Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 May 23;65(Pt 6):m684. doi: 10.1107/S1600536809019187

Diaqua­bis(tetra­zolo[1,5-a]pyridine-8-carboxyl­ato-κ2 N 1,O)cobalt(II) dihydrate

Min Xue a, Fu-Chen Liu a,*
PMCID: PMC2969667  PMID: 21583043

Abstract

In the title compound, [Co(C6H3N4O2)2(H2O)2]·2H2O, the CoII atom is located on an inversion center in a slightly distorted octa­hedral environment formed by the O atoms of two water mol­ecules, and the N and O atoms of the chelating tetra­zolo[1,5-a]pyridine-8-carboxyl­ate anions. Hydrogen bonds of the O—H⋯O and O—H⋯N types result in a three-dimensional supra­molecular network.

Related literature

For background to coordination compounds and their synthesis by in situ reaction, see: Chen & Tong (2007); Liu et al. (2005); Li et al. (2007).graphic file with name e-65-0m684-scheme1.jpg

Experimental

Crystal data

  • [Co(C6H3N4O2)2(H2O)2]·2H2O

  • M r = 457.24

  • Orthorhombic, Inline graphic

  • a = 19.041 (4) Å

  • b = 11.694 (2) Å

  • c = 7.5371 (15) Å

  • V = 1678.3 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.09 mm−1

  • T = 293 K

  • 0.5 × 0.5 × 0.4 mm

Data collection

  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995) T min = 0.530, T max = 0.667

  • 13120 measured reflections

  • 1482 independent reflections

  • 1203 reflections with I > 2σ(I)

  • R int = 0.081

Refinement

  • R[F 2 > 2σ(F 2)] = 0.055

  • wR(F 2) = 0.090

  • S = 1.21

  • 1482 reflections

  • 148 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.54 e Å−3

Data collection: SCXmini Benchtop Crystallography System Software (Rigaku, 2006); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: PROCESS-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809019187/ng2582sup1.cif

e-65-0m684-sup1.cif (16.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809019187/ng2582Isup2.hkl

e-65-0m684-Isup2.hkl (73.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1WB⋯O2i 0.825 (18) 1.950 (19) 2.763 (4) 168 (4)
O1W—H1WA⋯O2Wii 0.842 (19) 1.943 (19) 2.776 (5) 170 (5)
O2W—H2WB⋯O1 0.835 (19) 2.04 (3) 2.845 (4) 163 (4)
O2W—H2WA⋯N2iii 0.842 (19) 2.15 (2) 2.981 (5) 171 (4)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

The authors acknowledge financial support from Tianjin Municipal Education Commission (grant No. 20060503).

supplementary crystallographic information

Comment

Coordination complexes have attracted great attention in recent years. (Liu,et al., 2005). The in-situ reaction which can create new ligand and structure draw much more attention in synthesizing coordination complexes (Li,et al., 2007). Some interesting complexes were ganied by the in-situ reaction. (Chen,et al., 2007).

In the title compound, the cobalt atom the cobalt atom located in the inverse center is six coordinated by two waters and two tetrazolo(1,5-a)pyridine-8-carboxylato, (Fig. 1). Each tetrazolo(1,5-a)pyridine-8-carboxylato chelates to one cobalt atom. One type of water coordinates to the cobalt and the other acts as lattice water. A three dimensional supramolecular net formed by the hydrogen bonds of waters and tetrazolo(1,5-a)pyridine-8-carboxylato ligands intermolecular (Fig. 2).

Experimental

A mixture of cobalt(II)nitrate and sodium azide (1 mmol), 2-chloronicotinic acid(0.5 mmol), in 10 ml of water was sealed in a Teflon-lined stainless-steel Parr bomb that was heated at 363 K for 48 h. Red crystals of the title complex were collected after the bomb was allowed to cool to room temperature.Yield 20% based on cobalt(II). Caution: Azides may be explosive. Although we have met no problems in this work, only a small amount of them should be prepared and handled with great caution.

Refinement

Hydrogen atoms were included in calculated positions and treated as riding on their parent C atoms with C—H = 0.93Å and Uiso(H) = 1.2Ueq(C).Hydrogen atom of water were added by difference Fourier maps and refined with restrainated distance of O—H = 0.85Å with a error of 0.02Å, and the restrainated distance of H—H = 1.35Å with a error of 0.01Å of the same water.

Figures

Fig. 1.

Fig. 1.

A view of the title compound showing the coordination of Co atom with the atom-labelling scheme. Ellipsoids are drawn at the 30% probability level. H atom have been omitted for clarity. [ Symmetry codes: (a)-x+1/2,-y,z].

Fig. 2.

Fig. 2.

The 3D supramolecular net formed by the hydrogen bonds.

Crystal data

[Co(C6H3N4O2)2(H2O)2]·2H2O Dx = 1.810 Mg m3
Mr = 457.24 Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pnna Cell parameters from 11987 reflections
a = 19.041 (4) Å θ = 3.3–27.8°
b = 11.694 (2) Å µ = 1.09 mm1
c = 7.5371 (15) Å T = 293 K
V = 1678.3 (6) Å3 Block, red
Z = 4 0.5 × 0.5 × 0.4 mm
F(000) = 932

Data collection

Rigaku SCXmini diffractometer 1482 independent reflections
Radiation source: fine-focus sealed tube 1203 reflections with I > 2σ(I)
graphite Rint = 0.081
ω scans θmax = 25.0°, θmin = 3.2°
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) h = −22→22
Tmin = 0.530, Tmax = 0.667 k = −13→13
13120 measured reflections l = −8→8

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.090 H atoms treated by a mixture of independent and constrained refinement
S = 1.21 w = 1/[σ2(Fo2) + (0.0256P)2 + 2.1174P] where P = (Fo2 + 2Fc2)/3
1482 reflections (Δ/σ)max < 0.001
148 parameters Δρmax = 0.34 e Å3
0 restraints Δρmin = −0.54 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Co1 0.2500 0.0000 0.86713 (10) 0.0185 (3)
O1 0.20211 (15) 0.1011 (2) 0.6721 (4) 0.0258 (7)
O1W 0.20777 (17) 0.1069 (3) 1.0644 (4) 0.0282 (8)
H1WB 0.187 (2) 0.167 (2) 1.037 (5) 0.028 (14)*
H1WA 0.234 (2) 0.120 (4) 1.151 (5) 0.034 (16)*
O2 0.12294 (15) 0.2126 (2) 0.5359 (4) 0.0310 (8)
N1 0.15291 (19) −0.0903 (3) 0.8639 (4) 0.0220 (8)
N2 0.1335 (2) −0.1860 (3) 0.9493 (5) 0.0307 (10)
N3 0.0650 (2) −0.2019 (3) 0.9438 (5) 0.0315 (10)
N4 0.03825 (19) −0.1111 (3) 0.8530 (5) 0.0236 (9)
C1 0.1390 (2) 0.1307 (3) 0.6326 (5) 0.0220 (10)
C2 0.0793 (2) 0.0595 (3) 0.7064 (6) 0.0199 (9)
C3 0.0093 (2) 0.0832 (4) 0.6782 (6) 0.0251 (11)
H3A −0.0022 0.1500 0.6180 0.030*
C4 −0.0468 (2) 0.0108 (3) 0.7364 (6) 0.0276 (11)
H4A −0.0933 0.0318 0.7165 0.033*
C5 −0.0318 (2) −0.0885 (4) 0.8204 (6) 0.0286 (11)
H5A −0.0670 −0.1391 0.8547 0.034*
C6 0.0929 (2) −0.0430 (4) 0.8022 (6) 0.0209 (10)
O2W 0.28936 (19) 0.1261 (3) 0.3682 (4) 0.0363 (9)
H2WB 0.259 (2) 0.108 (4) 0.444 (5) 0.051 (19)*
H2WA 0.312 (2) 0.182 (3) 0.408 (6) 0.042 (16)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Co1 0.0154 (5) 0.0195 (5) 0.0206 (5) 0.0011 (3) 0.000 0.000
O1 0.0205 (17) 0.0295 (17) 0.0274 (18) −0.0008 (13) 0.0002 (13) 0.0101 (14)
O1W 0.029 (2) 0.0236 (18) 0.032 (2) 0.0111 (14) −0.0028 (15) −0.0049 (14)
O2 0.0291 (19) 0.0258 (18) 0.038 (2) −0.0023 (14) −0.0044 (15) 0.0131 (15)
N1 0.023 (2) 0.0189 (18) 0.024 (2) 0.0013 (15) −0.0020 (15) 0.0079 (15)
N2 0.033 (2) 0.023 (2) 0.036 (2) −0.0045 (17) −0.0012 (18) 0.0059 (18)
N3 0.033 (2) 0.027 (2) 0.035 (2) −0.0027 (17) 0.0033 (18) 0.0082 (18)
N4 0.023 (2) 0.0206 (19) 0.027 (2) −0.0040 (16) −0.0012 (16) 0.0039 (16)
C1 0.028 (3) 0.019 (2) 0.019 (2) 0.0023 (19) −0.0032 (19) −0.0003 (18)
C2 0.022 (2) 0.018 (2) 0.020 (2) −0.0037 (18) −0.0049 (18) 0.0002 (18)
C3 0.028 (3) 0.023 (2) 0.024 (3) 0.0014 (19) −0.0023 (19) −0.0004 (19)
C4 0.019 (2) 0.034 (3) 0.029 (3) 0.0030 (19) −0.0016 (19) −0.003 (2)
C5 0.022 (3) 0.031 (3) 0.033 (3) −0.008 (2) 0.002 (2) −0.003 (2)
C6 0.019 (2) 0.022 (2) 0.021 (2) −0.0030 (18) −0.0032 (18) 0.0008 (19)
O2W 0.035 (2) 0.042 (2) 0.031 (2) −0.0088 (17) 0.0054 (16) −0.0055 (16)

Geometric parameters (Å, °)

Co1—O1 2.095 (3) N3—N4 1.362 (5)
Co1—O1i 2.095 (3) N4—C6 1.365 (5)
Co1—O1W 2.102 (3) N4—C5 1.382 (6)
Co1—O1Wi 2.102 (3) C1—C2 1.516 (6)
Co1—N1 2.129 (4) C2—C3 1.378 (6)
Co1—N1i 2.129 (4) C2—C6 1.424 (6)
O1—C1 1.286 (5) C3—C4 1.432 (6)
O1W—H1WB 0.825 (18) C3—H3A 0.9300
O1W—H1WA 0.842 (19) C4—C5 1.353 (6)
O2—C1 1.242 (5) C4—H4A 0.9300
N1—N2 1.342 (5) C5—H5A 0.9300
N1—C6 1.351 (5) O2W—H2WB 0.835 (19)
N2—N3 1.318 (5) O2W—H2WA 0.842 (19)
O1—Co1—O1i 90.89 (16) N2—N3—N4 106.0 (3)
O1—Co1—O1W 89.66 (13) N3—N4—C6 108.1 (4)
O1i—Co1—O1W 176.49 (12) N3—N4—C5 126.8 (4)
O1—Co1—O1Wi 176.49 (12) C6—N4—C5 125.1 (4)
O1i—Co1—O1Wi 89.66 (13) O2—C1—O1 125.0 (4)
O1W—Co1—O1Wi 89.99 (18) O2—C1—C2 117.0 (4)
O1—Co1—N1 83.91 (12) O1—C1—C2 117.9 (4)
O1i—Co1—N1 95.17 (12) C3—C2—C6 115.1 (4)
O1W—Co1—N1 88.33 (13) C3—C2—C1 124.0 (4)
O1Wi—Co1—N1 92.58 (13) C6—C2—C1 120.8 (4)
O1—Co1—N1i 95.17 (12) C2—C3—C4 123.8 (4)
O1i—Co1—N1i 83.91 (12) C2—C3—H3A 118.1
O1W—Co1—N1i 92.58 (13) C4—C3—H3A 118.1
O1Wi—Co1—N1i 88.33 (13) C5—C4—C3 119.6 (4)
N1—Co1—N1i 178.70 (19) C5—C4—H4A 120.2
C1—O1—Co1 136.2 (3) C3—C4—H4A 120.2
Co1—O1W—H1WB 120 (3) C4—C5—N4 116.8 (4)
Co1—O1W—H1WA 115 (3) C4—C5—H5A 121.6
H1WB—O1W—H1WA 109 (2) N4—C5—H5A 121.6
N2—N1—C6 105.8 (3) N1—C6—N4 108.0 (4)
N2—N1—Co1 130.3 (3) N1—C6—C2 132.4 (4)
C6—N1—Co1 122.3 (3) N4—C6—C2 119.6 (4)
N3—N2—N1 112.1 (3) H2WB—O2W—H2WA 107 (3)
O1i—Co1—O1—C1 123.8 (4) O2—C1—C2—C3 −2.7 (6)
O1W—Co1—O1—C1 −59.7 (4) O1—C1—C2—C3 178.3 (4)
O1Wi—Co1—O1—C1 25 (2) O2—C1—C2—C6 173.1 (4)
N1—Co1—O1—C1 28.7 (4) O1—C1—C2—C6 −5.9 (6)
N1i—Co1—O1—C1 −152.2 (4) C6—C2—C3—C4 −1.1 (6)
O1—Co1—N1—N2 174.9 (4) C1—C2—C3—C4 174.9 (4)
O1i—Co1—N1—N2 84.5 (4) C2—C3—C4—C5 −1.7 (7)
O1W—Co1—N1—N2 −95.3 (4) C3—C4—C5—N4 3.2 (6)
O1Wi—Co1—N1—N2 −5.3 (4) N3—N4—C5—C4 176.0 (4)
N1i—Co1—N1—N2 129.7 (4) C6—N4—C5—C4 −2.1 (7)
O1—Co1—N1—C6 −21.2 (3) N2—N1—C6—N4 0.4 (5)
O1i—Co1—N1—C6 −111.5 (3) Co1—N1—C6—N4 −166.9 (3)
O1W—Co1—N1—C6 68.6 (3) N2—N1—C6—C2 178.1 (5)
O1Wi—Co1—N1—C6 158.6 (3) Co1—N1—C6—C2 10.8 (7)
N1i—Co1—N1—C6 −66.4 (3) N3—N4—C6—N1 −1.1 (5)
C6—N1—N2—N3 0.4 (5) C5—N4—C6—N1 177.4 (4)
Co1—N1—N2—N3 166.3 (3) N3—N4—C6—C2 −179.1 (4)
N1—N2—N3—N4 −1.1 (5) C5—N4—C6—C2 −0.7 (6)
N2—N3—N4—C6 1.3 (4) C3—C2—C6—N1 −175.3 (4)
N2—N3—N4—C5 −177.1 (4) C1—C2—C6—N1 8.6 (7)
Co1—O1—C1—O2 162.2 (3) C3—C2—C6—N4 2.2 (6)
Co1—O1—C1—C2 −18.9 (6) C1—C2—C6—N4 −173.9 (4)

Symmetry codes: (i) −x+1/2, −y, z.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1W—H1WB···O2ii 0.83 (2) 1.95 (2) 2.763 (4) 168 (4)
O1W—H1WA···O2Wiii 0.84 (2) 1.94 (2) 2.776 (5) 170 (5)
O2W—H2WB···O1 0.84 (2) 2.04 (3) 2.845 (4) 163 (4)
O2W—H2WA···N2iv 0.84 (2) 2.15 (2) 2.981 (5) 171 (4)

Symmetry codes: (ii) x, −y+1/2, −z+3/2; (iii) x, y, z+1; (iv) −x+1/2, y+1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2582).

References

  1. Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
  2. Chen, X.-M. & Tong, M.-L. (2007). Acc. Chem. Res.40, 162–170. [DOI] [PubMed]
  3. Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
  4. Li, J.-R., Tao, Y., Yu, Q. & Bu, X.-H. (2007). Chem. Commun. pp. 1527–1529. [DOI] [PubMed]
  5. Liu, F.-C., Zeng, Y.-F., Li, J.-R., Bu, X.-H., Zhang, H.-J. & Ribas, J. (2005). Inorg. Chem.44, 7298–7300. [DOI] [PubMed]
  6. Rigaku (1998). PROCESS-AUTO Rigaku Americas Corporation, The Woodlands, Texas, USA.
  7. Rigaku (2006). SCXmini Benchtop Crystallography System Software Rigaku Americas Corporation, The Woodlands, Texas, USA.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809019187/ng2582sup1.cif

e-65-0m684-sup1.cif (16.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809019187/ng2582Isup2.hkl

e-65-0m684-Isup2.hkl (73.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES