C1—C2—C3 −178.65 (14) C10—O3—C8—C9 87.17 (17)
O1—C1—C2—C3 0.83 (19) C10—O3—C8—C7 −97.47 (17)
O2—C1—C2—C2i 1.3 (2) O4—C7—C8—O3 6.82 (18)
O1—C1—C2—C2i −179.20 (11) C6—C7—C8—O3 −173.39 (12)
C1—C2—C3—C4 −2.0 (2) O4—C7—C8—C9 −177.70 (11)
C2i—C2—C3—C4 178.01 (13) C6—C7—C8—C9 2.09 (19)
C1—C2—C3—C12 178.72 (13) C1—O1—C9—C8 176.73 (11)
C2i—C2—C3—C12 −1.3 (2) C1—O1—C9—C4 −2.48 (18)
C2—C3—C4—C5 −176.43 (13) O3—C8—C9—O1 −5.18 (18)
C12—C3—C4—C5 2.8 (2) C7—C8—C9—O1 179.37 (11)
C2—C3—C4—C9 1.01 (19) O3—C8—C9—C4 174.02 (12)
C12—C3—C4—C9 −179.71 (13) C7—C8—C9—C4 −1.42 (19)
C9—C4—C5—C6 1.4 (2) C5—C4—C9—O1 178.84 (11)
C3—C4—C5—C6 178.94 (13) C3—C4—C9—O1 1.22 (19)
C4—C5—C6—C7 −0.8 (2) C5—C4—C9—C8 −0.32 (19)
C11—O4—C7—C6 −0.66 (19) C3—C4—C9—C8 −177.94 (12)
C11—O4—C7—C8 179.12 (12)

Symmetry codes: (i) −x, y, −z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C6—H6···Cg1ii 0.96 (2) 2.86 (2) 3.676 (2) 143.5 (18)

Symmetry codes: (ii) x, −y, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2417).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.
  2. Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Carlton, B. D., Aubrun, J. C. & Simon, G. S. (1996). Fundam. Appl. Toxicol.30, 145–151. [DOI] [PubMed]
  4. Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst.19, 105–107.
  5. El-Agrody, A. M., Abd El-Latif, M. S., El-Hady, N. A., Fakery, A. H. & Bedair, A. H. (2001). Molecules, 6, 519–527.
  6. El-Farargy, A. F. (1991). Egypt. J. Pharm. Sci, 32, 625–625.
  7. Emmanuel-Giota, A. A., Fylaktakidou, K. C., Hadjipavlou-Litina, D. J., Litinas, K. E. & Nicolaides, D. N. (2001). J. Heterocycl. Chem.38, 3, 717–722.
  8. Ghate, M., Kusanur, R. A. & Kulkarni, M. V. (2005). Eur. J. Med. Chem.40, 882–887. [DOI] [PubMed]
  9. Kennedy, R. O. & Thornes, R. D. (1997). Coumarins: Biology, Applications and Mode of Action New York: John Wiley & Sons.
  10. Laakso, J. A., Narske, E. D., Gloer, J. B., Wicklow, D. T. & Dowd, P. F. (1994). J. Nat. Prod., 57, 128–133. [DOI] [PubMed]
  11. Nofal, Z. M., El-Zahar, M. & Abd El-Karim, S. (2000). Molecules, 5, 99–113.
  12. Pratibha, S. & Shreeya, P. (1999). Indian J. Chem.38B, 1139–1142.
  13. Shaker, R. M. (1996). Pharmazie, 51, 148–148. [PubMed]
  14. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  15. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  16. Yang, H., Protiva, P., Gil, R. R., Jiang, B., Baggett, S., Basile, M. J., Reynertson, K. A., Weinstein, I. B. & Kennelly, E. J. (2005). Planta Med.71, 852–60. [DOI] [PubMed]
  17. Zhou, P., Takaishi, Y. & Duan, H. (2000). Phytochemistry, 53, 689–697. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809017334/is2417sup1.cif

e-65-o1294-sup1.cif (17.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809017334/is2417Isup2.hkl

e-65-o1294-Isup2.hkl (169.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES