Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 May 29;65(Pt 6):o1408. doi: 10.1107/S1600536809018911

3,3′-[(tert-Butoxy­carbon­yl)aza­nedi­yl]dipropanoic acid

Yuan Tao a, Yu-Feng Liang a, Xiao-Qiang Guo b, Zhi-Hua Mao c, Qing-Rong Qi a,*
PMCID: PMC2969698  PMID: 21583251

Abstract

The title compound, C11H19NO6, is an important inter­mediate for the synthesis of cephalosporin derivatives. The N atom is in a planar configuration. In the crystal, mol­ecules are linked into zigzag layers parallel to (100) by O—H⋯O hydrogen bonds.

Related literature

The condensation of the title compound with cephalosporin may improve the pharmacokinetics, see: Sakagami et al. (1990, 1991); Uhrich & Frechet (1992).graphic file with name e-65-o1408-scheme1.jpg

Experimental

Crystal data

  • C11H19NO6

  • M r = 261.27

  • Orthorhombic, Inline graphic

  • a = 10.632 (2) Å

  • b = 14.559 (3) Å

  • c = 18.257 (4) Å

  • V = 2826.1 (11) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 292 K

  • 0.60 × 0.50 × 0.44 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: none

  • 2979 measured reflections

  • 2601 independent reflections

  • 1050 reflections with I > 2σ(I)

  • R int = 0.008

  • 3 standard reflections every 200 reflections intensity decay: 1.3%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.054

  • wR(F 2) = 0.171

  • S = 1.09

  • 2601 reflections

  • 175 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.25 e Å−3

Data collection: DIFRAC (Gabe & White, 1993); cell refinement: DIFRAC; data reduction: NRCVAX (Gabe et al., 1989); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809018911/ci2799sup1.cif

e-65-o1408-sup1.cif (17.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809018911/ci2799Isup2.hkl

e-65-o1408-Isup2.hkl (127.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3O⋯O4i 0.98 (5) 1.68 (5) 2.653 (4) 174 (4)
O5—H5O⋯O2ii 0.94 (5) 1.70 (5) 2.628 (3) 168 (4)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

This work was supported by the National 973 Project under grant No. 2004CB518800.

supplementary crystallographic information

Comment

The title compound is an important intermediate for the synthesis of a new type of cephalosporin. The condensation of the title compound with cephalosporin may improve the pharmacokinetics of the cephalosporin (Sakagami et al., 1990). It has two carboxylic acid functionalities that are available for the condensation with the amino group of cephalosporin, while the protected amine can be easily activated by deprotection, so that it can be condensed with the carboxyl of cephalosporin. The condensation with cephalosporin may increase the drug concentration, control the release of drug and reduce the drug toxicity (Uhrich & Frechet, 1992; Sakagami et al., 1991).

The N atom has a trigonal planar configuration, with sum of bond angles around N1 being 359.8 °. The molecules are linked into zigzag layers parallel to the (100) by O—H···O hydrogen bonds.

Experimental

Dimethyl 3,3'-azanediyldipropanoate (5.67g, 30 mol) was treated with NaOH solution (4.0g NaOH in 20 ml H2O) and stirred at room temperature for 2 h. Then a solution of (Boc)2O (7.0g, 32mmol) (Boc is tert-butoxycarbonyl) in tertiary butyl alcohol (10 ml) was added dropwise at 283 K. The contents were stirred for 30 min at room temperature. The reaction mixture was washed with n-pentane (10 ml × 3) and the aqueous layer was adjusted to a pH of 1.0 with hydrochloric acid and extracted with ethyl acetate. The organic layer was dried (MgSO4) and evaporated in vacuo and recrystallized in cyclohexane-ethyl acetate to get colourless crystals.

Refinement

Hydroxyl H atoms were located in a difference map and refined freely. The remaining H atoms were positioned geometrically (C-H = 0.96–0.97 Å) and refined using a riding model, with Uiso(H) = 1.2–1.5Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level.

Fig. 2.

Fig. 2.

A packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.

Crystal data

C11H19NO6 F(000) = 1120
Mr = 261.27 Dx = 1.228 Mg m3
Orthorhombic, Pbca Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2ab Cell parameters from 20 reflections
a = 10.632 (2) Å θ = 5.7–6.8°
b = 14.559 (3) Å µ = 0.10 mm1
c = 18.257 (4) Å T = 292 K
V = 2826.1 (11) Å3 Block, colourless
Z = 8 0.60 × 0.50 × 0.44 mm

Data collection

Enraf–Nonius CAD-4 diffractometer Rint = 0.008
Radiation source: fine-focus sealed tube θmax = 25.5°, θmin = 2.2°
graphite h = −1→12
ω/2–θ scans k = −3→17
2979 measured reflections l = −10→22
2601 independent reflections 3 standard reflections every 200 reflections
1050 reflections with I > 2σ(I) intensity decay: 1.3%

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.054 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.171 w = 1/[σ2(Fo2) + (0.0701P)2] where P = (Fo2 + 2Fc2)/3
S = 1.09 (Δ/σ)max = 0.001
2601 reflections Δρmax = 0.22 e Å3
175 parameters Δρmin = −0.25 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0127 (17)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.1690 (2) 0.18631 (13) 0.36711 (10) 0.0709 (7)
O2 0.0153 (3) 0.10681 (16) 0.31021 (11) 0.0841 (8)
O3 0.0720 (3) −0.04162 (19) 0.08342 (15) 0.0995 (10)
H3O 0.031 (4) −0.058 (3) 0.037 (3) 0.129 (16)*
O4 0.0484 (3) 0.09467 (16) 0.03663 (14) 0.1078 (11)
O5 0.1228 (3) 0.49187 (18) 0.26626 (13) 0.0833 (8)
H5O 0.066 (5) 0.526 (3) 0.238 (2) 0.137 (18)*
O6 0.1031 (3) 0.39281 (16) 0.17583 (15) 0.1142 (11)
N1 0.1433 (3) 0.20065 (16) 0.24663 (13) 0.0669 (8)
C1 0.2392 (4) 0.1974 (2) 0.48679 (17) 0.0898 (12)
H1A 0.3223 0.1849 0.4687 0.135*
H1B 0.2328 0.1772 0.5367 0.135*
H1C 0.2233 0.2622 0.4843 0.135*
C2 0.1697 (4) 0.0451 (2) 0.4391 (2) 0.0981 (14)
H2A 0.1055 0.0146 0.4112 0.147*
H2B 0.1700 0.0217 0.4882 0.147*
H2C 0.2501 0.0342 0.4169 0.147*
C3 0.0128 (4) 0.1701 (3) 0.4649 (2) 0.1067 (14)
H3A −0.0026 0.2343 0.4571 0.160*
H3B 0.0038 0.1560 0.5160 0.160*
H3C −0.0467 0.1347 0.4371 0.160*
C4 0.1436 (4) 0.1469 (2) 0.44047 (16) 0.0686 (10)
C5 0.1046 (4) 0.1604 (2) 0.30812 (18) 0.0623 (9)
C6 0.0904 (4) 0.1711 (2) 0.17744 (16) 0.0688 (10)
H6A 0.1042 0.2185 0.1409 0.083*
H6B 0.0003 0.1629 0.1829 0.083*
C7 0.1484 (3) 0.0821 (2) 0.15127 (17) 0.0747 (11)
H7A 0.2365 0.0922 0.1400 0.090*
H7B 0.1437 0.0368 0.1902 0.090*
C8 0.0838 (4) 0.0459 (3) 0.08533 (19) 0.0719 (10)
C9 0.2554 (4) 0.2605 (2) 0.24626 (18) 0.0762 (10)
H9A 0.2844 0.2675 0.1962 0.091*
H9B 0.3220 0.2308 0.2738 0.091*
C10 0.2318 (4) 0.3548 (2) 0.27853 (18) 0.0762 (11)
H10A 0.1970 0.3475 0.3273 0.091*
H10B 0.3116 0.3865 0.2833 0.091*
C11 0.1451 (4) 0.4125 (2) 0.2344 (2) 0.0732 (11)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0897 (19) 0.0642 (13) 0.0588 (12) −0.0127 (13) −0.0146 (12) −0.0004 (10)
O2 0.097 (2) 0.0806 (16) 0.0750 (16) −0.0276 (16) −0.0109 (14) −0.0061 (12)
O3 0.152 (3) 0.0724 (19) 0.0737 (17) 0.0156 (18) −0.0244 (17) −0.0096 (14)
O4 0.164 (3) 0.0759 (17) 0.0831 (17) 0.0102 (17) −0.0439 (18) −0.0010 (15)
O5 0.094 (2) 0.0750 (17) 0.0803 (16) 0.0181 (15) −0.0104 (14) 0.0071 (14)
O6 0.153 (3) 0.0836 (18) 0.106 (2) 0.0274 (18) −0.053 (2) −0.0026 (16)
N1 0.078 (2) 0.0626 (15) 0.0595 (16) −0.0032 (16) −0.0056 (15) 0.0027 (14)
C1 0.094 (3) 0.103 (3) 0.073 (2) 0.004 (2) −0.017 (2) −0.012 (2)
C2 0.132 (4) 0.072 (3) 0.090 (3) 0.002 (3) −0.012 (3) 0.015 (2)
C3 0.091 (4) 0.132 (3) 0.097 (3) 0.009 (3) 0.013 (3) −0.017 (3)
C4 0.080 (3) 0.069 (2) 0.0572 (18) 0.002 (2) −0.0009 (18) −0.0036 (17)
C5 0.066 (3) 0.054 (2) 0.067 (2) −0.0066 (19) −0.0100 (19) −0.0035 (17)
C6 0.080 (3) 0.065 (2) 0.060 (2) 0.011 (2) −0.0078 (17) −0.0011 (16)
C7 0.073 (3) 0.082 (2) 0.069 (2) 0.014 (2) −0.0123 (18) −0.0100 (18)
C8 0.081 (3) 0.071 (3) 0.064 (2) 0.025 (2) −0.0029 (19) −0.009 (2)
C9 0.069 (3) 0.075 (2) 0.084 (2) 0.005 (2) −0.0019 (19) 0.014 (2)
C10 0.078 (3) 0.064 (2) 0.087 (2) −0.010 (2) −0.023 (2) 0.0155 (17)
C11 0.087 (3) 0.062 (2) 0.071 (2) −0.006 (2) −0.011 (2) 0.0116 (19)

Geometric parameters (Å, °)

O1—C5 1.331 (4) C2—H2B 0.96
O1—C4 1.482 (3) C2—H2C 0.96
O2—C5 1.229 (4) C3—C4 1.499 (5)
O3—C8 1.281 (4) C3—H3A 0.96
O3—H3O 0.98 (5) C3—H3B 0.96
O4—C8 1.199 (4) C3—H3C 0.96
O5—C11 1.315 (4) C6—C7 1.513 (4)
O5—H5O 0.94 (5) C6—H6A 0.97
O6—C11 1.193 (4) C6—H6B 0.97
N1—C5 1.331 (4) C7—C8 1.482 (5)
N1—C6 1.448 (4) C7—H7A 0.97
N1—C9 1.477 (4) C7—H7B 0.97
C1—C4 1.514 (5) C9—C10 1.515 (4)
C1—H1A 0.96 C9—H9A 0.97
C1—H1B 0.96 C9—H9B 0.97
C1—H1C 0.96 C10—C11 1.486 (5)
C2—C4 1.508 (4) C10—H10A 0.97
C2—H2A 0.96 C10—H10B 0.97
C5—O1—C4 121.8 (3) O1—C5—N1 113.5 (3)
C8—O3—H3O 108 (2) N1—C6—C7 111.8 (3)
C11—O5—H5O 110 (3) N1—C6—H6A 109.3
C5—N1—C6 119.0 (3) C7—C6—H6A 109.3
C5—N1—C9 120.9 (3) N1—C6—H6B 109.3
C6—N1—C9 119.0 (3) C7—C6—H6B 109.3
C4—C1—H1A 109.5 H6A—C6—H6B 107.9
C4—C1—H1B 109.5 C8—C7—C6 111.8 (3)
H1A—C1—H1B 109.5 C8—C7—H7A 109.2
C4—C1—H1C 109.5 C6—C7—H7A 109.2
H1A—C1—H1C 109.5 C8—C7—H7B 109.2
H1B—C1—H1C 109.5 C6—C7—H7B 109.2
C4—C2—H2A 109.5 H7A—C7—H7B 107.9
C4—C2—H2B 109.5 O4—C8—O3 122.6 (3)
H2A—C2—H2B 109.5 O4—C8—C7 122.5 (4)
C4—C2—H2C 109.5 O3—C8—C7 114.9 (3)
H2A—C2—H2C 109.5 N1—C9—C10 113.5 (3)
H2B—C2—H2C 109.5 N1—C9—H9A 108.9
C4—C3—H3A 109.5 C10—C9—H9A 108.9
C4—C3—H3B 109.5 N1—C9—H9B 108.9
H3A—C3—H3B 109.5 C10—C9—H9B 108.9
C4—C3—H3C 109.5 H9A—C9—H9B 107.7
H3A—C3—H3C 109.5 C11—C10—C9 113.9 (3)
H3B—C3—H3C 109.5 C11—C10—H10A 108.8
O1—C4—C3 110.5 (3) C9—C10—H10A 108.8
O1—C4—C2 109.4 (3) C11—C10—H10B 108.8
C3—C4—C2 113.4 (3) C9—C10—H10B 108.8
O1—C4—C1 101.2 (3) H10A—C10—H10B 107.7
C3—C4—C1 110.4 (3) O6—C11—O5 122.7 (3)
C2—C4—C1 111.3 (3) O6—C11—C10 125.6 (3)
O2—C5—O1 123.5 (3) O5—C11—C10 111.6 (3)
O2—C5—N1 123.0 (3)
C5—O1—C4—C3 −63.2 (4) C9—N1—C6—C7 89.6 (3)
C5—O1—C4—C2 62.3 (4) N1—C6—C7—C8 173.1 (3)
C5—O1—C4—C1 179.9 (3) C6—C7—C8—O4 39.8 (5)
C4—O1—C5—O2 4.4 (5) C6—C7—C8—O3 −142.1 (3)
C4—O1—C5—N1 −177.7 (3) C5—N1—C9—C10 −76.4 (4)
C6—N1—C5—O2 −8.8 (5) C6—N1—C9—C10 115.9 (3)
C9—N1—C5—O2 −176.5 (3) N1—C9—C10—C11 −67.1 (4)
C6—N1—C5—O1 173.3 (3) C9—C10—C11—O6 −5.7 (6)
C9—N1—C5—O1 5.6 (4) C9—C10—C11—O5 177.0 (3)
C5—N1—C6—C7 −78.3 (4)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O3—H3O···O4i 0.98 (5) 1.68 (5) 2.653 (4) 174 (4)
O5—H5O···O2ii 0.94 (5) 1.70 (5) 2.628 (3) 168 (4)

Symmetry codes: (i) −x, −y, −z; (ii) −x, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2799).

References

  1. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  2. Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst.22, 384–387.
  3. Gabe, E. J. & White, P. S. (1993). DIFRAC American Crystallographic Association Meeting, Pittsburgh, Abstract PA 104.
  4. Sakagami, K., Atsumi, K. & Tamura, A. (1990). J. Antibiot.8, 1047–1050. [DOI] [PubMed]
  5. Sakagami, K., Atsumi, K. & Yamamoto, Y. (1991). Chem. Pharm. Bull.39, 2433–2436. [DOI] [PubMed]
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Uhrich, K. E. & Frechet, J. M. J. (1992). J. Chem. Soc. Perkin Trans. 1, pp. 1623–1630.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809018911/ci2799sup1.cif

e-65-o1408-sup1.cif (17.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809018911/ci2799Isup2.hkl

e-65-o1408-Isup2.hkl (127.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES