Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 May 20;65(Pt 6):o1324. doi: 10.1107/S160053680901753X

Ethyl 2-amino-4-(3-chloro­phen­yl)-5,10-dioxo-5,10-dihydro-4H-benzo[g]chromene-3-carboxyl­ate

Xiao Hu a,*, Song Lei b,c, Chang-Sheng Yao b,c
PMCID: PMC2969697  PMID: 21583179

Abstract

The title mol­ecule, C22H16ClNO5, was obtained by the reaction of (E)-ethyl 3-(3-chloro­phen­yl)-2-cyano­acrylate and 2-hydroxy­naphthalene-1,4-dione catalysed by triethylamine in ethanol. In the crystal structure, the chlorobenzene ring makes a dihedral angle of 88.63 (4)° with the fused ring system. The six-membered ring formed by an intra­molecular N—H⋯O hydrogen bond is almost planar. The crystal packing is stabilized by N—H⋯O hydrogen bonds.

Related literature

For the anti­tumor activity of 4H-naphtho[2,3-b]pyran-5,10-dione derivatives, see: Fujimoto (2007); Perchellet et al. (2001); Zhan et al. (2007). For natural products containing H-naphtho[2,3-b]pyran-5,10-dione, see: Jassbi et al. (2004); Rodriguez et al. (2003).graphic file with name e-65-o1324-scheme1.jpg

Experimental

Crystal data

  • C22H16ClNO5

  • M r = 409.81

  • Triclinic, Inline graphic

  • a = 6.1175 (17) Å

  • b = 10.021 (3) Å

  • c = 15.967 (5) Å

  • α = 84.840 (13)°

  • β = 87.714 (12)°

  • γ = 67.429 (8)°

  • V = 900.2 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 113 K

  • 0.32 × 0.30 × 0.20 mm

Data collection

  • Rigaku Saturn diffractometer

  • Absorption correction: multi-scan (Jacobson, 1998) T min = 0.924, T max = 0.952

  • 11338 measured reflections

  • 4261 independent reflections

  • 3031 reflections with I > 2σ(I)

  • R int = 0.033

Refinement

  • R[F 2 > 2σ(F 2)] = 0.034

  • wR(F 2) = 0.097

  • S = 1.01

  • 4261 reflections

  • 272 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.45 e Å−3

Data collection: CrystalClear (Rigaku/MSC, 2002); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053680901753X/hg2512sup1.cif

e-65-o1324-sup1.cif (21.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053680901753X/hg2512Isup2.hkl

e-65-o1324-Isup2.hkl (208.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O4 0.898 (18) 2.049 (18) 2.6827 (17) 126.5 (15)
N1—H2⋯O2i 0.880 (19) 2.12 (2) 2.9913 (17) 170.2 (18)

Symmetry code: (i) Inline graphic.

supplementary crystallographic information

Comment

The derivatives of 4H-naphtho[2,3-b]pyran-5,10-dione have antitumor activities (Fujimoto, 2007; Zhan et al., 2007; Perchellet et al., 2001). Besides, some natural products also contain this moiety (Rodriguez et al., 2003; Jassbi et al., 2004). In order to develop new potential antitumor chemicals, a series of novel 4H-naphtho[2,3-b]pyran-5,10-dione derivatives based on the scaffolds of natural products have been synthesized. However, to the best of our knowledge, there are no reports on the crystal structure of these compounds. Determination of the molecular structure is crucial to the study of the structure and activity relationship. Here we report the crystal structure of the title compound, (I).

The molecular structure of (I) is shown in Fig. 1. It consists of five rings, considering the six-membered ring formed by the intramolecular N1—H1···O4 hydrogen bond (Table 1). The dihedral angles between the neighbouring rings show that the naphthalene ring and the pyran ring in an envelope conformation are almost coplanar. The phenyl ring bonded to the pyrans ring is almost perpendicular to the fused ring, for the dihedral angle is 88.63 (4)°. In the molecular structure, the crystal packing is stabilized N1—H2···O2 intermolecular hydrogen bonds. (Figs.2, Table 1)

Experimental

The title compound was synthesized by the reaction of (E)-ethyl 3-(3-chlorophenyl)-2-cyanoacrylate (1 mmol) and 2-hydroxynaphthalene-1,4-dione (1 mmol) catalyzed by Et3N in 15 ml ethanol at reluxing temperature. After cooling, the solvent was removed at reduced pressure and the residue was washed with water and recrystallized from ethanol, which gave single crystals suitable for X-ray diffraction.

Refinement

The hydrogen atoms bonded to nitrogen atom was positioned from a Fourier difference map and were refined freely. Other H atoms were placed in calculated positions, with C—H = 0.95-1.00 Å, and included in the final cycles of refinement using a riding model, with Uiso(H) = 1.2Ueq (parent atom).

Figures

Fig. 1.

Fig. 1.

The structure of (I), showing 30% probability displacement ellipsoids and the atom-numbering scheme.

Fig. 2.

Fig. 2.

The packing diagram of (I). Intermolecular hydrogen bonds are shown as dashed lines.

Crystal data

C22H16ClNO5 Z = 2
Mr = 409.81 F(000) = 424
Triclinic, P1 Dx = 1.512 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71070 Å
a = 6.1175 (17) Å Cell parameters from 2873 reflections
b = 10.021 (3) Å θ = 2.2–27.9°
c = 15.967 (5) Å µ = 0.25 mm1
α = 84.840 (13)° T = 113 K
β = 87.714 (12)° Block, red
γ = 67.429 (8)° 0.32 × 0.30 × 0.20 mm
V = 900.2 (4) Å3

Data collection

Rigaku Saturn diffractometer 4261 independent reflections
Radiation source: rotating anode 3031 reflections with I > 2σ(I)
confocal Rint = 0.033
Detector resolution: 7.31 pixels mm-1 θmax = 27.9°, θmin = 2.2°
ω scans h = −8→8
Absorption correction: multi-scan (Jacobson, 1998) k = −13→13
Tmin = 0.924, Tmax = 0.952 l = −20→20
11338 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.097 w = 1/[σ2(Fo2) + (0.0583P)2] where P = (Fo2 + 2Fc2)/3
S = 1.01 (Δ/σ)max < 0.001
4261 reflections Δρmax = 0.37 e Å3
272 parameters Δρmin = −0.45 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.020 (4)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.49377 (7) 0.57379 (4) 0.30597 (2) 0.02735 (12)
O1 −0.07224 (16) 0.26225 (11) 0.15817 (6) 0.0199 (2)
O2 0.68318 (17) 0.12419 (11) −0.04552 (6) 0.0231 (2)
O3 0.75549 (16) 0.04439 (10) 0.11440 (5) 0.0172 (2)
O4 0.88099 (17) −0.17355 (11) 0.35482 (6) 0.0225 (2)
O5 0.48890 (16) −0.07946 (10) 0.38009 (6) 0.0184 (2)
N1 1.0294 (2) −0.10163 (13) 0.20348 (8) 0.0191 (3)
C1 0.0990 (2) 0.23745 (14) 0.11164 (8) 0.0156 (3)
C2 0.0730 (2) 0.29181 (14) 0.02047 (8) 0.0162 (3)
C3 −0.1499 (2) 0.37702 (15) −0.01112 (8) 0.0194 (3)
H3 −0.2854 0.3985 0.0244 0.023*
C4 −0.1737 (3) 0.43104 (16) −0.09541 (9) 0.0223 (3)
H4 −0.3264 0.4885 −0.1173 0.027*
C5 0.0222 (3) 0.40187 (16) −0.14729 (9) 0.0228 (3)
H5 0.0044 0.4412 −0.2042 0.027*
C6 0.2449 (3) 0.31522 (15) −0.11653 (8) 0.0203 (3)
H6 0.3795 0.2939 −0.1524 0.024*
C7 0.2707 (2) 0.25930 (14) −0.03244 (8) 0.0167 (3)
C8 0.5078 (2) 0.16626 (14) −0.00028 (8) 0.0164 (3)
C9 0.5273 (2) 0.12298 (14) 0.09172 (8) 0.0155 (3)
C10 0.3409 (2) 0.15414 (14) 0.14472 (8) 0.0147 (3)
C11 0.3707 (2) 0.10501 (14) 0.23718 (8) 0.0148 (3)
H11 0.2601 0.0547 0.2528 0.018*
C12 0.6221 (2) −0.00336 (14) 0.25298 (8) 0.0155 (3)
C13 0.7982 (2) −0.02151 (14) 0.19472 (8) 0.0157 (3)
C14 0.3041 (2) 0.23611 (14) 0.28925 (8) 0.0145 (3)
C15 0.4265 (2) 0.32887 (14) 0.27878 (8) 0.0155 (3)
H15 0.5580 0.3086 0.2414 0.019*
C16 0.3534 (2) 0.45117 (15) 0.32365 (8) 0.0191 (3)
C17 0.1670 (3) 0.48205 (16) 0.38070 (8) 0.0233 (3)
H17 0.1203 0.5659 0.4111 0.028*
C18 0.0507 (3) 0.38732 (16) 0.39210 (9) 0.0238 (3)
H18 −0.0756 0.4055 0.4316 0.029*
C19 0.1165 (2) 0.26597 (16) 0.34642 (8) 0.0203 (3)
H19 0.0329 0.2030 0.3542 0.024*
C20 0.6813 (2) −0.09205 (14) 0.33211 (8) 0.0163 (3)
C21 0.5361 (2) −0.17302 (15) 0.45788 (8) 0.0199 (3)
H21A 0.6348 −0.1461 0.4955 0.024*
H21B 0.6222 −0.2754 0.4458 0.024*
C22 0.3031 (3) −0.15439 (17) 0.49923 (9) 0.0251 (3)
H22A 0.3301 −0.2167 0.5518 0.030*
H22B 0.2069 −0.1814 0.4616 0.030*
H22C 0.2199 −0.0529 0.5113 0.030*
H1 1.081 (3) −0.160 (2) 0.2506 (12) 0.037 (5)*
H2 1.111 (3) −0.118 (2) 0.1561 (12) 0.044 (5)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0303 (2) 0.01992 (19) 0.0328 (2) −0.00981 (15) −0.00537 (15) −0.00406 (15)
O1 0.0141 (5) 0.0219 (5) 0.0218 (5) −0.0057 (4) 0.0003 (4) 0.0018 (4)
O2 0.0216 (5) 0.0269 (6) 0.0188 (5) −0.0069 (4) 0.0051 (4) −0.0046 (4)
O3 0.0142 (5) 0.0194 (5) 0.0159 (5) −0.0043 (4) 0.0011 (4) −0.0011 (4)
O4 0.0178 (5) 0.0202 (5) 0.0229 (5) −0.0005 (4) −0.0025 (4) 0.0027 (4)
O5 0.0171 (5) 0.0179 (5) 0.0163 (5) −0.0037 (4) −0.0009 (4) 0.0048 (4)
N1 0.0145 (6) 0.0204 (6) 0.0194 (6) −0.0033 (5) 0.0018 (5) −0.0030 (5)
C1 0.0169 (7) 0.0139 (6) 0.0175 (6) −0.0076 (5) −0.0007 (5) −0.0012 (5)
C2 0.0184 (7) 0.0141 (6) 0.0174 (7) −0.0075 (5) −0.0018 (5) −0.0013 (5)
C3 0.0194 (7) 0.0183 (7) 0.0215 (7) −0.0082 (6) −0.0015 (5) −0.0010 (6)
C4 0.0229 (7) 0.0205 (7) 0.0227 (7) −0.0072 (6) −0.0077 (6) 0.0006 (6)
C5 0.0305 (8) 0.0221 (7) 0.0168 (7) −0.0110 (6) −0.0037 (6) 0.0003 (6)
C6 0.0247 (8) 0.0211 (7) 0.0162 (7) −0.0099 (6) 0.0006 (5) −0.0020 (6)
C7 0.0207 (7) 0.0147 (6) 0.0168 (6) −0.0086 (5) −0.0009 (5) −0.0029 (5)
C8 0.0197 (7) 0.0151 (6) 0.0171 (6) −0.0090 (5) 0.0018 (5) −0.0043 (5)
C9 0.0161 (7) 0.0137 (6) 0.0170 (6) −0.0058 (5) −0.0007 (5) −0.0025 (5)
C10 0.0166 (7) 0.0125 (6) 0.0156 (6) −0.0062 (5) −0.0001 (5) −0.0012 (5)
C11 0.0147 (6) 0.0144 (6) 0.0148 (6) −0.0056 (5) −0.0005 (5) 0.0015 (5)
C12 0.0145 (6) 0.0135 (6) 0.0172 (6) −0.0036 (5) −0.0005 (5) −0.0015 (5)
C13 0.0169 (7) 0.0128 (6) 0.0175 (6) −0.0056 (5) −0.0024 (5) −0.0021 (5)
C14 0.0132 (6) 0.0136 (6) 0.0121 (6) −0.0004 (5) −0.0020 (5) 0.0016 (5)
C15 0.0140 (6) 0.0165 (7) 0.0123 (6) −0.0019 (5) −0.0005 (5) 0.0003 (5)
C16 0.0217 (7) 0.0163 (7) 0.0163 (6) −0.0040 (6) −0.0060 (5) 0.0015 (5)
C17 0.0261 (8) 0.0181 (7) 0.0157 (7) 0.0032 (6) −0.0041 (5) −0.0027 (5)
C18 0.0205 (7) 0.0248 (8) 0.0155 (7) 0.0020 (6) 0.0035 (5) 0.0005 (6)
C19 0.0181 (7) 0.0217 (7) 0.0172 (7) −0.0042 (6) 0.0005 (5) 0.0031 (5)
C20 0.0162 (7) 0.0125 (6) 0.0186 (7) −0.0034 (5) −0.0002 (5) −0.0027 (5)
C21 0.0222 (7) 0.0181 (7) 0.0152 (6) −0.0042 (6) −0.0033 (5) 0.0047 (5)
C22 0.0244 (8) 0.0299 (8) 0.0195 (7) −0.0102 (6) −0.0016 (6) 0.0058 (6)

Geometric parameters (Å, °)

Cl1—C16 1.7479 (15) C8—C9 1.4899 (18)
O1—C1 1.2177 (16) C9—C10 1.3457 (18)
O2—C8 1.2231 (16) C10—C11 1.5089 (17)
O3—C9 1.3584 (16) C11—C12 1.5194 (18)
O3—C13 1.3751 (15) C11—C14 1.5303 (19)
O4—C20 1.2274 (16) C11—H11 1.0000
O5—C20 1.3492 (16) C12—C13 1.3635 (18)
O5—C21 1.4549 (15) C12—C20 1.4508 (18)
N1—C13 1.3372 (17) C14—C19 1.3938 (18)
N1—H1 0.898 (18) C14—C15 1.3959 (19)
N1—H2 0.880 (19) C15—C16 1.3881 (19)
C1—C10 1.4834 (18) C15—H15 0.9500
C1—C2 1.5002 (18) C16—C17 1.387 (2)
C2—C3 1.3879 (19) C17—C18 1.384 (2)
C2—C7 1.3959 (19) C17—H17 0.9500
C3—C4 1.3963 (19) C18—C19 1.390 (2)
C3—H3 0.9500 C18—H18 0.9500
C4—C5 1.379 (2) C19—H19 0.9500
C4—H4 0.9500 C21—C22 1.498 (2)
C5—C6 1.386 (2) C21—H21A 0.9900
C5—H5 0.9500 C21—H21B 0.9900
C6—C7 1.3984 (18) C22—H22A 0.9800
C6—H6 0.9500 C22—H22B 0.9800
C7—C8 1.4739 (19) C22—H22C 0.9800
C9—O3—C13 118.10 (10) C14—C11—H11 108.1
C20—O5—C21 115.05 (10) C13—C12—C20 117.77 (11)
C13—N1—H1 119.2 (11) C13—C12—C11 122.20 (11)
C13—N1—H2 115.0 (12) C20—C12—C11 120.02 (11)
H1—N1—H2 121.7 (17) N1—C13—C12 128.18 (12)
O1—C1—C10 120.28 (11) N1—C13—O3 109.49 (11)
O1—C1—C2 121.46 (11) C12—C13—O3 122.33 (11)
C10—C1—C2 118.25 (11) C19—C14—C15 119.25 (12)
C3—C2—C7 119.80 (12) C19—C14—C11 120.14 (12)
C3—C2—C1 119.51 (12) C15—C14—C11 120.59 (11)
C7—C2—C1 120.68 (11) C16—C15—C14 119.13 (12)
C2—C3—C4 119.58 (13) C16—C15—H15 120.4
C2—C3—H3 120.2 C14—C15—H15 120.4
C4—C3—H3 120.2 C17—C16—C15 122.12 (14)
C5—C4—C3 120.69 (13) C17—C16—Cl1 118.47 (11)
C5—C4—H4 119.7 C15—C16—Cl1 119.39 (11)
C3—C4—H4 119.7 C18—C17—C16 118.20 (13)
C4—C5—C6 120.06 (13) C18—C17—H17 120.9
C4—C5—H5 120.0 C16—C17—H17 120.9
C6—C5—H5 120.0 C17—C18—C19 120.85 (13)
C5—C6—C7 119.77 (13) C17—C18—H18 119.6
C5—C6—H6 120.1 C19—C18—H18 119.6
C7—C6—H6 120.1 C18—C19—C14 120.40 (14)
C2—C7—C6 120.06 (12) C18—C19—H19 119.8
C2—C7—C8 120.43 (12) C14—C19—H19 119.8
C6—C7—C8 119.50 (12) O4—C20—O5 121.56 (12)
O2—C8—C7 122.97 (12) O4—C20—C12 125.79 (12)
O2—C8—C9 120.19 (12) O5—C20—C12 112.64 (11)
C7—C8—C9 116.84 (11) O5—C21—C22 107.88 (11)
C10—C9—O3 124.60 (12) O5—C21—H21A 110.1
C10—C9—C8 124.01 (12) C22—C21—H21A 110.1
O3—C9—C8 111.36 (11) O5—C21—H21B 110.1
C9—C10—C1 119.43 (11) C22—C21—H21B 110.1
C9—C10—C11 121.75 (12) H21A—C21—H21B 108.4
C1—C10—C11 118.82 (11) C21—C22—H22A 109.5
C10—C11—C12 109.30 (10) C21—C22—H22B 109.5
C10—C11—C14 110.13 (10) H22A—C22—H22B 109.5
C12—C11—C14 112.83 (11) C21—C22—H22C 109.5
C10—C11—H11 108.1 H22A—C22—H22C 109.5
C12—C11—H11 108.1 H22B—C22—H22C 109.5
O1—C1—C2—C3 2.5 (2) C1—C10—C11—C12 168.17 (11)
C10—C1—C2—C3 −176.36 (12) C9—C10—C11—C14 113.41 (14)
O1—C1—C2—C7 −178.39 (13) C1—C10—C11—C14 −67.34 (15)
C10—C1—C2—C7 2.70 (19) C10—C11—C12—C13 14.24 (18)
C7—C2—C3—C4 −0.8 (2) C14—C11—C12—C13 −108.66 (14)
C1—C2—C3—C4 178.23 (12) C10—C11—C12—C20 −165.61 (11)
C2—C3—C4—C5 −0.7 (2) C14—C11—C12—C20 71.50 (15)
C3—C4—C5—C6 1.6 (2) C20—C12—C13—N1 −7.3 (2)
C4—C5—C6—C7 −1.0 (2) C11—C12—C13—N1 172.81 (13)
C3—C2—C7—C6 1.5 (2) C20—C12—C13—O3 172.24 (11)
C1—C2—C7—C6 −177.59 (12) C11—C12—C13—O3 −7.6 (2)
C3—C2—C7—C8 −178.63 (12) C9—O3—C13—N1 175.65 (11)
C1—C2—C7—C8 2.31 (19) C9—O3—C13—C12 −4.00 (18)
C5—C6—C7—C2 −0.6 (2) C10—C11—C14—C19 118.09 (13)
C5—C6—C7—C8 179.53 (13) C12—C11—C14—C19 −119.49 (13)
C2—C7—C8—O2 173.40 (13) C10—C11—C14—C15 −60.43 (15)
C6—C7—C8—O2 −6.7 (2) C12—C11—C14—C15 62.00 (15)
C2—C7—C8—C9 −6.16 (18) C19—C14—C15—C16 −2.01 (18)
C6—C7—C8—C9 173.74 (12) C11—C14—C15—C16 176.52 (11)
C13—O3—C9—C10 7.43 (19) C14—C15—C16—C17 2.07 (19)
C13—O3—C9—C8 −170.55 (10) C14—C15—C16—Cl1 −176.00 (9)
O2—C8—C9—C10 −174.20 (13) C15—C16—C17—C18 −0.47 (19)
C7—C8—C9—C10 5.37 (19) Cl1—C16—C17—C18 177.61 (10)
O2—C8—C9—O3 3.80 (18) C16—C17—C18—C19 −1.2 (2)
C7—C8—C9—O3 −176.63 (11) C17—C18—C19—C14 1.2 (2)
O3—C9—C10—C1 −178.19 (12) C15—C14—C19—C18 0.43 (19)
C8—C9—C10—C1 −0.5 (2) C11—C14—C19—C18 −178.10 (12)
O3—C9—C10—C11 1.1 (2) C21—O5—C20—O4 −2.29 (19)
C8—C9—C10—C11 178.79 (12) C21—O5—C20—C12 176.26 (11)
O1—C1—C10—C9 177.45 (12) C13—C12—C20—O4 6.9 (2)
C2—C1—C10—C9 −3.64 (19) C11—C12—C20—O4 −173.26 (13)
O1—C1—C10—C11 −1.82 (19) C13—C12—C20—O5 −171.59 (12)
C2—C1—C10—C11 177.09 (11) C11—C12—C20—O5 8.26 (17)
C9—C10—C11—C12 −11.08 (17) C20—O5—C21—C22 −175.25 (12)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1···O4 0.898 (18) 2.049 (18) 2.6827 (17) 126.5 (15)
N1—H2···O2i 0.880 (19) 2.12 (2) 2.9913 (17) 170.2 (18)

Symmetry codes: (i) −x+2, −y, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2512).

References

  1. Fujimoto, S. (2007). Biol. Pharm. Bull.30, 1923–1929. [DOI] [PubMed]
  2. Jacobson, R. (1998). Private communication to the Rigaku Corporation, Tokyo, Japan.
  3. Jassbi, A. R., Singh, P., Jain, S. & Tahara, S. (2004). Helv. Chim. Acta, 87, 820–824.
  4. Perchellet, E. M., Sperfslage, B. J., Qabaja, G., Jones, G. B. & Perchellet, J.-P. (2001). Anti-Cancer Drugs, 12, 401–417. [DOI] [PubMed]
  5. Rigaku/MSC (2002). CrystalClear Rigaku/MSC Inc., The Woodlands, Texas, USA.
  6. Rodriguez, J. C., Fernandez Puentes, J. L., Baz, J. P. & Canedo, L. M. (2003). J. Antibiot.56, 318–321. [DOI] [PubMed]
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Zhan, J. X., Burns, A. M., Liu, M. P. X., Faeth, S. H. & Gunatilaka, A. A. L. (2007). J. Nat. Prod.70, 227–232. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053680901753X/hg2512sup1.cif

e-65-o1324-sup1.cif (21.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053680901753X/hg2512Isup2.hkl

e-65-o1324-Isup2.hkl (208.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES