Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 May 14;65(Pt 6):o1241. doi: 10.1107/S1600536809016547

2,8-Dimethyl­tricyclo­[5.3.1.13,9]dodecane-syn-2,syn-8-diol–propanoic acid (1/1)

Yuji Mizobe a,, Roger Bishop a, Donald C Craig a, Marcia L Scudder a,*
PMCID: PMC2969646  PMID: 21583108

Abstract

The racemic title compound, C14H24O2·C3H6O2, crystallizes in the monoclinic space group P21/c as a 1:1 diol/carboxylic acid cocrystal, AB. The lattice incorporates infinite chains of the alcohol–carboxylic acid–alcohol supra­molecular synthon, (⋯O—H⋯O=C(R)—O—H⋯O—H⋯), in which the hydrogen-bonded mol­ecules (ABA)n surround a pseudo-threefold screw axis. The carboxylic acid group functions like an extended alcohol hydr­oxy group. Each diol, A, takes part in two such threefold screw arrangements, leading to a hydrogen-bonded layer structure, with adjacent layers containing diol mol­ecules of opposite handedness. The central C atom of the propano bridge is disordered over two sites of occupancies 0.75 (1) and 0.25 (1). The methyl group of the propanoic acid molecule is disordered over two sites of occupancies 0.68 (1) and 0.32 (1).

Related literature

For related literature on the diol component of the title compound, see: Bishop (2009); Dance et al. (1986). Two members of this diol family have been found previously to form such 1:1 compounds with carboxylic acids, see: Alshahateet et al. (2004); Yue et al. (2006).graphic file with name e-65-o1241-scheme1.jpg

Experimental

Crystal data

  • C14H24O2·C3H6O2

  • M r = 298.4

  • Monoclinic, Inline graphic

  • a = 7.390 (4) Å

  • b = 13.218 (5) Å

  • c = 18.469 (8) Å

  • β = 110.23 (2)°

  • V = 1693 (1) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 294 K

  • 0.10 mm (radius)

Data collection

  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: none

  • 3188 measured reflections

  • 2942 independent reflections

  • 1786 reflections with I > 2σ(I)

  • R int = 0.014

  • 1 standard reflections frequency: 30 min intensity decay: 29%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.056

  • wR(F 2) = 0.070

  • S = 1.32

  • 2942 reflections

  • 199 parameters

  • H-atom parameters constrained

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.41 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software; data reduction: local program; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: RAELS (Rae, 2000); molecular graphics: ORTEP-3 (Farrugia, 1997) and CrystalMaker (Palmer, 2005); software used to prepare material for publication: local programs.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809016547/hg2504sup1.cif

e-65-o1241-sup1.cif (24.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809016547/hg2504Isup2.hkl

e-65-o1241-Isup2.hkl (109.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H101⋯O2Pi 1.00 1.82 2.822 (3) 180
O2—H102⋯O1ii 1.00 1.75 2.746 (3) 180
O1P—H101P⋯O2 1.00 1.64 2.635 (3) 180

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

This research was supported by the Australian Research Council.

supplementary crystallographic information

Comment

The diol component, A, of the title compound, A—B, is a member of the helical tubuland host family, a major characteristic of which is formation of lattice inclusion compounds in the chiral space group P3121 (or its enantiomorph P3221) (Bishop, 2009). A forms this structure when crystallized from non-protic solvents (Dance et al., 1986). Some, but by no means all, of this family of diols can also form hydrogen-bonded co-crystals when crystallized from protic solvents. Two members of this diol family have been found previously to form such 1:1 compounds with carboxylic acids (Alshahateet et al., 2004; Yue et al., 2006). These co-crystals utilize infinite chains of an alcohol–carboxylic acid–alcohol supramolecular sython, (···O—H···O═ C(R)—O—H···O—H···), in which the carboxylic acid group behaves as if it were an extended alcohol hydroxy group. The diol, A, in the title compound is now found to be the third helical tubuland diol to behave in this manner (Fig. 1). Its 1:1 co-crystals with propanoic acid, A—B, contain chains of hydrogen-bonded molecules (A—B—A-)n surrounding pseudo-threefold screw axes resulting in formation of chiral layers as each diol, A, hydrogen bonds within two such threefold screw arrangements (Figs. 2 and 3). Adjacent layers contain diol molecules with the opposite handedness. The resultant lattice is essentially isostructural with the previous examples in P21/c found to use this novel supramolecular synthon.

Experimental

Racemic 2,8-dimethyltricyclo[5.3.1.13,9]dodecane-syn-2,syn-8-diol was prepared as described (Dance et al., 1986) and the X-ray quality co-crystals obtained by slow concentration of a propanoic acid solution.

Refinement

The central C atom of the propano bridge (C13) was disordered over two sites of occupancies 0.75 (1) and 0.25. For the propanoic acid molecules, the methyl group, C3P, was disordered over two sites of occupancies 0.68 (1) and 0.32. H atoms attached to C were included at calculated positions (C—H = 1.0 Å). The disorder of C13 was taken into account when calculating the H atom positions and occupancies for C13 and the adjacent C12 and C14. The hydroxy H atoms were located on a difference map, and were then fixed at a position along the O···O vector with O—H = 1.0 Å. All H atoms were refined with isotropic thermal parameters equivalent to those of the atom to which they were bonded.

Figures

Fig. 1.

Fig. 1.

Molecular structure of the A and B components of the title compound, with ellipsoids drawn at the 30% probability level.

Fig. 2.

Fig. 2.

One layer of the structure showing the intermolecular hydrogen bonding linking A and B molecules in chains. C atoms of the propanoic acid are coloured pink.

Fig. 3.

Fig. 3.

The orthogonal view showing the pseudo 31 symmetric nature of the arrangement in two adjacent layers. C atoms of the propanoic acid are coloured pink.

Crystal data

C14H24O2·C3H6O2 F(000) = 656.0
Mr = 298.4 Dx = 1.17 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 7.390 (4) Å Cell parameters from 11 reflections
b = 13.218 (5) Å θ = 11–12°
c = 18.469 (8) Å µ = 0.08 mm1
β = 110.23 (2)° T = 294 K
V = 1693 (1) Å3 Irregular, colourless
Z = 4 0.10 mm (radius)

Data collection

Enraf–Nonius CAD-4 diffractometer θmax = 25°
ω/2θ scans h = 0→8
3188 measured reflections k = 0→15
2942 independent reflections l = −22→22
1786 reflections with I > 2σ(I) 1 standard reflections every 30 min
Rint = 0.014 intensity decay: 29%

Refinement

Refinement on F 0 restraints
R[F2 > 2σ(F2)] = 0.056 H-atom parameters constrained
wR(F2) = 0.070 w = 1/[σ2(F) + 0.0004F2]
S = 1.32 (Δ/σ)max = 0.003
2942 reflections Δρmax = 0.39 e Å3
199 parameters Δρmin = −0.41 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
O1 0.7617 (2) 0.2866 (1) 0.2685 (1) 0.0659 (5)
O2 0.4331 (2) 0.66382 (11) 0.16336 (9) 0.0559 (5)
C1 0.4896 (3) 0.3428 (2) 0.1636 (1) 0.0495 (6)
C2 0.7107 (3) 0.3385 (2) 0.1951 (1) 0.0496 (6)
C3 0.8088 (3) 0.4441 (2) 0.2035 (1) 0.0513 (6)
C4 0.6996 (3) 0.5155 (2) 0.1356 (1) 0.0503 (6)
C5 0.4789 (3) 0.5105 (2) 0.1032 (1) 0.0475 (6)
C6 0.3662 (3) 0.5599 (2) 0.1493 (1) 0.0472 (6)
C7 0.3899 (3) 0.5039 (2) 0.2262 (1) 0.0528 (6)
C8 0.3898 (4) 0.3878 (2) 0.2161 (1) 0.0579 (7)
C9 0.4195 (3) 0.4001 (2) 0.0871 (1) 0.0536 (6)
C10 0.7824 (4) 0.2728 (2) 0.1425 (2) 0.0718 (8)
C11 0.1519 (4) 0.5658 (2) 0.1009 (2) 0.0656 (8)
C12 0.8701 (4) 0.4943 (2) 0.2831 (2) 0.0695 (8)
C13 0.7455 (5) 0.5768 (3) 0.2979 (2) 0.067 (1) 0.75
C13' 0.7388 (9) 0.4872 (7) 0.3304 (4) 0.067 (1) 0.25
C14 0.5481 (5) 0.5443 (2) 0.2994 (1) 0.0707 (8)
O1P 0.5377 (3) 0.7775 (1) 0.0674 (1) 0.0740 (6)
O2P 0.8391 (3) 0.7734 (2) 0.1482 (1) 0.0801 (6)
C1P 0.7228 (4) 0.7995 (2) 0.0878 (2) 0.0667 (7)
C2P 0.7710 (5) 0.8619 (3) 0.0287 (2) 0.096 (1)
C3P 0.9587 (9) 0.8359 (5) 0.0180 (3) 0.119 (2) 0.68
C3'P 0.6746 (18) 0.9630 (8) 0.0220 (6) 0.119 (2) 0.32
H101 0.9031 0.2819 0.2980 0.066
H102 0.3622 0.7085 0.1882 0.056
HC1 0.4427 0.2716 0.1523 0.049
HC3 0.9335 0.4301 0.1955 0.051
H1C4 0.7466 0.5001 0.0921 0.050
H2C4 0.7357 0.5865 0.1536 0.050
HC5 0.4377 0.5454 0.0520 0.047
HC7 0.2666 0.5181 0.2354 0.053
H1C8 0.2520 0.3657 0.1953 0.058
H2C8 0.4535 0.3580 0.2686 0.058
H1C9 0.2759 0.3951 0.0636 0.054
H2C9 0.4795 0.3706 0.0509 0.054
H1C10 0.7499 0.3061 0.0909 0.072
H2C10 0.9254 0.2643 0.1660 0.072
H3C10 0.7188 0.2050 0.1360 0.072
H1C11 0.0979 0.4958 0.0894 0.066
H2C11 0.0820 0.6035 0.1301 0.066
H3C11 0.1354 0.6018 0.0514 0.066
H1C12 1.0007 0.5242 0.2929 0.069 0.75
H2C12 0.8794 0.4394 0.3215 0.069 0.75
H1'C12 0.8886 0.5679 0.2752 0.069 0.25
H2'C12 0.9963 0.4635 0.3147 0.069 0.25
H1C13 0.7237 0.6289 0.2565 0.067 0.75
H2C13 0.8185 0.6079 0.3491 0.067 0.75
H1C13' 0.8114 0.5142 0.3831 0.067 0.25
H2C13' 0.7085 0.4141 0.3342 0.067 0.25
H1C14 0.5727 0.4897 0.3391 0.071 0.75
H2C14 0.4921 0.6047 0.3166 0.071 0.75
H1'C14 0.4920 0.5456 0.3415 0.071 0.25
H2'C14 0.5785 0.6150 0.2880 0.071 0.25
H101P 0.4980 0.7344 0.1038 0.074
H1C2P 0.7770 0.9345 0.0447 0.096 0.68
H2C2P 0.6649 0.8527 −0.0221 0.096 0.68
H1'C2P 0.7236 0.8267 −0.0224 0.096 0.32
H2'C2P 0.9138 0.8713 0.0452 0.096 0.32
H1C3P 0.9777 0.8811 −0.0222 0.119 0.68
H2C3P 1.0675 0.8456 0.0679 0.119 0.68
H3C3P 0.9554 0.7638 0.0011 0.119 0.68
H1C3P' 0.7056 1.0050 −0.0172 0.119 0.32
H2C3P' 0.5318 0.9533 0.0056 0.119 0.32
H3C3P' 0.7219 0.9979 0.0732 0.119 0.32

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.052 (1) 0.071 (1) 0.071 (1) −0.0012 (9) 0.0151 (9) 0.0241 (9)
O2 0.060 (1) 0.046 (1) 0.068 (1) −0.0018 (8) 0.0298 (8) −0.0045 (8)
C1 0.049 (1) 0.041 (1) 0.059 (1) −0.008 (1) 0.021 (1) −0.002 (1)
C2 0.050 (1) 0.045 (1) 0.057 (1) −0.001 (1) 0.022 (1) 0.003 (1)
C3 0.046 (1) 0.048 (1) 0.061 (2) −0.002 (1) 0.020 (1) 0.000 (1)
C4 0.051 (1) 0.047 (1) 0.060 (2) −0.002 (1) 0.028 (1) 0.000 (1)
C5 0.051 (1) 0.049 (1) 0.044 (1) −0.003 (1) 0.019 (1) 0.001 (1)
C6 0.047 (1) 0.043 (1) 0.054 (1) −0.003 (1) 0.020 (1) −0.002 (1)
C7 0.053 (2) 0.058 (1) 0.056 (1) 0.003 (1) 0.030 (1) 0.005 (1)
C8 0.054 (2) 0.057 (2) 0.070 (2) −0.002 (1) 0.031 (1) 0.007 (1)
C9 0.054 (2) 0.052 (1) 0.053 (2) −0.003 (1) 0.016 (1) −0.005 (1)
C10 0.067 (2) 0.058 (2) 0.099 (2) 0.005 (1) 0.039 (2) −0.010 (2)
C11 0.047 (2) 0.070 (2) 0.074 (2) 0.002 (1) 0.014 (1) 0.004 (1)
C12 0.059 (2) 0.067 (2) 0.068 (2) 0.000 (1) 0.003 (1) −0.008 (1)
C13 0.069 (2) 0.068 (2) 0.055 (2) −0.005 (2) 0.008 (2) −0.015 (2)
C13' 0.069 (2) 0.068 (2) 0.055 (2) −0.005 (2) 0.008 (2) −0.015 (2)
C14 0.087 (2) 0.077 (2) 0.049 (2) 0.002 (2) 0.025 (1) −0.008 (1)
O1P 0.068 (1) 0.083 (1) 0.066 (1) −0.010 (1) 0.0154 (9) 0.008 (1)
O2P 0.067 (1) 0.087 (1) 0.074 (1) −0.013 (1) 0.008 (1) 0.011 (1)
C1P 0.073 (2) 0.058 (2) 0.067 (2) −0.012 (2) 0.022 (2) −0.002 (1)
C2P 0.105 (3) 0.099 (3) 0.084 (2) −0.020 (2) 0.031 (2) 0.017 (2)
C3P 0.136 (5) 0.143 (5) 0.083 (3) −0.002 (4) 0.046 (3) 0.024 (3)
C3'P 0.136 (5) 0.143 (5) 0.083 (3) −0.002 (4) 0.046 (3) 0.024 (3)

Geometric parameters (Å, °)

O1—C2 1.448 (3) C11—H2C11 1.000
O1—H101 1.000 C11—H3C11 1.000
O2—C6 1.453 (3) C12—C13 1.512 (4)
O2—H102 1.000 C12—C13' 1.516 (5)
C1—C2 1.535 (3) C12—H1C12 1.000
C1—C8 1.527 (3) C12—H2C12 1.000
C1—C9 1.527 (3) C12—H1'C12 1.000
C1—HC1 1.000 C12—H2'C12 1.000
C2—C3 1.555 (3) C13—C14 1.531 (4)
C2—C10 1.528 (3) C13—H1C13 1.000
C3—C4 1.555 (3) C13—H2C13 1.000
C3—C12 1.532 (3) C13'—C14 1.525 (5)
C3—HC3 1.000 C13'—H1C13' 1.000
C4—C5 1.532 (3) C13'—H2C13' 1.000
C4—H1C4 1.000 C14—H1C14 1.000
C4—H2C4 1.000 C14—H2C14 1.000
C5—C6 1.529 (3) O1P—C1P 1.319 (3)
C5—C9 1.524 (3) O1P—H101P 1.000
C5—HC5 1.000 O2P—C1P 1.199 (3)
C6—C7 1.556 (3) C1P—C2P 1.506 (4)
C6—C11 1.528 (3) C2P—C3P 1.507 (6)
C7—C8 1.547 (3) C2P—C3'P 1.499 (8)
C7—C14 1.545 (4) C2P—H1C2P 1.000
C7—HC7 1.000 C2P—H2C2P 1.000
C8—H1C8 1.000 C2P—H1'C2P 1.000
C8—H2C8 1.000 C2P—H2'C2P 1.000
C9—H1C9 1.000 C3P—H1C3P 1.000
C9—H2C9 1.000 C3P—H2C3P 1.000
C10—H1C10 1.000 C3P—H3C3P 1.000
C10—H2C10 1.000 C3'P—H1C3P' 1.000
C10—H3C10 1.000 C3'P—H2C3P' 1.000
C11—H1C11 1.000 C3'P—H3C3P' 1.000
C2—O1—H101 115.1 C6—C11—H1C11 109.5
C6—O2—H102 116.1 C6—C11—H2C11 109.5
C2—C1—C8 117.3 (2) C6—C11—H3C11 109.5
C2—C1—C9 110.2 (2) H1C11—C11—H2C11 109.5
C2—C1—HC1 106.9 H1C11—C11—H3C11 109.5
C8—C1—C9 108.1 (2) H2C11—C11—H3C11 109.5
C8—C1—HC1 106.9 C3—C12—C13 119.4 (2)
C9—C1—HC1 106.9 C3—C12—C13' 119.4 (4)
O1—C2—C1 105.7 (2) C3—C12—H1C12 106.9
O1—C2—C3 111.7 (2) C3—C12—H2C12 106.9
O1—C2—C10 106.9 (2) C3—C12—H1'C12 106.9
C1—C2—C3 113.8 (2) C3—C12—H2'C12 106.9
C1—C2—C10 109.8 (2) C13—C12—H1C12 106.9
C3—C2—C10 108.8 (2) C13—C12—H2C12 106.9
C2—C3—C4 111.7 (2) C13'—C12—H1'C12 106.9
C2—C3—C12 117.2 (2) C13'—C12—H2'C12 106.9
C2—C3—HC3 103.9 H1C12—C12—H2C12 109.5
C4—C3—C12 114.2 (2) H1'C12—C12—H2'C12 109.5
C4—C3—HC3 103.9 C12—C13—C14 116.4 (3)
C12—C3—HC3 103.9 C12—C13—H1C13 107.7
C3—C4—C5 118.3 (2) C12—C13—H2C13 107.7
C3—C4—H1C4 107.2 C14—C13—H1C13 107.7
C3—C4—H2C4 107.2 C14—C13—H2C13 107.7
C5—C4—H1C4 107.2 H1C13—C13—H2C13 109.5
C5—C4—H2C4 107.2 C12—C13'—C14 116.5 (4)
H1C4—C4—H2C4 109.5 C12—C13'—H1C13' 107.7
C4—C5—C6 118.4 (2) C12—C13'—H2C13' 107.7
C4—C5—C9 108.3 (2) C14—C13'—H1C13' 107.7
C4—C5—HC5 106.5 C14—C13'—H2C13' 107.7
C6—C5—C9 110.0 (2) H1C13'—C13'—H2C13' 109.5
C6—C5—HC5 106.5 C7—C14—C13 121.3 (2)
C9—C5—HC5 106.5 C7—C14—C13' 118.6 (4)
O2—C6—C5 106.6 (2) C7—C14—H1C14 106.4
O2—C6—C7 111.3 (2) C7—C14—H2C14 106.4
O2—C6—C11 106.0 (2) C13—C14—H1C14 106.4
C5—C6—C7 113.3 (2) C13—C14—H2C14 106.4
C5—C6—C11 110.5 (2) H1C14—C14—H2C14 109.5
C7—C6—C11 109.0 (2) C1P—O1P—H101P 116.7
C6—C7—C8 111.5 (2) O1P—C1P—O2P 122.8 (3)
C6—C7—C14 116.5 (2) O1P—C1P—C2P 113.2 (3)
C6—C7—HC7 104.2 O2P—C1P—C2P 124.0 (3)
C8—C7—C14 114.6 (2) C1P—C2P—C3P 115.4 (3)
C8—C7—HC7 104.2 C1P—C2P—C3'P 108.8 (5)
C14—C7—HC7 104.2 C1P—C2P—H1C2P 108.0
C1—C8—C7 118.9 (2) C1P—C2P—H2C2P 108.0
C1—C8—H1C8 107.1 C1P—C2P—H1'C2P 109.6
C1—C8—H2C8 107.1 C1P—C2P—H2'C2P 109.6
C7—C8—H1C8 107.1 H1C2P—C2P—H2C2P 109.5
C7—C8—H2C8 107.1 H1'C2P—C2P—H2'C2P 109.5
H1C8—C8—H2C8 109.5 C2P—C3P—H1C3P 109.5
C1—C9—C5 108.2 (2) C2P—C3P—H2C3P 109.5
C1—C9—H1C9 109.8 C2P—C3P—H3C3P 109.5
C1—C9—H2C9 109.8 H1C3P—C3P—H2C3P 109.5
C5—C9—H1C9 109.8 H1C3P—C3P—H3C3P 109.5
C5—C9—H2C9 109.8 H2C3P—C3P—H3C3P 109.5
H1C9—C9—H2C9 109.5 C2P—C3'P—H1C3P' 109.5
C2—C10—H1C10 109.5 C2P—C3'P—H2C3P' 109.5
C2—C10—H2C10 109.5 C2P—C3'P—H3C3P' 109.5
C2—C10—H3C10 109.5 H1C3P'—C3'P—H2C3P' 109.5
H1C10—C10—H2C10 109.5 H1C3P'—C3'P—H3C3P' 109.5
H1C10—C10—H3C10 109.5 H2C3P'—C3'P—H3C3P' 109.5
H2C10—C10—H3C10 109.5

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1—H101···O2Pi 1.00 1.82 2.822 (3) 180
O2—H102···O1ii 1.00 1.75 2.746 (3) 180
O1P—H101P···O2 1.00 1.64 2.635 (3) 180

Symmetry codes: (i) −x+2, y−1/2, −z+1/2; (ii) −x+1, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2504).

References

  1. Alshahateet, S. F., Nakano, K., Bishop, R., Craig, D. C., Harris, K. D. M. & Scudder, M. L. (2004). CrystEngComm, 6, 5–10.
  2. Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst.27, 435.
  3. Bishop, R. (2009). Acc. Chem. Res.42, 67–78. [DOI] [PubMed]
  4. Dance, I. G., Bishop, R., Hawkins, S. C., Lipari, T., Scudder, M. L. & Craig, D. C. (1986). J. Chem. Soc. Perkin Trans. 2, pp. 1299–1307.
  5. Enraf–Nonius (1989). CAD-4 Software Enraf–Nonius, Delft, The Netherlands.
  6. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  7. Palmer, D. (2005). CrystalMaker CrystalMaker Software Ltd, Yarnton, Oxfordshire, England. htttp://www.CrystalMakerco.uk.
  8. Rae, A. D. (2000). RAELS Australian National University, Canberra.
  9. Yue, W., Nakano, K., Bishop, R., Craig, D. C., Harris, K. D. M. & Scudder, M. L. (2006). CrystEngComm, 8, 250–256.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809016547/hg2504sup1.cif

e-65-o1241-sup1.cif (24.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809016547/hg2504Isup2.hkl

e-65-o1241-Isup2.hkl (109.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES