Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 May 23;65(Pt 6):m671. doi: 10.1107/S1600536809018649

catena-Poly[potassium-di-μ-aqua-μ-4-(5-tetra­zolio)pyridine]

Li-Jing Cui a,*
PMCID: PMC2969650  PMID: 21583032

Abstract

The title compound, [K(C6H4N5)(H2O)2]n, was synthesized by hydro­thermal reaction of KOH with 4-(5-tetra­zolio)pyridine. The K atom has a distorted octa­hedral coordination environment and is coordinated by two axial N atoms from the organic ligand and by four water mol­ecules in the equatorial plane. The mol­ecules as a whole are located on crystallographic mirror planes; the K atom is also located on an inversion center. Both the water mol­ecules and the organic ligands act as bridges to link symmetrically the adjacent K atoms into polymeric chains parallel to the c axis. O—H⋯N hydrogen bonds involving the water O atoms and aromatic π–π inter­actions [centroid–centroid distance 3.80 (2) Å] between the pyridine and tetra­zole rings build up an infinite three-dimensional network.

Related literature

For applications of tetra­zole derivatives in coordination chemistry, see: Xiong et al. (2002); Wang et al. (2005). For the crystal structure of a related compound, see: Dai & Fu (2008).graphic file with name e-65-0m671-scheme1.jpg

Experimental

Crystal data

  • [K(C6H4N5)(H2O)2]

  • M r = 221.27

  • Monoclinic, Inline graphic

  • a = 12.361 (3) Å

  • b = 12.281 (3) Å

  • c = 7.3431 (15) Å

  • β = 117.25 (3)°

  • V = 991.1 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.52 mm−1

  • T = 298 K

  • 0.25 × 0.15 × 0.10 mm

Data collection

  • Rigaku Mercury2 diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) T min = 0.913, T max = 1.000 (expected range = 0.867–0.949)

  • 5056 measured reflections

  • 1134 independent reflections

  • 928 reflections with I > 2σ(I)

  • R int = 0.027

Refinement

  • R[F 2 > 2σ(F 2)] = 0.037

  • wR(F 2) = 0.096

  • S = 1.07

  • 1134 reflections

  • 67 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.19 e Å−3

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809018649/zl2195sup1.cif

e-65-0m671-sup1.cif (15KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809018649/zl2195Isup2.hkl

e-65-0m671-Isup2.hkl (56.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1WA⋯N2i 0.84 2.01 2.852 (2) 177
O1W—H1WB⋯N3ii 0.88 1.97 2.831 (2) 169

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

This work was supported by a Start-up Grant from Southeast University to Professor Ren-Gen Xiong.

supplementary crystallographic information

Comment

In the past few years, more and more people have focused on the chemistry of tetrazole derivatives because of their multiple coordination modes as ligands to metal ions and for the construction of novel metal-organic frameworks (Wang, et al. 2005; Xiong, et al. 2002). We report here the crystal structure of the title compound, tetra-aqua-bis[4-(2H-tetrazol-5-yl)pyridine]potassium(I).

The K atom has a distorted octahedral geometry and is coordinated by two axial pyridyl N atoms from the organic ligand and four water molecules ligands in the equatorial plane. The molecules as a whole are located on crystallographic mirror planes, the potassium ion is also located on an inversion center. Both the water molecules and the organic ligands act as bridges linking adjacent K ions into polymeric chains parallel to the c axis by covalent bonds (K—N, and K—O). The pyridine and tetrazole rings are nearly coplanar and are twisted from each other by a dihedral angle of only 12.99 (0.13) ° (Fig.1). The bond distances and bond angles of the tetrazole rings are in the usual ranges (Wang, et al. 2005; Dai & Fu 2008).

The crystal packing (Fig. 2) is stabilized by aromatic π–π interactions between the pyridine and tetrazole rings of the neighbouring ligand systems. The centroid···centroid distance is 3.80 (2)Å (symmetry code: x, y, z+1 and x, y, z). The molecular packing is further stabilized by intermolecular O—H···N hydrogen bonds involving the aqueous O atoms. The π–π and hydrogen bonding interactions build up an infinite three-dimensional network. (Fig. 2 and Table 1).

Experimental

A mixture of 4-(2H-tetrazol-5-yl)pyridine (0.4 mmol) and KOH (0.4 mmol), ethanol (1 ml) and a few drops of water sealed in a glass tube was maintained at 373 K. Colorless needle crystals suitable for X-ray analysis were obtained after 3 days.

Refinement

All H atoms attached to C atoms were fixed geometrically and treated as riding with C–H = 0.93 Å (aromatic) with Uiso(H) = 1.2Ueq(C). The H atoms of water molecules were located in difference Fourier maps and the O–H distances were restrained in the subsequent refinements to 0.85 Å with Uiso(H) =1.5Ueq(O). In the last stage of the refinement they were treated as riding on the O atom.

Figures

Fig. 1.

Fig. 1.

A view of the title compound with the atomic numbering scheme. Displacement ellipsoids were drawn at the 30% probability level.

Fig. 2.

Fig. 2.

The crystal packing of the title compound viewed along the c axis showing the three dimensionnal network (dashed lines). Hydrogen atoms not involved in hydrogen bonding have been omitted for clarity.

Crystal data

[K(C6H4N5)(H2O)2] F(000) = 456
Mr = 221.27 Dx = 1.483 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yc Cell parameters from 1134 reflections
a = 12.361 (3) Å θ = 3.3–27.5°
b = 12.281 (3) Å µ = 0.52 mm1
c = 7.3431 (15) Å T = 298 K
β = 117.25 (3)° Needle, colorless
V = 991.1 (3) Å3 0.25 × 0.15 × 0.10 mm
Z = 4

Data collection

Rigaku Mercury2 (2× 2 bin mode) diffractometer 1134 independent reflections
Radiation source: fine-focus sealed tube 928 reflections with I > 2σ(I)
graphite Rint = 0.027
Detector resolution: 13.6612 pixels mm-1 θmax = 27.5°, θmin = 3.3°
ω scans h = −16→16
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) k = −15→15
Tmin = 0.913, Tmax = 1.000 l = −9→9
5056 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.096 H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.039P)2 + 0.7641P] where P = (Fo2 + 2Fc2)/3
1134 reflections (Δ/σ)max < 0.001
67 parameters Δρmax = 0.32 e Å3
2 restraints Δρmin = −0.19 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
K1 0.5000 0.0000 0.5000 0.0467 (2)
C4 0.5000 0.5325 (2) 0.7500 0.0365 (6)
C3 0.5000 0.4124 (2) 0.7500 0.0358 (5)
N2 0.60000 (14) 0.59305 (13) 0.8162 (3) 0.0468 (4)
C2 0.60283 (18) 0.35391 (16) 0.7821 (3) 0.0459 (5)
H2 0.6742 0.3897 0.8050 0.055*
N3 0.55965 (15) 0.69599 (13) 0.7896 (3) 0.0530 (5)
N1 0.5000 0.18446 (19) 0.7500 0.0522 (6)
C1 0.5980 (2) 0.24208 (17) 0.7797 (4) 0.0534 (5)
H1 0.6678 0.2041 0.8000 0.064*
O1W 0.34559 (12) 0.08972 (11) 0.1308 (2) 0.0516 (4)
H1WA 0.2731 0.0885 0.0381 0.077*
H1WB 0.3654 0.1588 0.1421 0.077*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
K1 0.0545 (4) 0.0460 (4) 0.0403 (3) −0.0005 (3) 0.0221 (3) −0.0025 (3)
C4 0.0345 (13) 0.0344 (12) 0.0323 (13) 0.000 0.0080 (11) 0.000
C3 0.0381 (13) 0.0334 (13) 0.0296 (12) 0.000 0.0102 (10) 0.000
N2 0.0383 (9) 0.0337 (8) 0.0522 (10) −0.0025 (7) 0.0067 (7) −0.0016 (7)
C2 0.0392 (10) 0.0406 (10) 0.0536 (12) −0.0008 (8) 0.0176 (9) −0.0029 (9)
N3 0.0503 (9) 0.0340 (8) 0.0541 (11) −0.0042 (7) 0.0062 (8) −0.0020 (7)
N1 0.0602 (16) 0.0343 (12) 0.0524 (15) 0.000 0.0174 (13) 0.000
C1 0.0514 (12) 0.0416 (11) 0.0596 (13) 0.0090 (9) 0.0189 (10) −0.0026 (9)
O1W 0.0341 (7) 0.0376 (7) 0.0667 (10) 0.0014 (6) 0.0088 (7) 0.0026 (6)

Geometric parameters (Å, °)

K1—O1Wi 2.7309 (16) C3—C2iv 1.383 (2)
K1—O1Wii 2.7309 (16) C3—C2 1.383 (2)
K1—O1W 2.7330 (17) N2—N3 1.340 (2)
K1—O1Wiii 2.7330 (17) C2—C1 1.375 (3)
K1—N1iii 2.9159 (18) C2—H2 0.9300
K1—N1 2.9159 (18) N3—N3iv 1.314 (3)
K1—C1iii 3.499 (2) N1—C1 1.332 (3)
K1—C1 3.499 (2) N1—C1iv 1.332 (3)
K1—K1ii 3.6716 (7) N1—K1iv 2.9159 (18)
K1—K1iv 3.6716 (8) C1—H1 0.9300
K1—H1WB 3.0780 O1W—K1ii 2.7309 (16)
C4—N2 1.329 (2) O1W—H1WA 0.8412
C4—N2iv 1.329 (2) O1W—H1WB 0.8765
C4—C3 1.475 (3)
O1Wi—K1—O1Wii 180.00 (3) C1iii—K1—K1iv 115.36 (4)
O1Wi—K1—O1W 103.20 (5) C1—K1—K1iv 64.64 (4)
O1Wii—K1—O1W 76.80 (5) K1ii—K1—K1iv 180.0
O1Wi—K1—O1Wiii 76.80 (5) O1Wi—K1—H1WB 111.4
O1Wii—K1—O1Wiii 103.20 (5) O1Wii—K1—H1WB 68.6
O1W—K1—O1Wiii 180.0 O1W—K1—H1WB 16.0
O1Wi—K1—N1iii 96.28 (4) O1Wiii—K1—H1WB 164.0
O1Wii—K1—N1iii 83.72 (4) N1iii—K1—H1WB 96.4
O1W—K1—N1iii 83.68 (4) N1—K1—H1WB 83.6
O1Wiii—K1—N1iii 96.32 (4) C1iii—K1—H1WB 97.5
O1Wi—K1—N1 83.72 (4) C1—K1—H1WB 82.5
O1Wii—K1—N1 96.28 (4) K1ii—K1—H1WB 52.7
O1W—K1—N1 96.32 (4) K1iv—K1—H1WB 127.3
O1Wiii—K1—N1 83.68 (4) N2—C4—N2iv 112.0 (2)
N1iii—K1—N1 180.0 N2—C4—C3 124.01 (11)
O1Wi—K1—C1iii 75.74 (5) N2iv—C4—C3 124.01 (11)
O1Wii—K1—C1iii 104.26 (5) C2iv—C3—C2 117.4 (2)
O1W—K1—C1iii 82.15 (5) C2iv—C3—C4 121.30 (12)
O1Wiii—K1—C1iii 97.85 (5) C2—C3—C4 121.30 (12)
N1iii—K1—C1iii 21.60 (4) C4—N2—N3 104.64 (16)
N1—K1—C1iii 158.40 (4) C1—C2—C3 119.1 (2)
O1Wi—K1—C1 104.26 (5) C1—C2—H2 120.5
O1Wii—K1—C1 75.74 (5) C3—C2—H2 120.5
O1W—K1—C1 97.85 (5) N3iv—N3—N2 109.38 (10)
O1Wiii—K1—C1 82.15 (5) C1—N1—C1iv 115.8 (2)
N1iii—K1—C1 158.40 (4) C1—N1—K1 104.69 (11)
N1—K1—C1 21.60 (4) C1iv—N1—K1 124.89 (11)
C1iii—K1—C1 180.00 (9) C1—N1—K1iv 124.89 (11)
O1Wi—K1—K1ii 132.19 (4) C1iv—N1—K1iv 104.69 (11)
O1Wii—K1—K1ii 47.81 (4) K1—N1—K1iv 78.04 (6)
O1W—K1—K1ii 47.76 (3) N1—C1—C2 124.3 (2)
O1Wiii—K1—K1ii 132.24 (3) N1—C1—K1 53.71 (10)
N1iii—K1—K1ii 50.98 (3) C2—C1—K1 149.08 (16)
N1—K1—K1ii 129.02 (3) N1—C1—H1 117.8
C1iii—K1—K1ii 64.64 (4) C2—C1—H1 117.8
C1—K1—K1ii 115.36 (4) K1—C1—H1 73.4
O1Wi—K1—K1iv 47.81 (4) K1ii—O1W—K1 84.44 (4)
O1Wii—K1—K1iv 132.19 (4) K1ii—O1W—H1WA 111.4
O1W—K1—K1iv 132.24 (3) K1—O1W—H1WA 142.8
O1Wiii—K1—K1iv 47.76 (3) K1ii—O1W—H1WB 102.4
N1iii—K1—K1iv 129.02 (3) K1—O1W—H1WB 105.0
N1—K1—K1iv 50.98 (3) H1WA—O1W—H1WB 104.0

Symmetry codes: (i) x, −y, z+1/2; (ii) −x+1, y, −z+1/2; (iii) −x+1, −y, −z+1; (iv) −x+1, y, −z+3/2.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1W—H1WA···N2v 0.84 2.01 2.852 (2) 177
O1W—H1WB···N3vi 0.88 1.97 2.831 (2) 169

Symmetry codes: (v) x−1/2, y−1/2, z−1; (vi) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZL2195).

References

  1. Dai, W. & Fu, D.-W. (2008). Acta Cryst. E64, o1444. [DOI] [PMC free article] [PubMed]
  2. Rigaku (2005). CrystalClear Rigaku Corporation, Tokyo, Japan.
  3. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  4. Wang, X.-S., Tang, Y.-Z., Huang, X.-F., Qu, Z.-R., Che, C.-M., Chan, C. W. H. & Xiong, R.-G. (2005). Inorg. Chem.44, 5278–5285. [DOI] [PubMed]
  5. Xiong, R.-G., Xue, X., Zhao, H., You, X.-Z., Abrahams, B. F. & Xue, Z.-L. (2002). Angew. Chem. Int. Ed.41, 3800–3803. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809018649/zl2195sup1.cif

e-65-0m671-sup1.cif (15KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809018649/zl2195Isup2.hkl

e-65-0m671-Isup2.hkl (56.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES