Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 May 29;65(Pt 6):o1444. doi: 10.1107/S1600536809019618

1,1′,3,3′,5,5′-Hexamethyl­spiro­[furo[2,3-d]pyrimidine-6(5H),5′-pyrimidine]-2,2′,4,4′,6′(1H,3H,1′H,3′H,5′H)-penta­one

Nader Noroozi Pesyan a,*, Saeed Rastgar a, Yaser Hosseini a
PMCID: PMC2969643  PMID: 21583282

Abstract

In the title mol­ecule, C15H18N4O6, the fused 2,3-dihydro­furan ring has an envelope conformation and the spiro pyrimidine ring has a half-chair conformation. In the crystal, short inter­molecular O⋯C contacts of 2.835 (4) and 2.868 (4) Å between the carbonyl groups indicate the existence of electrostatic inter­actions, which link the mol­ecules into corrugated sheets parallel to the ab plane.

Related literature

For applications of furo[2,3-d]pyrimidine derivatives, see Cody et al. (1997). For a related crystal structure, see Malathy Sony et al. (2002).graphic file with name e-65-o1444-scheme1.jpg

Experimental

Crystal data

  • C15H18N4O6

  • M r = 350.33

  • Orthorhombic, Inline graphic

  • a = 8.0122 (9) Å

  • b = 11.9181 (14) Å

  • c = 16.4037 (19) Å

  • V = 1566.4 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 120 K

  • 0.21 × 0.14 × 0.12 mm

Data collection

  • Bruker SMART 1000 CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1998) T min = 0.980, T max = 0.989

  • 15042 measured reflections

  • 1964 independent reflections

  • 1589 reflections with I > 2σ(I)

  • R int = 0.041

Refinement

  • R[F 2 > 2σ(F 2)] = 0.047

  • wR(F 2) = 0.089

  • S = 1.01

  • 1964 reflections

  • 232 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.22 e Å−3

Data collection: SMART (Bruker, 1998); cell refinement: SAINT-Plus (Bruker, 1998); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809019618/cv2553sup1.cif

e-65-o1444-sup1.cif (20.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809019618/cv2553Isup2.hkl

e-65-o1444-Isup2.hkl (96.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected interatomic distances (Å).

C8⋯O2i 2.835 (4)
C3⋯O5ii 2.868 (4)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

This work was supported by the Urmia University Research Council. We also thank Professor M. Yu. Antipin and Dr Z. Starikova for the X-ray data collection at the X-ray Structural Centre (XRSC), Moscow, Russia.

supplementary crystallographic information

Comment

Fused pyrimidine compounds are valued in view of their well-known biological properties. As example, the furo[2,3-d]pyrimidine antifolate derivative introduced as novel classical antitumor agent (Cody et al., 1997). Herewith we present the title compound, (I).

In (I) (Fig. 1),the fused 2,3-dihydrofuran ring has an envelope conformation, and spiro pyrimidine ring has a half-chair conformation. Spiro pyrimidine ring is nearly perpendicular to 2,3-dihydro furan ring moiety, as was observed earlier in the related compound (Malathy Sony et al., 2002). Torsion angles C2–C1–O4–C7 and C2–C1–C5–C6 are -99.39 (3)° and 94.87 (3)°, respectively. In the crystal, short intermolecular O···C contacts (Table 1) between the carbonyl groups prove an existing of electrostatic interactions, which link the molecules into corrugated sheets parallel to ab plane.

Experimental

In a 50 ml round bottom flask (in an ice-bath) equipped with magnetic stirrer was added 200 mg (1.89 mmol) cyanogen bromide in 10 ml acetone. Then a solution of 295 mg (1.89 mmol) 1,3-dimethylbarbituric acid and 202 mg (2.00 mmol) triethylamine in acetone was added drop wise by reparatory funnel during 1 h. The white solid precipitated after few minutes and the color of liquid turned red. Initially, the precipitate was dissolved in acetone. A white crystalline colorless solid was formed after allowing the solution to stand overnight (228 mg, 50% yield) as a white crystalline solid, m.p. 210–212 °C (decomps.); FT—IR (KBr), ν, cm-1: 2981.54, 2954.71, 1689.08, 1646.35; 1H NMR(CDCl3, 300 MHz) δ 3.434 (s, 3H); 3.355 (s, 6H), 3.283 (s, 3H), 1.402 (s,6H); 13C NMR (CDCl3, 75 MHz) δ 164.317, 160.207, 158.898, 151.033, 150.145, 93.220, 91.139, 53.872, 29.625, 29.081, 27.852, 23.318.

Refinement

The C-bound H atoms were geometrically positioned (C–H 0.98 Å) and refined as riding, with Uiso(H) = 1.2-1.5 Ueq(C). In the absence of significant anomalous scatterers, 1855 Friedel pairs were merged before the final refinement.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound showing the atomic numbering and 50% probability displacement ellipsoids.

Crystal data

C15H18N4O6 Dx = 1.486 Mg m3
Mr = 350.33 Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121 Cell parameters from 985 reflections
a = 8.0122 (9) Å θ = 3–25°
b = 11.9181 (14) Å µ = 0.12 mm1
c = 16.4037 (19) Å T = 120 K
V = 1566.4 (3) Å3 Prism, white
Z = 4 0.21 × 0.14 × 0.12 mm
F(000) = 736

Data collection

Bruker SMART 1000 CCD area-detector diffractometer 1964 independent reflections
Radiation source: fine-focus sealed tube 1589 reflections with I > 2σ(I)
graphite Rint = 0.041
φ and ω scans θmax = 27.0°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Sheldrick, 1998) h = −10→10
Tmin = 0.980, Tmax = 0.989 k = −15→15
15042 measured reflections l = −20→20

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.089 H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.01P)2 + 2P] where P = (Fo2 + 2Fc2)/3
1964 reflections (Δ/σ)max < 0.001
232 parameters Δρmax = 0.20 e Å3
0 restraints Δρmin = −0.22 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.5464 (3) 0.52840 (19) 0.75372 (15) 0.0307 (6)
O2 0.8328 (3) 0.8456 (2) 0.69785 (15) 0.0358 (6)
O3 0.6235 (3) 0.7991 (2) 0.94992 (14) 0.0352 (6)
O4 0.4987 (3) 0.59548 (19) 0.90811 (15) 0.0262 (5)
O5 −0.0582 (3) 0.6474 (2) 0.83863 (15) 0.0333 (6)
O6 0.0962 (3) 0.3545 (2) 1.00229 (15) 0.0306 (6)
N1 0.6700 (4) 0.6929 (2) 0.71936 (16) 0.0247 (6)
N2 0.6981 (4) 0.8365 (2) 0.81937 (16) 0.0251 (6)
N4 0.0212 (3) 0.5008 (2) 0.92003 (17) 0.0242 (6)
N5 0.3017 (3) 0.4687 (2) 0.95490 (17) 0.0242 (6)
C1 0.5068 (4) 0.6811 (3) 0.84600 (19) 0.0229 (7)
C2 0.5782 (4) 0.6254 (3) 0.7708 (2) 0.0250 (7)
C3 0.7394 (4) 0.7956 (3) 0.7427 (2) 0.0254 (7)
C4 0.6170 (4) 0.7750 (3) 0.8785 (2) 0.0252 (7)
C5 0.3186 (4) 0.7229 (3) 0.8311 (2) 0.0276 (8)
C6 0.2301 (4) 0.6208 (3) 0.8654 (2) 0.0242 (7)
C7 0.3382 (4) 0.5599 (3) 0.9086 (2) 0.0236 (7)
C8 0.1355 (4) 0.4355 (3) 0.9614 (2) 0.0237 (7)
C9 0.0562 (4) 0.5958 (3) 0.8712 (2) 0.0258 (8)
C10 0.7301 (5) 0.6431 (3) 0.6434 (2) 0.0334 (8)
H10A 0.6364 0.6084 0.6143 0.050*
H10B 0.8142 0.5858 0.6557 0.050*
H10C 0.7799 0.7016 0.6092 0.050*
C11 0.7816 (5) 0.9384 (3) 0.8465 (2) 0.0321 (8)
H11A 0.7027 0.9851 0.8771 0.048*
H11B 0.8223 0.9802 0.7990 0.048*
H11C 0.8760 0.9186 0.8817 0.048*
C12 0.2810 (5) 0.7474 (3) 0.7410 (2) 0.0337 (9)
H12A 0.1620 0.7645 0.7346 0.051*
H12B 0.3095 0.6817 0.7079 0.051*
H12C 0.3474 0.8119 0.7229 0.051*
C13 0.2770 (5) 0.8270 (3) 0.8822 (2) 0.0358 (9)
H13A 0.1572 0.8428 0.8784 0.054*
H13B 0.3400 0.8915 0.8615 0.054*
H13C 0.3072 0.8134 0.9392 0.054*
C14 −0.1530 (4) 0.4664 (3) 0.9244 (2) 0.0326 (8)
H14A −0.1596 0.3889 0.9442 0.049*
H14B −0.2034 0.4712 0.8701 0.049*
H14C −0.2133 0.5159 0.9619 0.049*
C15 0.4309 (4) 0.3990 (3) 0.9914 (2) 0.0303 (8)
H15A 0.5206 0.4469 1.0123 0.045*
H15B 0.4760 0.3479 0.9501 0.045*
H15C 0.3830 0.3553 1.0363 0.045*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0313 (14) 0.0252 (12) 0.0355 (13) −0.0023 (11) 0.0011 (12) −0.0009 (11)
O2 0.0412 (15) 0.0304 (13) 0.0357 (14) −0.0072 (13) 0.0071 (12) 0.0047 (11)
O3 0.0416 (16) 0.0377 (14) 0.0262 (12) −0.0048 (13) 0.0006 (12) −0.0017 (11)
O4 0.0207 (12) 0.0275 (12) 0.0304 (12) −0.0015 (10) −0.0002 (10) 0.0055 (11)
O5 0.0240 (12) 0.0359 (14) 0.0399 (14) 0.0027 (12) −0.0043 (12) 0.0057 (12)
O6 0.0257 (13) 0.0307 (13) 0.0353 (13) −0.0014 (11) 0.0014 (12) 0.0063 (12)
N1 0.0264 (15) 0.0257 (14) 0.0221 (13) 0.0007 (13) 0.0016 (12) 0.0010 (11)
N2 0.0262 (15) 0.0225 (14) 0.0267 (14) −0.0013 (12) 0.0014 (13) 0.0002 (12)
N4 0.0215 (14) 0.0243 (14) 0.0269 (14) 0.0011 (12) 0.0009 (12) −0.0002 (12)
N5 0.0228 (15) 0.0228 (14) 0.0268 (14) 0.0009 (12) 0.0004 (13) 0.0025 (12)
C1 0.0207 (15) 0.0247 (16) 0.0234 (16) −0.0003 (14) 0.0014 (14) 0.0014 (14)
C2 0.0215 (16) 0.0264 (17) 0.0272 (17) 0.0033 (15) −0.0023 (15) 0.0004 (15)
C3 0.0258 (18) 0.0242 (16) 0.0262 (16) −0.0007 (15) −0.0021 (15) 0.0017 (14)
C4 0.0227 (17) 0.0257 (17) 0.0274 (17) 0.0034 (14) 0.0007 (14) 0.0008 (14)
C5 0.0196 (16) 0.0285 (18) 0.0346 (18) 0.0030 (15) 0.0035 (15) 0.0044 (15)
C6 0.0218 (16) 0.0252 (17) 0.0255 (16) 0.0005 (14) 0.0028 (14) 0.0021 (14)
C7 0.0224 (17) 0.0210 (16) 0.0275 (17) −0.0015 (15) 0.0016 (15) −0.0016 (14)
C8 0.0225 (17) 0.0243 (17) 0.0244 (16) 0.0015 (15) 0.0015 (14) −0.0005 (15)
C9 0.0267 (18) 0.0261 (18) 0.0248 (17) 0.0020 (15) 0.0005 (15) −0.0016 (15)
C10 0.039 (2) 0.0317 (19) 0.0296 (18) 0.0008 (18) 0.0025 (17) −0.0012 (16)
C11 0.0331 (19) 0.0269 (18) 0.0363 (19) −0.0054 (16) 0.0001 (17) −0.0015 (16)
C12 0.0284 (19) 0.0342 (19) 0.038 (2) 0.0031 (17) −0.0037 (17) 0.0085 (17)
C13 0.0293 (19) 0.0268 (18) 0.051 (2) 0.0024 (16) 0.0097 (19) 0.0012 (18)
C14 0.0195 (17) 0.038 (2) 0.040 (2) −0.0035 (17) 0.0002 (16) 0.0034 (17)
C15 0.0242 (17) 0.0302 (19) 0.0364 (19) 0.0043 (16) −0.0023 (17) 0.0091 (16)

Geometric parameters (Å, °)

O1—C2 1.216 (4) C5—C13 1.534 (5)
O2—C3 1.206 (4) C5—C12 1.537 (5)
O3—C4 1.208 (4) C6—C7 1.334 (5)
O4—C7 1.354 (4) C6—C9 1.428 (5)
O4—C1 1.443 (4) C10—H10A 0.9800
O5—C9 1.226 (4) C10—H10B 0.9800
O6—C8 1.217 (4) C10—H10C 0.9800
N1—C2 1.378 (4) C11—H11A 0.9800
N1—C3 1.399 (4) C11—H11B 0.9800
N1—C10 1.462 (4) C11—H11C 0.9800
N2—C4 1.378 (4) C12—H12A 0.9800
N2—C3 1.389 (4) C12—H12B 0.9800
N2—C11 1.457 (4) C12—H12C 0.9800
N4—C8 1.380 (4) C13—H13A 0.9800
N4—C9 1.416 (4) C13—H13B 0.9800
N4—C14 1.457 (4) C13—H13C 0.9800
N5—C7 1.358 (4) C14—H14A 0.9800
N5—C8 1.393 (4) C14—H14B 0.9800
N5—C15 1.456 (4) C14—H14C 0.9800
C1—C2 1.513 (4) C15—H15A 0.9800
C1—C4 1.522 (5) C15—H15B 0.9800
C1—C5 1.607 (5) C15—H15C 0.9800
C5—C6 1.516 (5)
C8···O2i 2.835 (4) C3···O5ii 2.868 (4)
C7—O4—C1 105.6 (3) O6—C8—N5 121.0 (3)
C2—N1—C3 123.8 (3) N4—C8—N5 115.8 (3)
C2—N1—C10 117.4 (3) O5—C9—N4 120.0 (3)
C3—N1—C10 117.2 (3) O5—C9—C6 126.6 (3)
C4—N2—C3 124.3 (3) N4—C9—C6 113.4 (3)
C4—N2—C11 116.4 (3) N1—C10—H10A 109.5
C3—N2—C11 117.3 (3) N1—C10—H10B 109.5
C8—N4—C9 126.8 (3) H10A—C10—H10B 109.5
C8—N4—C14 116.9 (3) N1—C10—H10C 109.5
C9—N4—C14 116.3 (3) H10A—C10—H10C 109.5
C7—N5—C8 118.5 (3) H10B—C10—H10C 109.5
C7—N5—C15 122.2 (3) N2—C11—H11A 109.5
C8—N5—C15 119.1 (3) N2—C11—H11B 109.5
O4—C1—C2 106.4 (3) H11A—C11—H11B 109.5
O4—C1—C4 107.4 (3) N2—C11—H11C 109.5
C2—C1—C4 112.9 (3) H11A—C11—H11C 109.5
O4—C1—C5 106.5 (3) H11B—C11—H11C 109.5
C2—C1—C5 111.5 (3) C5—C12—H12A 109.5
C4—C1—C5 111.7 (3) C5—C12—H12B 109.5
O1—C2—N1 121.7 (3) H12A—C12—H12B 109.5
O1—C2—C1 121.7 (3) C5—C12—H12C 109.5
N1—C2—C1 116.4 (3) H12A—C12—H12C 109.5
O2—C3—N2 121.8 (3) H12B—C12—H12C 109.5
O2—C3—N1 120.8 (3) C5—C13—H13A 109.5
N2—C3—N1 117.3 (3) C5—C13—H13B 109.5
O3—C4—N2 122.4 (3) H13A—C13—H13B 109.5
O3—C4—C1 122.6 (3) C5—C13—H13C 109.5
N2—C4—C1 114.7 (3) H13A—C13—H13C 109.5
C6—C5—C13 110.2 (3) H13B—C13—H13C 109.5
C6—C5—C12 114.7 (3) N4—C14—H14A 109.5
C13—C5—C12 109.2 (3) N4—C14—H14B 109.5
C6—C5—C1 97.7 (3) H14A—C14—H14B 109.5
C13—C5—C1 111.8 (3) N4—C14—H14C 109.5
C12—C5—C1 112.9 (3) H14A—C14—H14C 109.5
C7—C6—C9 119.0 (3) H14B—C14—H14C 109.5
C7—C6—C5 109.3 (3) N5—C15—H15A 109.5
C9—C6—C5 130.4 (3) N5—C15—H15B 109.5
C6—C7—O4 116.3 (3) H15A—C15—H15B 109.5
C6—C7—N5 126.4 (3) N5—C15—H15C 109.5
O4—C7—N5 117.3 (3) H15A—C15—H15C 109.5
O6—C8—N4 123.1 (3) H15B—C15—H15C 109.5
C7—O4—C1—C2 −99.4 (3) C4—C1—C5—C13 −22.4 (4)
C7—O4—C1—C4 139.5 (3) O4—C1—C5—C12 −141.8 (3)
C7—O4—C1—C5 19.7 (3) C2—C1—C5—C12 −26.1 (4)
C3—N1—C2—O1 −166.1 (3) C4—C1—C5—C12 101.2 (3)
C10—N1—C2—O1 −0.8 (5) C13—C5—C6—C7 −101.6 (3)
C3—N1—C2—C1 19.0 (5) C12—C5—C6—C7 134.8 (3)
C10—N1—C2—C1 −175.7 (3) C1—C5—C6—C7 15.1 (4)
O4—C1—C2—O1 35.2 (4) C13—C5—C6—C9 64.9 (5)
C4—C1—C2—O1 152.8 (3) C12—C5—C6—C9 −58.7 (5)
C5—C1—C2—O1 −80.6 (4) C1—C5—C6—C9 −178.4 (4)
O4—C1—C2—N1 −149.9 (3) C9—C6—C7—O4 −172.6 (3)
C4—C1—C2—N1 −32.3 (4) C5—C6—C7—O4 −4.3 (4)
C5—C1—C2—N1 94.4 (3) C9—C6—C7—N5 4.8 (5)
C4—N2—C3—O2 −168.0 (3) C5—C6—C7—N5 173.1 (3)
C11—N2—C3—O2 −4.5 (5) C1—O4—C7—C6 −10.5 (4)
C4—N2—C3—N1 11.2 (5) C1—O4—C7—N5 171.8 (3)
C11—N2—C3—N1 174.8 (3) C8—N5—C7—C6 −2.2 (5)
C2—N1—C3—O2 172.2 (3) C15—N5—C7—C6 171.9 (3)
C10—N1—C3—O2 6.9 (5) C8—N5—C7—O4 175.2 (3)
C2—N1—C3—N2 −7.0 (5) C15—N5—C7—O4 −10.7 (5)
C10—N1—C3—N2 −172.3 (3) C9—N4—C8—O6 −179.9 (3)
C3—N2—C4—O3 158.8 (3) C14—N4—C8—O6 −2.3 (5)
C11—N2—C4—O3 −4.9 (5) C9—N4—C8—N5 1.2 (5)
C3—N2—C4—C1 −26.5 (5) C14—N4—C8—N5 178.7 (3)
C11—N2—C4—C1 169.9 (3) C7—N5—C8—O6 −179.8 (3)
O4—C1—C4—O3 −32.7 (4) C15—N5—C8—O6 5.9 (5)
C2—C1—C4—O3 −149.7 (3) C7—N5—C8—N4 −0.9 (5)
C5—C1—C4—O3 83.7 (4) C15—N5—C8—N4 −175.1 (3)
O4—C1—C4—N2 152.5 (3) C8—N4—C9—O5 −179.0 (3)
C2—C1—C4—N2 35.5 (4) C14—N4—C9—O5 3.5 (5)
C5—C1—C4—N2 −91.1 (3) C8—N4—C9—C6 1.3 (5)
O4—C1—C5—C6 −20.8 (3) C14—N4—C9—C6 −176.3 (3)
C2—C1—C5—C6 94.9 (3) C7—C6—C9—O5 176.2 (3)
C4—C1—C5—C6 −137.8 (3) C5—C6—C9—O5 10.8 (6)
O4—C1—C5—C13 94.6 (3) C7—C6—C9—N4 −4.1 (5)
C2—C1—C5—C13 −149.7 (3) C5—C6—C9—N4 −169.5 (3)

Symmetry codes: (i) −x+1, y−1/2, −z+3/2; (ii) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2553).

References

  1. Bruker (1998). SAINT-Plus and SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Cody, V., Galitsky, N., Luft, J. R., Pangborn, W., Gangjee, A., Devraj, R., Queener, S. F. & Blakley, R. L. (1997). Acta Cryst. D53, 638–649. [DOI] [PubMed]
  3. Malathy Sony, S. M., Kuppayee, M., Ponnuswamy, M. N., Bhasker Reddy, D., Padmavathi, V. & Fun, H.-K. (2002). Acta Cryst. C58, o678–o680. [DOI] [PubMed]
  4. Sheldrick, G. M. (1998). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809019618/cv2553sup1.cif

e-65-o1444-sup1.cif (20.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809019618/cv2553Isup2.hkl

e-65-o1444-Isup2.hkl (96.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES