Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 May 23;65(Pt 6):m675. doi: 10.1107/S1600536809018522

Redetermination of tetra­kis(N,N-diethyl­dithio­carbamato)tin(IV)

Coco K Y A Okio a,*, Nivaldo L Speziali b
PMCID: PMC2969649  PMID: 21583036

Abstract

The crystal structure of the title compound, [Sn(C5H10NS2)4], was originally determined by Harreld & Schlemper [Acta Cryst. (1971), B27, 1964–1969] using intensity data estimated from Weissenberg films. In comparison with the previous refinement, the current redetermination reveals anisotropic displacement parameters for all non-H atoms, localization of the H atoms, and higher precision of lattice parameters and inter­atomic distances. The complex features a distorted S6 octa­hedral coordination geometry for tin and a cis disposition of the monodentate dithio­carbamate ligands.

Related literature

For the original structure determination, see: Harreld & Schlemper (1971). For related structures, see: Tiekink (2008).graphic file with name e-65-0m675-scheme1.jpg

Experimental

Crystal data

  • [Sn(C5H10NS2)4]

  • M r = 711.73

  • Monoclinic, Inline graphic

  • a = 16.3250 (2) Å

  • b = 15.7544 (2) Å

  • c = 13.9478 (2) Å

  • β = 118.995 (2)°

  • V = 3137.64 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.36 mm−1

  • T = 293 K

  • 0.30 × 0.25 × 0.20 mm

Data collection

  • Oxford Diffraction GEMINI diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2008) T min = 0.794, T max = 1.000 (expected range = 0.605–0.761)

  • 64449 measured reflections

  • 8173 independent reflections

  • 6349 reflections with I > 2σ(I)

  • R int = 0.024

Refinement

  • R[F 2 > 2σ(F 2)] = 0.037

  • wR(F 2) = 0.145

  • S = 1.07

  • 8173 reflections

  • 150 parameters

  • H-atom parameters constrained

  • Δρmax = 1.24 e Å−3

  • Δρmin = −0.61 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell refinement: CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809018522/bx2209sup1.cif

e-65-0m675-sup1.cif (16.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809018522/bx2209Isup2.hkl

e-65-0m675-Isup2.hkl (399.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Organotin dithiocarbamate compounds continue to attract interest owing to their use as precursors for Chemical Vapor Deposition (CVD) of SnS, as pharmaceuticals, and their structural diversity (Tiekink, 2008). The title compound (I) has been synthesized and its crystal structure reported here. In the previously reported structure (Harreld & Schlemper,1971), no hydrogen atoms were included and the crystal was found to be monoclinic with Z = 4, a=15.64 (2) Å, b=15.75 (2) Å, c=13.91 (2) Å, β=112.50 (2)°.These data are slightly different from the new ones due probably to the significantly improved precision with respect to the geometric parameters provided by this redetermination. The molecular structure and the atom-numbering scheme of the title compound are shown in Fig. 1.The tin atom is octahedrally coordinated by two chelating ligands and two monodentate dithiocarbamate ligands with the latter occupying mutually cis-positions. Distortions from the ideal octahedral are clearly related to the restricted bite angle of the chelating ligands and further, the asymmetry in the Sn–S bond distances formed by the chelating ligand is related to the trans influence exerted by the monodentate ligands, i.e. the longer Sn–S bond distance formed by the chelating ligand is trans- to the sulfur atom of the monodentate ligand.

Experimental

Compound (I) was obtained by reacting tin (IV) tetrachloride (883 mg, 3.39 mmol) with sodium N,N-diethyldithiocarbamate (1160 mg, 6.78 mmol) in ethanol. Orange crystals suitable for X-ray analysis were grown by recrystallization from dichlomethane/hexane.

Refinement

H atoms were positioned geometrically, with C—H distances in the range 0.96 - 0.97 Å, and constrained to ride on their parent atoms, with Uiso(H) = 1.2–1.5Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted. Unlabeled atoms are related to labeled by the symmetry code (-x+2, y, 1/2-z).

Crystal data

[Sn(C5H10NS2)4] F(000) = 1464
Mr = 711.73 Dx = 1.507 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.7107 Å
Hall symbol: -C 2yc Cell parameters from 33587 reflections
a = 16.3250 (2) Å θ = 3.0–37.7°
b = 15.7544 (2) Å µ = 1.36 mm1
c = 13.9478 (2) Å T = 293 K
β = 118.995 (2)° Prism, orange
V = 3137.64 (8) Å3 0.3 × 0.25 × 0.2 mm
Z = 4

Data collection

Oxford Diffraction GEMINI diffractometer 8173 independent reflections
Radiation source: Enhance (Mo) X-ray Source 6349 reflections with I > 2σ(I)
graphite Rint = 0.024
Detector resolution: 10.4186 pixels mm-1 θmax = 37.9°, θmin = 3.0°
π scans h = −27→27
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2008) k = −27→27
Tmin = 0.794, Tmax = 1.000 l = −23→23
64449 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.145 H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.1P)2] where P = (Fo2 + 2Fc2)/3
8173 reflections (Δ/σ)max = 0.001
150 parameters Δρmax = 1.24 e Å3
0 restraints Δρmin = −0.61 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Sn 1.0000 0.202248 (11) 0.2500 0.03412 (6)
S4 0.80944 (4) 0.24306 (5) 0.33596 (5) 0.05278 (14)
S3 1.17240 (3) 0.16968 (3) 0.37176 (4) 0.03869 (10)
S2 1.01793 (3) 0.09568 (4) 0.39719 (5) 0.04590 (12)
S1 0.98344 (4) 0.32210 (4) 0.35808 (4) 0.04406 (12)
C1 0.91736 (14) 0.27902 (13) 0.41621 (15) 0.0378 (3)
N1 0.95774 (13) 0.28033 (13) 0.52591 (14) 0.0433 (3)
C2 0.9021 (2) 0.25988 (19) 0.5803 (2) 0.0554 (6)
H2A 0.8384 0.2794 0.5345 0.066*
H2B 0.9278 0.2905 0.6492 0.066*
C3 0.9003 (3) 0.1671 (3) 0.6025 (3) 0.0771 (9)
H3A 0.8628 0.1579 0.6374 0.116*
H3B 0.9630 0.1476 0.6497 0.116*
H3C 0.8740 0.1364 0.5346 0.116*
C4 1.05786 (18) 0.29665 (16) 0.5989 (2) 0.0528 (6)
H4A 1.0920 0.2834 0.5601 0.063*
H4B 1.0802 0.2589 0.6615 0.063*
C5 1.0788 (2) 0.3865 (2) 0.6392 (2) 0.0725 (8)
H5A 1.1450 0.3930 0.6861 0.109*
H5B 1.0466 0.3998 0.6794 0.109*
H5C 1.0583 0.4243 0.5778 0.109*
C6 1.13681 (12) 0.10712 (12) 0.44702 (14) 0.0351 (3)
N2 1.19789 (12) 0.06819 (10) 0.53695 (14) 0.0405 (3)
C7 1.29923 (14) 0.07507 (16) 0.5782 (2) 0.0543 (6)
H7A 1.3309 0.0810 0.6574 0.065*
H7B 1.3121 0.1256 0.5480 0.065*
C8 1.3367 (3) −0.0006 (3) 0.5485 (4) 0.0923 (13)
H8A 1.4028 0.0062 0.5761 0.139*
H8B 1.3059 −0.0063 0.4702 0.139*
H8C 1.3256 −0.0505 0.5800 0.139*
C9 1.16890 (17) 0.01398 (14) 0.60174 (17) 0.0477 (5)
H9A 1.1044 −0.0033 0.5556 0.057*
H9B 1.2072 −0.0369 0.6238 0.057*
C10 1.1771 (4) 0.0561 (3) 0.7004 (3) 0.0904 (12)
H10A 1.1575 0.0176 0.7388 0.136*
H10B 1.1380 0.1056 0.6793 0.136*
H10C 1.2410 0.0723 0.7473 0.136*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Sn 0.02512 (8) 0.04321 (10) 0.03155 (9) 0.000 0.01177 (6) 0.000
S4 0.0354 (2) 0.0764 (4) 0.0425 (2) −0.0047 (2) 0.01571 (19) −0.0066 (2)
S3 0.02504 (17) 0.0478 (2) 0.0397 (2) −0.00161 (15) 0.01292 (15) 0.00968 (17)
S2 0.0283 (2) 0.0557 (3) 0.0517 (3) −0.00264 (17) 0.01786 (18) 0.0135 (2)
S1 0.0497 (3) 0.0484 (2) 0.0412 (2) −0.0090 (2) 0.0277 (2) −0.00716 (19)
C1 0.0360 (8) 0.0449 (8) 0.0333 (7) 0.0028 (7) 0.0175 (6) −0.0020 (6)
N1 0.0409 (8) 0.0569 (9) 0.0330 (7) −0.0002 (7) 0.0186 (6) −0.0033 (6)
C2 0.0600 (14) 0.0738 (16) 0.0439 (10) −0.0090 (12) 0.0344 (10) −0.0115 (10)
C3 0.093 (3) 0.086 (2) 0.0622 (17) −0.0131 (19) 0.0463 (18) 0.0043 (15)
C4 0.0406 (11) 0.0719 (16) 0.0365 (9) 0.0047 (9) 0.0112 (8) −0.0020 (8)
C5 0.0586 (16) 0.086 (2) 0.0582 (15) −0.0105 (15) 0.0166 (12) −0.0127 (14)
C6 0.0277 (6) 0.0383 (7) 0.0355 (7) −0.0030 (5) 0.0124 (6) 0.0015 (6)
N2 0.0316 (7) 0.0412 (7) 0.0404 (7) −0.0035 (5) 0.0110 (6) 0.0094 (6)
C7 0.0301 (8) 0.0561 (12) 0.0561 (12) −0.0041 (8) 0.0047 (8) 0.0155 (10)
C8 0.0567 (18) 0.079 (2) 0.143 (4) 0.0141 (15) 0.049 (2) 0.021 (2)
C9 0.0507 (11) 0.0436 (9) 0.0432 (9) −0.0068 (8) 0.0183 (8) 0.0093 (7)
C10 0.144 (4) 0.077 (2) 0.0719 (19) −0.028 (2) 0.069 (2) −0.0128 (16)

Geometric parameters (Å, °)

Sn—S1 2.5111 (5) C4—H4A 0.9700
Sn—S1i 2.5111 (5) C4—H4B 0.9700
Sn—S3i 2.5366 (4) C5—H5A 0.9600
Sn—S3 2.5366 (4) C5—H5B 0.9600
Sn—S2 2.5567 (5) C5—H5C 0.9600
Sn—S2i 2.5567 (5) C6—N2 1.316 (2)
S4—C1 1.663 (2) N2—C7 1.468 (3)
S3—C6 1.7327 (19) N2—C9 1.478 (3)
S2—C6 1.7247 (18) C7—C8 1.488 (5)
S1—C1 1.769 (2) C7—H7A 0.9700
C1—N1 1.341 (2) C7—H7B 0.9700
N1—C4 1.470 (3) C8—H8A 0.9600
N1—C2 1.474 (3) C8—H8B 0.9600
C2—C3 1.497 (5) C8—H8C 0.9600
C2—H2A 0.9700 C9—C10 1.474 (4)
C2—H2B 0.9700 C9—H9A 0.9700
C3—H3A 0.9600 C9—H9B 0.9700
C3—H3B 0.9600 C10—H10A 0.9600
C3—H3C 0.9600 C10—H10B 0.9600
C4—C5 1.501 (4) C10—H10C 0.9600
S1—Sn—S1i 82.48 (3) N1—C4—H4B 108.9
S1—Sn—S3i 98.433 (17) C5—C4—H4B 108.9
S1i—Sn—S3i 99.063 (19) H4A—C4—H4B 107.7
S1—Sn—S3 99.064 (19) C4—C5—H5A 109.5
S1i—Sn—S3 98.434 (17) C4—C5—H5B 109.5
S3i—Sn—S3 156.66 (2) H5A—C5—H5B 109.5
S1—Sn—S2 90.89 (2) C4—C5—H5C 109.5
S1i—Sn—S2 166.429 (19) H5A—C5—H5C 109.5
S3i—Sn—S2 93.599 (17) H5B—C5—H5C 109.5
S3—Sn—S2 70.827 (15) N2—C6—S2 121.35 (14)
S1—Sn—S2i 166.427 (19) N2—C6—S3 121.40 (14)
S1i—Sn—S2i 90.89 (2) S2—C6—S3 117.23 (10)
S3i—Sn—S2i 70.826 (15) C6—N2—C7 121.91 (17)
S3—Sn—S2i 93.599 (17) C6—N2—C9 122.20 (17)
S2—Sn—S2i 97.91 (3) C7—N2—C9 115.89 (17)
C6—S3—Sn 86.08 (6) N2—C7—C8 111.7 (2)
C6—S2—Sn 85.61 (6) N2—C7—H7A 109.3
C1—S1—Sn 104.69 (7) C8—C7—H7A 109.3
N1—C1—S4 123.21 (16) N2—C7—H7B 109.3
N1—C1—S1 116.44 (15) C8—C7—H7B 109.3
S4—C1—S1 120.30 (11) H7A—C7—H7B 108.0
C1—N1—C4 124.02 (19) C7—C8—H8A 109.5
C1—N1—C2 119.95 (19) C7—C8—H8B 109.5
C4—N1—C2 115.94 (19) H8A—C8—H8B 109.5
N1—C2—C3 113.5 (2) C7—C8—H8C 109.5
N1—C2—H2A 108.9 H8A—C8—H8C 109.5
C3—C2—H2A 108.9 H8B—C8—H8C 109.5
N1—C2—H2B 108.9 C10—C9—N2 113.6 (2)
C3—C2—H2B 108.9 C10—C9—H9A 108.8
H2A—C2—H2B 107.7 N2—C9—H9A 108.8
C2—C3—H3A 109.5 C10—C9—H9B 108.8
C2—C3—H3B 109.5 N2—C9—H9B 108.8
H3A—C3—H3B 109.5 H9A—C9—H9B 107.7
C2—C3—H3C 109.5 C9—C10—H10A 109.5
H3A—C3—H3C 109.5 C9—C10—H10B 109.5
H3B—C3—H3C 109.5 H10A—C10—H10B 109.5
N1—C4—C5 113.6 (2) C9—C10—H10C 109.5
N1—C4—H4A 108.9 H10A—C10—H10C 109.5
C5—C4—H4A 108.9 H10B—C10—H10C 109.5

Symmetry codes: (i) −x+2, y, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BX2209).

References

  1. Harreld, C. S. & Schlemper, E. O. (1971). Acta Cryst. B27, 1964–1969.
  2. Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.
  3. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  4. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  5. Tiekink, E. R. T. (2008). Appl. Organomet. Chem.22, 533–550.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809018522/bx2209sup1.cif

e-65-0m675-sup1.cif (16.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809018522/bx2209Isup2.hkl

e-65-0m675-Isup2.hkl (399.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES