Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 May 29;65(Pt 6):m690. doi: 10.1107/S1600536809017346

Tetra­chlorido­(1,10-phenanthroline-κ2 N,N′)tin(IV) 1,2-dichloro­ethane hemisolvate

Badri Z Momeni a,*, Frank Rominger b, Simin S Hosseini a
PMCID: PMC2969692  PMID: 21583047

Abstract

The asymmetric unit of the title compound, [SnCl4(C12H8N2)]·0.5C2H4Cl2, contains a tin complex and one disordered half-mol­ecule of the solvent dichloro­ethane [occupancies 0.71 (2):0.29 (2)]. The six coordinate Sn(IV) atom adopts a distorted octa­hedral geometry. π–π inter­actions between adjacent aromatic rings [interplanar distance 3.483 (5) Å] seem to be effective in the stabilization of the crystal packing.

Related literature

For tin(IV) halide complexes with a variety of Lewis bases, see: Harrison et al. (1972). For 1:1 complexes of the type [SnX 4(NN)] (X = halide; NN = 1,10-phenanthroline or 2,2′-bipyridyl ligand), see: Matsubayashi & Iyoda (1977). For the structure of the title complex without the co-crystallized solvent, see: Su et al. (2007) and with co-crystallized benzene, see: Hall & Tiekink (1996). For the preparation of trans-[PtClMe2(CH2Cl)(phen)] used in the synthesis, see: Monaghan & Puddephatt (1985).graphic file with name e-65-0m690-scheme1.jpg

Experimental

Crystal data

  • [SnCl4(C12H8N2)]·0.5C2H4Cl2

  • M r = 490.17

  • Orthorhombic, Inline graphic

  • a = 14.4478 (2) Å

  • b = 12.3681 (1) Å

  • c = 18.3551 (2) Å

  • V = 3279.91 (6) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 2.37 mm−1

  • T = 200 K

  • 0.20 × 0.18 × 0.12 mm

Data collection

  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2008a ) T min = 0.649, T max = 0.765

  • 31457 measured reflections

  • 3747 independent reflections

  • 2954 reflections with I > 2σ(I)

  • R int = 0.058

Refinement

  • R[F 2 > 2σ(F 2)] = 0.032

  • wR(F 2) = 0.085

  • S = 1.05

  • 3747 reflections

  • 195 parameters

  • H-atom parameters constrained

  • Δρmax = 0.43 e Å−3

  • Δρmin = −1.16 e Å−3

Data collection: SMART (Bruker, 1995); cell refinement: SAINT (Bruker, 1995); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008b ); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809017346/hg2511sup1.cif

e-65-0m690-sup1.cif (19KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809017346/hg2511Isup2.hkl

e-65-0m690-Isup2.hkl (183.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected geometric parameters (Å, °).

Sn1—N21 2.224 (3)
Sn1—N11 2.238 (3)
Sn1—Cl2 2.3333 (12)
Sn1—Cl1 2.3708 (10)
Sn1—Cl4 2.4095 (10)
Sn1—Cl3 2.4480 (10)

Acknowledgments

We thank the Science Research Council of K. N. Toosi University of Technology for financial support. We also thank Johnson Matthey for the generous loan of platinum salt.

supplementary crystallographic information

Comment

It has long been known that tin(IV) halides form complexes with a variety of Lewis bases (Harrison et al., 1972). Bidentate diimine ligandes are one of the strongest bases towards tin(IV) halides and more often form 1:1 complexes of the type [SnX4(NN)] (X = halide; NN = diimine ligand). Among them, the 1,10-phenanthroline and 2,2'-bipyridyl ligands are of particular interest (Matsubayashi & Iyoda, 1977). The title compound reported here, an adventitious result of our work on organoplatinum complexes, has a distorted octahedral geometry including different Sn—Cl and Sn—N bond lengths (see Fig. 1). The Cl3—Sn—Cl4 geometry shows remarkable deviation from linearity with a bond angle of 170.32 (4)°. The contraction of N11—Sn1—N21 to 74.7 (1) from the ideal 90° is typical for a chelating phenanthroline ligand. Figure 2 depicts the π-π interaction between adjacent aromatic rings, which seems, among Cl···Cl van der Waals contacts, to be significant in the stabilization of the crystal packing, as both preliminary structure determinations of the same complex, either without cocrystallized solvent (Su et al., 2007) or with co-crystallized benzene (Hall & Tiekink, 1996) show the same intermolecular contact features.

Experimental

A solution of SnCl2*2H2O (40 mg, 0.18 mmol) in THF (1 ml) and a solution of PPh3 (26 mg, 0.10 mmol) in dichloromethane (1 ml) were added to a dichloromethane solution (10 ml) of cis- and trans-[PtClMe2{CH2Cl}(phen)] (50 mg, 0.10 mmol) (Monaghan & Puddephatt, 1985) under Argon atmosphere. The reaction mixture was stirred for 3 h whereupon the yellow solution turned colourless. The solvent was removed under vacuum and the resulting white oily residue was solidified from CH2Cl2-diethylether solution to afford trans-[PtMe2(CH2Cl)(phen)(PPh3)][SnCl3]* C2Cl2H4. Yield: 85%; m.p. 429 K. Anal. Calc. for C35H35Cl6N2PPtSn: C, 40.4; H, 3.4; N, 2.7. Found: C, 39.7; H, 3.0; N, 2.5. NMR data in 1,2-dichloroethane/CDCl3: δ (31P) 1.50 [1J(195Pt-31P) = 1036 Hz]. The title complex crystallized during the slow decomposition of the organoplatinum(IV) species from a 1,2-dichloroethane solution yielding yellow polyhedral crystals.

Refinement

For all hydrogen atoms the positions were calculated according to geometrical criteria. During the refinement the hydrogen atoms were allowed to shift with the parent C atoms with C-H - 0.95-0.98Å. The isotropic displacement parameters were set as 1.2 times the equivalent isotropic displacement parameters of the parent atoms.

The solvent molecule 1,2-dichloroethane was found to be situated on an centre of inversion. In the final structure model the ethylene unit of the solvent molecule shows disorder over two different conformations with occupancies of 71 (2)% and 29 (2)%, respectively.

Figures

Fig. 1.

Fig. 1.

The disordered solvent molecule is omitted for clarity. Displacement ellipsoids are drawn at 50% probability level.

Fig. 2.

Fig. 2.

A pair of two molecules in the crystal packing showing π-π interactions. The (symmetry imposed) parallel and overlapping phenanthroline planes have a distance of 3.483 (5) Å.

Crystal data

[SnCl4(C12H8N2)]·0.5C2H4Cl2 Dx = 1.985 Mg m3
Mr = 490.17 Melting point: 429 K
Orthorhombic, Pbca Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2ab Cell parameters from 7233 reflections
a = 14.4478 (2) Å θ = 3.3–24.3°
b = 12.3681 (1) Å µ = 2.37 mm1
c = 18.3551 (2) Å T = 200 K
V = 3279.91 (6) Å3 Polyhedron, yellow
Z = 8 0.20 × 0.18 × 0.12 mm
F(000) = 1896

Data collection

Bruker SMART CCD diffractometer 3747 independent reflections
Radiation source: fine-focus sealed tube 2954 reflections with I > 2σ(I)
graphite Rint = 0.058
ω scans θmax = 27.5°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Sheldrick, 2008a) h = −18→18
Tmin = 0.649, Tmax = 0.765 k = −16→16
31457 measured reflections l = −23→23

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.085 H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0328P)2 + 8.0328P] where P = (Fo2 + 2Fc2)/3
3747 reflections (Δ/σ)max = 0.001
195 parameters Δρmax = 0.43 e Å3
0 restraints Δρmin = −1.16 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Sn1 0.373296 (17) 0.288908 (19) 0.309792 (13) 0.02635 (9)
Cl1 0.36021 (8) 0.11063 (8) 0.26347 (6) 0.0421 (3)
Cl2 0.22059 (8) 0.34733 (10) 0.29708 (7) 0.0511 (3)
Cl3 0.34492 (8) 0.22870 (8) 0.43486 (5) 0.0390 (2)
Cl4 0.42343 (8) 0.36387 (9) 0.19523 (6) 0.0435 (3)
N11 0.4206 (2) 0.4450 (2) 0.35899 (17) 0.0283 (7)
C12 0.5099 (3) 0.4445 (3) 0.38213 (19) 0.0269 (8)
C13 0.5508 (3) 0.5344 (3) 0.4160 (2) 0.0306 (8)
C14 0.4951 (3) 0.6273 (3) 0.4237 (2) 0.0374 (9)
H14 0.5197 0.6900 0.4463 0.045*
C15 0.4064 (3) 0.6278 (3) 0.3989 (2) 0.0408 (10)
H15 0.3695 0.6911 0.4029 0.049*
C16 0.3698 (3) 0.5334 (3) 0.3672 (2) 0.0366 (9)
H16 0.3073 0.5330 0.3512 0.044*
C17 0.6451 (3) 0.5263 (3) 0.4401 (2) 0.0387 (10)
H17 0.6726 0.5861 0.4643 0.046*
N21 0.5220 (2) 0.2640 (2) 0.33599 (17) 0.0283 (7)
C22 0.5637 (3) 0.3483 (3) 0.37021 (19) 0.0274 (8)
C23 0.6563 (3) 0.3443 (3) 0.3932 (2) 0.0327 (9)
C24 0.7061 (3) 0.2487 (4) 0.3787 (2) 0.0407 (10)
H24 0.7690 0.2426 0.3931 0.049*
C25 0.6635 (3) 0.1650 (4) 0.3438 (2) 0.0404 (10)
H25 0.6967 0.1004 0.3337 0.049*
C26 0.5708 (3) 0.1745 (3) 0.3230 (2) 0.0342 (9)
H26 0.5418 0.1156 0.2990 0.041*
C27 0.6951 (3) 0.4365 (4) 0.4294 (2) 0.0404 (10)
H27 0.7574 0.4339 0.4460 0.048*
Cl11 0.61683 (10) 0.09903 (12) 0.52665 (8) 0.0666 (4)
C31 0.5152 (6) 0.0229 (6) 0.5363 (4) 0.049 (3) 0.71 (2)
H31A 0.5260 −0.0370 0.5711 0.058* 0.71 (2)
H31B 0.4654 0.0693 0.5563 0.058* 0.71 (2)
C31B 0.5342 (18) 0.024 (2) 0.4789 (13) 0.066 (8)* 0.29 (2)
H31C 0.5043 0.0714 0.4427 0.079* 0.29 (2)
H31D 0.5666 −0.0343 0.4517 0.079* 0.29 (2)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Sn1 0.03044 (14) 0.02244 (13) 0.02617 (14) −0.00135 (10) 0.00109 (10) −0.00118 (10)
Cl1 0.0475 (6) 0.0298 (5) 0.0491 (6) −0.0029 (4) −0.0022 (5) −0.0091 (4)
Cl2 0.0451 (6) 0.0513 (7) 0.0567 (7) 0.0050 (5) −0.0043 (5) −0.0082 (6)
Cl3 0.0451 (5) 0.0396 (6) 0.0323 (5) −0.0064 (4) 0.0046 (4) 0.0031 (4)
Cl4 0.0548 (7) 0.0421 (6) 0.0335 (5) −0.0053 (5) 0.0050 (5) 0.0067 (5)
N11 0.0316 (17) 0.0237 (15) 0.0296 (16) −0.0005 (13) −0.0005 (13) 0.0005 (13)
C12 0.0291 (19) 0.0265 (18) 0.0251 (18) −0.0028 (15) 0.0044 (15) 0.0024 (15)
C13 0.040 (2) 0.0279 (19) 0.0237 (18) −0.0065 (16) 0.0035 (16) 0.0045 (15)
C14 0.050 (3) 0.026 (2) 0.037 (2) −0.0082 (18) 0.0038 (19) −0.0034 (17)
C15 0.053 (3) 0.027 (2) 0.043 (2) 0.0033 (19) 0.000 (2) −0.0039 (18)
C16 0.038 (2) 0.030 (2) 0.042 (2) 0.0034 (17) −0.0026 (18) −0.0033 (17)
C17 0.042 (2) 0.038 (2) 0.036 (2) −0.0172 (18) −0.0013 (18) 0.0018 (18)
N21 0.0305 (17) 0.0263 (16) 0.0282 (16) 0.0008 (13) 0.0025 (13) 0.0005 (13)
C22 0.0311 (19) 0.0263 (19) 0.0246 (18) −0.0041 (15) 0.0046 (15) 0.0046 (15)
C23 0.0290 (19) 0.038 (2) 0.032 (2) −0.0010 (17) 0.0037 (16) 0.0092 (17)
C24 0.031 (2) 0.044 (2) 0.048 (3) 0.0015 (19) 0.0030 (19) 0.013 (2)
C25 0.039 (2) 0.035 (2) 0.047 (3) 0.0108 (19) 0.009 (2) 0.0086 (19)
C26 0.038 (2) 0.0292 (19) 0.035 (2) 0.0025 (17) 0.0072 (17) 0.0012 (16)
C27 0.032 (2) 0.047 (3) 0.041 (2) −0.0098 (19) −0.0041 (18) 0.009 (2)
Cl11 0.0691 (9) 0.0617 (8) 0.0691 (9) −0.0178 (7) 0.0144 (7) −0.0220 (7)
C31 0.061 (5) 0.048 (4) 0.037 (4) −0.005 (3) 0.021 (3) −0.008 (3)

Geometric parameters (Å, °)

Sn1—N21 2.224 (3) N21—C26 1.334 (5)
Sn1—N11 2.238 (3) N21—C22 1.357 (5)
Sn1—Cl2 2.3333 (12) C22—C23 1.404 (5)
Sn1—Cl1 2.3708 (10) C23—C24 1.410 (6)
Sn1—Cl4 2.4095 (10) C23—C27 1.434 (6)
Sn1—Cl3 2.4480 (10) C24—C25 1.363 (6)
Cl1—Cl2i 3.5140 (16) C24—H24 0.9500
N11—C16 1.325 (5) C25—C26 1.397 (6)
N11—C12 1.358 (5) C25—H25 0.9500
C12—C13 1.404 (5) C26—H26 0.9500
C12—C22 1.438 (5) C27—H27 0.9500
C13—C14 1.409 (6) Cl11—C31B 1.75 (3)
C13—C17 1.436 (6) Cl11—C31 1.754 (8)
C14—C15 1.360 (6) C31—C31ii 1.513 (17)
C14—H14 0.9500 C31—H31A 0.9900
C15—C16 1.407 (6) C31—H31B 0.9900
C15—H15 0.9500 C31B—C31Bii 1.38 (5)
C16—H16 0.9500 C31B—H31C 0.9900
C17—C27 1.339 (6) C31B—H31D 0.9900
C17—H17 0.9500
N21—Sn1—N11 74.74 (11) C15—C16—H16 119.2
N21—Sn1—Cl2 168.06 (9) C27—C17—C13 121.7 (4)
N11—Sn1—Cl2 93.56 (9) C27—C17—H17 119.2
N21—Sn1—Cl1 91.48 (8) C13—C17—H17 119.2
N11—Sn1—Cl1 166.22 (8) C26—N21—C22 119.1 (3)
Cl2—Sn1—Cl1 100.18 (4) C26—N21—Sn1 126.0 (3)
N21—Sn1—Cl4 87.22 (9) C22—N21—Sn1 115.0 (2)
N11—Sn1—Cl4 85.89 (8) N21—C22—C23 122.3 (4)
Cl2—Sn1—Cl4 94.46 (4) N21—C22—C12 117.8 (3)
Cl1—Sn1—Cl4 93.95 (4) C23—C22—C12 119.8 (4)
N21—Sn1—Cl3 85.24 (8) C22—C23—C24 117.3 (4)
N11—Sn1—Cl3 86.29 (8) C22—C23—C27 119.0 (4)
Cl2—Sn1—Cl3 91.70 (4) C24—C23—C27 123.8 (4)
Cl1—Sn1—Cl3 92.29 (4) C25—C24—C23 119.7 (4)
Cl4—Sn1—Cl3 170.32 (4) C25—C24—H24 120.1
C16—N11—C12 119.6 (3) C23—C24—H24 120.1
C16—N11—Sn1 126.0 (3) C24—C25—C26 119.8 (4)
C12—N11—Sn1 114.4 (2) C24—C25—H25 120.1
N11—C12—C13 122.3 (3) C26—C25—H25 120.1
N11—C12—C22 118.0 (3) N21—C26—C25 121.9 (4)
C13—C12—C22 119.7 (3) N21—C26—H26 119.1
C12—C13—C14 116.7 (4) C25—C26—H26 119.1
C12—C13—C17 118.7 (4) C17—C27—C23 121.1 (4)
C14—C13—C17 124.6 (4) C17—C27—H27 119.5
C15—C14—C13 120.6 (4) C23—C27—H27 119.5
C15—C14—H14 119.7 C31B—Cl11—C31 36.2 (7)
C13—C14—H14 119.7 Cl11—C31—H31A 109.5
C14—C15—C16 119.2 (4) Cl11—C31—H31B 109.5
C14—C15—H15 120.4 H31A—C31—H31B 108.1
C16—C15—H15 120.4 Cl11—C31B—H31C 108.4
N11—C16—C15 121.6 (4) Cl11—C31B—H31D 108.4
N11—C16—H16 119.2 H31C—C31B—H31D 107.4
N21—Sn1—N11—C16 177.5 (3) Cl4—Sn1—N21—C26 −92.4 (3)
Cl2—Sn1—N11—C16 −4.9 (3) Cl3—Sn1—N21—C26 93.7 (3)
Cl1—Sn1—N11—C16 179.1 (3) N11—Sn1—N21—C22 3.2 (2)
Cl4—Sn1—N11—C16 89.3 (3) Cl2—Sn1—N21—C22 −8.7 (6)
Cl3—Sn1—N11—C16 −96.4 (3) Cl1—Sn1—N21—C22 −176.4 (2)
N21—Sn1—N11—C12 −2.9 (2) Cl4—Sn1—N21—C22 89.7 (2)
Cl2—Sn1—N11—C12 174.6 (2) Cl3—Sn1—N21—C22 −84.2 (2)
Cl1—Sn1—N11—C12 −1.3 (5) C26—N21—C22—C23 −0.7 (5)
Cl4—Sn1—N11—C12 −91.2 (2) Sn1—N21—C22—C23 177.4 (3)
Cl3—Sn1—N11—C12 83.1 (2) C26—N21—C22—C12 178.7 (3)
C16—N11—C12—C13 1.2 (5) Sn1—N21—C22—C12 −3.2 (4)
Sn1—N11—C12—C13 −178.4 (3) N11—C12—C22—N21 0.5 (5)
C16—N11—C12—C22 −178.1 (3) C13—C12—C22—N21 −178.7 (3)
Sn1—N11—C12—C22 2.4 (4) N11—C12—C22—C23 180.0 (3)
N11—C12—C13—C14 −1.4 (5) C13—C12—C22—C23 0.7 (5)
C22—C12—C13—C14 177.9 (3) N21—C22—C23—C24 0.7 (5)
N11—C12—C13—C17 178.8 (3) C12—C22—C23—C24 −178.7 (3)
C22—C12—C13—C17 −2.0 (5) N21—C22—C23—C27 −179.7 (3)
C12—C13—C14—C15 −0.1 (6) C12—C22—C23—C27 1.0 (5)
C17—C13—C14—C15 179.7 (4) C22—C23—C24—C25 −0.3 (6)
C13—C14—C15—C16 1.7 (6) C27—C23—C24—C25 −179.9 (4)
C12—N11—C16—C15 0.5 (6) C23—C24—C25—C26 −0.2 (6)
Sn1—N11—C16—C15 −180.0 (3) C22—N21—C26—C25 0.1 (6)
C14—C15—C16—N11 −2.0 (7) Sn1—N21—C26—C25 −177.7 (3)
C12—C13—C17—C27 1.7 (6) C24—C25—C26—N21 0.3 (6)
C14—C13—C17—C27 −178.1 (4) C13—C17—C27—C23 −0.1 (6)
N11—Sn1—N21—C26 −178.8 (3) C22—C23—C27—C17 −1.3 (6)
Cl2—Sn1—N21—C26 169.2 (3) C24—C23—C27—C17 178.3 (4)
Cl1—Sn1—N21—C26 1.5 (3)

Symmetry codes: (i) −x+1/2, y−1/2, z; (ii) −x+1, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2511).

References

  1. Bruker (1995). SAINT and SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Hall, V. J. & Tiekink, E. R. T. (1996). Z. Kristallogr.211, 247–250.
  3. Harrison, P. G., Lane, B. C. & Zuckerman, J. J. (1972). Inorg. Chem.11, 1537–1543.
  4. Matsubayashi, G. & Iyoda, J. (1977). Bull. Chem. Soc. Jpn, 50, 3055–3056.
  5. Monaghan, P. K. & Puddephatt, R. J. (1985). Organometallics, 4, 1406–1412.
  6. Sheldrick, G. M. (2008a). SADABS University of Göttingen, Germany.
  7. Sheldrick, G. M. (2008b). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Su, Z.-H., Zhou, B.-B., Zhao, Z.-F. & Ng, S. W. (2007). Acta Cryst. E63, m394–m395.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809017346/hg2511sup1.cif

e-65-0m690-sup1.cif (19KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809017346/hg2511Isup2.hkl

e-65-0m690-Isup2.hkl (183.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES