Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 May 7;65(Pt 6):o1187. doi: 10.1107/S1600536809016195

6-(1H-Indol-3-yl)-4-phenyl-2,2′-bi­pyridine-5-carbonitrile

Weijun Zhu a,*, Yan Xiang b, Songlei Zhu c
PMCID: PMC2969709  PMID: 21583060

Abstract

In the mol­ecule of the title compound, C25H16N4, the pyridine rings are oriented at a dihedral angle of 0.92 (3)°, while the dihedral angle between the benzene ring and the adjacent pyridine ring is 56.51 (3)°. In the crystal structure, inter­molecular N—H⋯N hydrogen bonds link the mol­ecules into centrosymmetric dimers, forming R 2 2(16) ring motifs. π–π contacts between the pyridine ring and the indole ring system and between the pyridine rings [centroid–centroid distances = 3.923 (2) and 3.724 (2) Å] may further stabilize the structure. Two weak C—H⋯π inter­actions are also present.

Related literature

For general background, see: da Silva et al. (2001); Joshi & Chand (1982); Namba et al. (2005). For a related structure, see: Zhu et al., (2008). For bond-length data, see: Allen et al. (1987). For ring-motifs, see: Bernstein et al. (1995).graphic file with name e-65-o1187-scheme1.jpg

Experimental

Crystal data

  • C25H16N4

  • M r = 372.42

  • Triclinic, Inline graphic

  • a = 9.7744 (16) Å

  • b = 9.7927 (11) Å

  • c = 11.233 (2) Å

  • α = 73.121 (13)°

  • β = 86.008 (16)°

  • γ = 63.853 (10)°

  • V = 921.5 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 291 K

  • 0.55 × 0.35 × 0.30 mm

Data collection

  • Rigaku Mercury diffractometer

  • Absorption correction: multi-scan (ABSCOR; Jacobson, 1998) T min = 0.966, T max = 0.976

  • 8987 measured reflections

  • 3349 independent reflections

  • 2614 reflections with I > 2/s(I)

  • R int = 0.027

Refinement

  • R[F 2 > 2σ(F 2)] = 0.054

  • wR(F 2) = 0.126

  • S = 1.12

  • 3349 reflections

  • 263 parameters

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.21 e Å−3

Data collection: CrystalClear (Rigaku/MSC, 2001); cell refinement: CrystalClear; data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 and PLATON.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809016195/hk2679sup1.cif

e-65-o1187-sup1.cif (21KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809016195/hk2679Isup2.hkl

e-65-o1187-Isup2.hkl (164.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4⋯N3i 0.86 2.23 3.066 (2) 164
C12—H12⋯Cg5ii 0.93 2.84 3.649 (3) 146
C23—H23⋯Cg4iii 0.93 2.91 3.711 (3) 145

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic. Cg4 and Cg5 are the centroids of the C11–C16 and C20–C25 rings, respectively.

Acknowledgments

This work was sponsored by the ‘Qing Lan’ Project of Jiangsu Province for Excellent Young Teachers of XuZhou College of Industrial Technology, and the Special Foundation of the President of Xuzhou Medical College.

supplementary crystallographic information

Comment

Indole nucleus is a well known heterocycle (da Silva et al., 2001). Compounds carrying the indole moiety exhibit antibacterial and fungicidal activities (Joshi & Chand, 1982). Moreover, the bipyridines and the related complexes have also found numerous applications in asymmetric catalysis, photoinduced electron transfer, and polymer and dendrimer science (Namba et al., 2005). As a part of our programme devoted to the preparation of functionalized indole derivatives, we synthesized a series of indole substituted heterocycles (Zhu et al., 2008). We report herein the crystal structure of the title compound.

In the molecule of the title compound (Fig 1), the bond lengths (Allen et al., 1987) and angles are within normal ranges. The indole ring system A (N4/C18-C25) is planar with a maximum deviation of -0.021 (3) Å for atom C25. Rings B (N1/C1-C5), C (N2/C6-C10) and D (C11-C16) are, of course, planar, and they are oriented at dihedral angles of A/B = 23.01 (3), A/C = 23.61 (3), A/D = 74.90 (3), B/C = 0.92 (3), B/D = 56.51 (3) and C/D = 56.51 (3) °. So, rings B and C are nearly coplanar.

In the crystal structure, intermolecular N-H···N hydrogen bonds (Table 1) link the molecules into centrosymmetric dimers forming R22(16) ring motifs (Fig. 2) (Bernstein et al., 1995), in which they may be effective in the stabilization of the structure. The π–π contacts between the pyridine ring and the indole ring system and the pyridine rings, Cg1—Cg2i and Cg2—Cg3ii [symmetry codes: (i) -x, 2 - y, 1 - z, (ii) -x, 1 - y, 1 - z, where Cg1, Cg2 and Cg3 are centroids of the rings (N4/C18-C20/C25), B (N1/C1-C5) and C (N2/C6-C10), respectively] may further stabilize the structure, with centroid-centroid distances of 3.923 (2) and 3.724 (2) Å. There also exist two weak C—H···π interactions (Table 1).

Experimental

The title compound was prepared by one-pot reaction of 3-cyanoacetyl indole (2 mmol), benzaldehyde (2 mmol) and 2-acetyl pyridine (2 mmol) in present of ammonium acetate in ethanol. After refluxing for 5 h, the reaction mixture was cooled and washed with small amount of cool ethanol. The crude product was filtered and single crystals of the title compound were obtained from ethanol solution by slow evaporation at room temperature (yield; 80%, m.p. 567-568 K). Spectroscopic analysis: IR (KBr, n, cm-1): 3337, 3050, 2218, 1573, 1535, 1438, 1214, 1145, 850, 745, 703. 1H NMR (400 MHz, DMSO-d6): 11.89 (br s, 1H, NH), 8.78 (d, J = 4.4 Hz, 1H, ArH), 8.58 (d, J = 8.0 Hz, 1H, ArH), 8.41 (d, J = 5.2 Hz, 2H, ArH), 8.31 (s, 1H, ArH), 8.11 (m, 1H, ArH), 7.79-7.81 (m, 2H, ArH), 7.56-7.66 (m, 5H, ArH), 7.24-7.29 (m, 2H, ArH)

Refinement

H atoms were positioned geometrically, with N-H = 0.86 Å (for NH) and C-H = 0.93 Å for aromatic H and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C,N).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Fig. 2.

Fig. 2.

A partial packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.

Crystal data

C25H16N4 Z = 2
Mr = 372.42 F(000) = 388
Triclinic, P1 Dx = 1.342 Mg m3
Hall symbol: -P 1 Melting point = 567–568 K
a = 9.7744 (16) Å Mo Kα radiation, λ = 0.71070 Å
b = 9.7927 (11) Å Cell parameters from 3008 reflections
c = 11.233 (2) Å θ = 3.1–25.3°
α = 73.121 (13)° µ = 0.08 mm1
β = 86.008 (16)° T = 291 K
γ = 63.853 (10)° Block, yellow
V = 921.5 (3) Å3 0.55 × 0.35 × 0.30 mm

Data collection

Rigaku Mercury diffractometer 3349 independent reflections
Radiation source: fine-focus sealed tube 2614 reflections with I > 2/s(I)
graphite Rint = 0.027
Detector resolution: 7.31 pixels mm-1 θmax = 25.3°, θmin = 3.1°
ω scans h = −11→11
Absorption correction: multi-scan (ABSCOR; Jacobson, 1998) k = −10→11
Tmin = 0.966, Tmax = 0.976 l = −13→13
8987 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.126 H-atom parameters constrained
S = 1.12 w = 1/[σ2(Fo2) + (0.0538P)2 + 0.1499P] where P = (Fo2 + 2Fc2)/3
3349 reflections (Δ/σ)max < 0.001
263 parameters Δρmax = 0.16 e Å3
0 restraints Δρmin = −0.20 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.94201 (16) 0.20772 (17) 0.54741 (13) 0.0355 (4)
N2 1.20413 (18) 0.3774 (2) 0.44026 (14) 0.0455 (4)
N3 0.5855 (2) 0.1895 (2) 0.28547 (16) 0.0606 (5)
N4 0.64100 (17) −0.04598 (18) 0.69177 (14) 0.0422 (4)
H4 0.5936 −0.1043 0.7025 0.051*
C1 1.01436 (19) 0.2799 (2) 0.46717 (16) 0.0347 (4)
C2 0.98275 (19) 0.3310 (2) 0.33960 (16) 0.0371 (4)
H2 1.0382 0.3776 0.2873 0.045*
C3 0.86846 (19) 0.3126 (2) 0.28960 (16) 0.0353 (4)
C4 0.79281 (19) 0.2362 (2) 0.37308 (16) 0.0348 (4)
C5 0.83308 (19) 0.1829 (2) 0.50305 (16) 0.0334 (4)
C6 1.13427 (19) 0.3032 (2) 0.52184 (16) 0.0354 (4)
C7 1.1727 (2) 0.2494 (2) 0.64913 (18) 0.0449 (5)
H7 1.1226 0.1981 0.7039 0.054*
C8 1.2862 (2) 0.2731 (3) 0.6929 (2) 0.0519 (5)
H8 1.3135 0.2383 0.7779 0.062*
C9 1.3586 (2) 0.3482 (2) 0.6104 (2) 0.0494 (5)
H9 1.4361 0.3648 0.6378 0.059*
C10 1.3136 (2) 0.3981 (3) 0.4861 (2) 0.0521 (5)
H10 1.3625 0.4497 0.4302 0.063*
C11 0.8284 (2) 0.3777 (2) 0.15322 (16) 0.0379 (4)
C12 0.9407 (2) 0.3356 (2) 0.07066 (17) 0.0445 (5)
H12 1.0400 0.2617 0.1010 0.053*
C13 0.9065 (3) 0.4026 (3) −0.05660 (18) 0.0529 (6)
H13 0.9823 0.3725 −0.1114 0.063*
C14 0.7602 (3) 0.5140 (3) −0.10229 (19) 0.0555 (6)
H14 0.7376 0.5599 −0.1878 0.067*
C15 0.6484 (3) 0.5570 (3) −0.02151 (19) 0.0532 (6)
H15 0.5498 0.6323 −0.0525 0.064*
C16 0.6809 (2) 0.4891 (2) 0.10587 (18) 0.0460 (5)
H16 0.6039 0.5181 0.1600 0.055*
C17 0.6772 (2) 0.2108 (2) 0.32443 (17) 0.0423 (5)
C18 0.7603 (2) 0.1025 (2) 0.59690 (16) 0.0352 (4)
C19 0.6856 (2) 0.0176 (2) 0.58127 (17) 0.0385 (4)
H19 0.6682 0.0056 0.5054 0.046*
C20 0.6833 (2) −0.0028 (2) 0.78422 (17) 0.0380 (4)
C21 0.6582 (2) −0.0376 (2) 0.90989 (18) 0.0476 (5)
H21 0.6081 −0.1001 0.9444 0.057*
C22 0.7105 (3) 0.0240 (3) 0.98141 (19) 0.0568 (6)
H22 0.6957 0.0029 1.0663 0.068*
C23 0.7851 (3) 0.1175 (3) 0.92946 (19) 0.0601 (6)
H23 0.8188 0.1581 0.9803 0.072*
C24 0.8104 (2) 0.1515 (3) 0.80452 (18) 0.0507 (5)
H24 0.8605 0.2143 0.7711 0.061*
C25 0.7595 (2) 0.0901 (2) 0.72879 (16) 0.0366 (4)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0353 (8) 0.0367 (9) 0.0374 (8) −0.0191 (7) 0.0027 (7) −0.0097 (7)
N2 0.0430 (9) 0.0583 (11) 0.0475 (9) −0.0321 (8) 0.0058 (8) −0.0173 (8)
N3 0.0675 (12) 0.0748 (13) 0.0507 (10) −0.0502 (11) −0.0130 (9) 0.0006 (9)
N4 0.0439 (9) 0.0449 (9) 0.0476 (9) −0.0298 (8) 0.0052 (7) −0.0109 (7)
C1 0.0320 (9) 0.0349 (10) 0.0378 (10) −0.0153 (8) 0.0024 (8) −0.0102 (8)
C2 0.0336 (9) 0.0415 (11) 0.0369 (10) −0.0206 (8) 0.0024 (8) −0.0058 (8)
C3 0.0354 (10) 0.0346 (10) 0.0355 (10) −0.0159 (8) 0.0005 (8) −0.0081 (8)
C4 0.0346 (9) 0.0346 (10) 0.0362 (10) −0.0172 (8) 0.0001 (8) −0.0082 (8)
C5 0.0329 (9) 0.0314 (9) 0.0385 (10) −0.0157 (8) 0.0034 (8) −0.0114 (8)
C6 0.0319 (9) 0.0355 (10) 0.0407 (10) −0.0152 (8) 0.0036 (8) −0.0134 (8)
C7 0.0452 (11) 0.0490 (12) 0.0415 (11) −0.0237 (10) −0.0025 (9) −0.0083 (9)
C8 0.0514 (12) 0.0575 (13) 0.0492 (12) −0.0256 (11) −0.0101 (10) −0.0131 (10)
C9 0.0334 (10) 0.0567 (13) 0.0663 (14) −0.0199 (10) −0.0016 (10) −0.0281 (11)
C10 0.0458 (12) 0.0661 (14) 0.0611 (13) −0.0364 (11) 0.0121 (10) −0.0249 (11)
C11 0.0418 (10) 0.0419 (11) 0.0360 (10) −0.0255 (9) 0.0003 (8) −0.0080 (8)
C12 0.0459 (11) 0.0509 (12) 0.0399 (11) −0.0266 (10) 0.0016 (9) −0.0089 (9)
C13 0.0668 (14) 0.0664 (15) 0.0398 (11) −0.0420 (13) 0.0114 (10) −0.0171 (10)
C14 0.0770 (16) 0.0650 (15) 0.0357 (11) −0.0472 (13) −0.0048 (11) −0.0026 (10)
C15 0.0566 (13) 0.0545 (13) 0.0463 (12) −0.0306 (11) −0.0118 (11) 0.0018 (10)
C16 0.0448 (11) 0.0539 (12) 0.0410 (10) −0.0260 (10) −0.0005 (9) −0.0085 (9)
C17 0.0457 (11) 0.0469 (12) 0.0382 (10) −0.0283 (10) 0.0001 (9) −0.0042 (9)
C18 0.0334 (9) 0.0345 (10) 0.0388 (10) −0.0164 (8) 0.0030 (8) −0.0098 (8)
C19 0.0408 (10) 0.0398 (11) 0.0387 (10) −0.0215 (9) 0.0030 (8) −0.0109 (8)
C20 0.0339 (10) 0.0373 (10) 0.0436 (11) −0.0174 (8) 0.0041 (8) −0.0105 (8)
C21 0.0476 (12) 0.0545 (13) 0.0449 (11) −0.0305 (10) 0.0111 (9) −0.0091 (10)
C22 0.0709 (15) 0.0729 (15) 0.0377 (11) −0.0436 (13) 0.0129 (10) −0.0146 (11)
C23 0.0815 (16) 0.0805 (16) 0.0432 (12) −0.0570 (14) 0.0122 (11) −0.0205 (11)
C24 0.0656 (14) 0.0626 (13) 0.0424 (11) −0.0457 (12) 0.0096 (10) −0.0145 (10)
C25 0.0356 (10) 0.0374 (10) 0.0394 (10) −0.0199 (8) 0.0033 (8) −0.0091 (8)

Geometric parameters (Å, °)

N1—C1 1.339 (2) C11—C12 1.385 (3)
N1—C5 1.347 (2) C11—C16 1.391 (3)
N2—C10 1.334 (2) C12—C13 1.384 (3)
N2—C6 1.341 (2) C12—H12 0.9300
N3—C17 1.144 (2) C13—C14 1.378 (3)
N4—C19 1.354 (2) C13—H13 0.9300
N4—C20 1.377 (2) C14—C15 1.369 (3)
N4—H4 0.8600 C14—H14 0.9300
C1—C2 1.381 (2) C15—C16 1.384 (3)
C1—C6 1.490 (2) C15—H15 0.9300
C2—C3 1.385 (2) C16—H16 0.9300
C2—H2 0.9300 C18—C19 1.375 (2)
C3—C4 1.404 (2) C18—C25 1.451 (2)
C3—C11 1.484 (2) C19—H19 0.9300
C4—C5 1.420 (2) C20—C21 1.384 (3)
C4—C17 1.432 (2) C20—C25 1.405 (2)
C5—C18 1.465 (2) C21—C22 1.372 (3)
C6—C7 1.388 (2) C21—H21 0.9300
C7—C8 1.377 (3) C22—C23 1.389 (3)
C7—H7 0.9300 C22—H22 0.9300
C8—C9 1.368 (3) C23—C24 1.376 (3)
C8—H8 0.9300 C23—H23 0.9300
C9—C10 1.371 (3) C24—C25 1.398 (3)
C9—H9 0.9300 C24—H24 0.9300
C10—H10 0.9300
C1—N1—C5 119.18 (15) C13—C12—H12 119.7
C10—N2—C6 117.30 (17) C11—C12—H12 119.7
C19—N4—C20 109.41 (15) C14—C13—C12 120.1 (2)
C19—N4—H4 125.3 C14—C13—H13 119.9
C20—N4—H4 125.3 C12—C13—H13 119.9
N1—C1—C2 123.09 (15) C15—C14—C13 119.85 (19)
N1—C1—C6 116.67 (15) C15—C14—H14 120.1
C2—C1—C6 120.24 (16) C13—C14—H14 120.1
C1—C2—C3 119.94 (16) C14—C15—C16 120.5 (2)
C1—C2—H2 120.0 C14—C15—H15 119.8
C3—C2—H2 120.0 C16—C15—H15 119.8
C2—C3—C4 117.25 (16) C15—C16—C11 120.2 (2)
C2—C3—C11 119.47 (16) C15—C16—H16 119.9
C4—C3—C11 123.25 (15) C11—C16—H16 119.9
C3—C4—C5 120.12 (15) N3—C17—C4 179.5 (2)
C3—C4—C17 118.82 (15) C19—C18—C25 105.64 (15)
C5—C4—C17 121.05 (16) C19—C18—C5 128.12 (16)
N1—C5—C4 120.37 (15) C25—C18—C5 126.18 (15)
N1—C5—C18 115.71 (15) N4—C19—C18 110.50 (16)
C4—C5—C18 123.91 (15) N4—C19—H19 124.7
N2—C6—C7 122.15 (16) C18—C19—H19 124.7
N2—C6—C1 115.83 (15) N4—C20—C21 129.29 (17)
C7—C6—C1 122.01 (16) N4—C20—C25 107.56 (15)
C8—C7—C6 118.82 (18) C21—C20—C25 123.15 (17)
C8—C7—H7 120.6 C22—C21—C20 117.15 (18)
C6—C7—H7 120.6 C22—C21—H21 121.4
C9—C8—C7 119.50 (19) C20—C21—H21 121.4
C9—C8—H8 120.2 C21—C22—C23 121.23 (19)
C7—C8—H8 120.2 C21—C22—H22 119.4
C8—C9—C10 118.03 (18) C23—C22—H22 119.4
C8—C9—H9 121.0 C24—C23—C22 121.5 (2)
C10—C9—H9 121.0 C24—C23—H23 119.2
N2—C10—C9 124.20 (19) C22—C23—H23 119.2
N2—C10—H10 117.9 C23—C24—C25 118.88 (18)
C9—C10—H10 117.9 C23—C24—H24 120.6
C12—C11—C16 118.78 (17) C25—C24—H24 120.6
C12—C11—C3 119.99 (16) C24—C25—C20 118.06 (17)
C16—C11—C3 121.11 (17) C24—C25—C18 135.01 (17)
C13—C12—C11 120.51 (19) C20—C25—C18 106.88 (15)
C5—N1—C1—C2 0.0 (3) C16—C11—C12—C13 −0.3 (3)
C5—N1—C1—C6 −179.68 (15) C3—C11—C12—C13 −176.21 (17)
N1—C1—C2—C3 2.0 (3) C11—C12—C13—C14 1.0 (3)
C6—C1—C2—C3 −178.34 (16) C12—C13—C14—C15 −0.7 (3)
C1—C2—C3—C4 −2.2 (3) C13—C14—C15—C16 −0.1 (3)
C1—C2—C3—C11 175.87 (17) C14—C15—C16—C11 0.8 (3)
C2—C3—C4—C5 0.7 (3) C12—C11—C16—C15 −0.5 (3)
C11—C3—C4—C5 −177.30 (16) C3—C11—C16—C15 175.28 (17)
C2—C3—C4—C17 −178.14 (16) N1—C5—C18—C19 −157.15 (17)
C11—C3—C4—C17 3.8 (3) C4—C5—C18—C19 24.1 (3)
C1—N1—C5—C4 −1.6 (2) N1—C5—C18—C25 19.5 (3)
C1—N1—C5—C18 179.67 (15) C4—C5—C18—C25 −159.21 (17)
C3—C4—C5—N1 1.2 (3) C20—N4—C19—C18 0.8 (2)
C17—C4—C5—N1 −179.95 (17) C25—C18—C19—N4 −0.5 (2)
C3—C4—C5—C18 179.84 (16) C5—C18—C19—N4 176.68 (17)
C17—C4—C5—C18 −1.3 (3) C19—N4—C20—C21 178.41 (19)
C10—N2—C6—C7 0.0 (3) C19—N4—C20—C25 −0.8 (2)
C10—N2—C6—C1 −179.08 (16) N4—C20—C21—C22 −178.64 (19)
N1—C1—C6—N2 −179.21 (15) C25—C20—C21—C22 0.5 (3)
C2—C1—C6—N2 1.1 (3) C20—C21—C22—C23 0.1 (3)
N1—C1—C6—C7 1.7 (3) C21—C22—C23—C24 −0.3 (4)
C2—C1—C6—C7 −178.01 (17) C22—C23—C24—C25 0.0 (4)
N2—C6—C7—C8 0.0 (3) C23—C24—C25—C20 0.6 (3)
C1—C6—C7—C8 179.07 (17) C23—C24—C25—C18 177.8 (2)
C6—C7—C8—C9 −0.3 (3) N4—C20—C25—C24 178.46 (16)
C7—C8—C9—C10 0.4 (3) C21—C20—C25—C24 −0.8 (3)
C6—N2—C10—C9 0.2 (3) N4—C20—C25—C18 0.5 (2)
C8—C9—C10—N2 −0.4 (3) C21—C20—C25—C18 −178.79 (17)
C2—C3—C11—C12 54.4 (2) C19—C18—C25—C24 −177.5 (2)
C4—C3—C11—C12 −127.63 (19) C5—C18—C25—C24 5.3 (3)
C2—C3—C11—C16 −121.39 (19) C19—C18—C25—C20 0.0 (2)
C4—C3—C11—C16 56.6 (3) C5—C18—C25—C20 −177.27 (16)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N4—H4···N3i 0.86 2.23 3.066 (2) 164
C12—H12···Cg5ii 0.93 2.84 3.649 (3) 146
C23—H23···Cg4iii 0.93 2.91 3.711 (3) 145

Symmetry codes: (i) −x+1, −y, −z+1; (ii) −x, −y+2, −z+1; (iii) x, y, z−1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2679).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  3. Jacobson, R. (1998). ABSCOR Private communication to the Rigaku Corporation, Tokyo, Japan.
  4. Johnson, C. K. (1976). ORTEPII Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
  5. Joshi, K. C. & Chand, P. (1982). Pharmazie, 37, 1–12. [DOI] [PubMed]
  6. Namba, K., Cui, S., Wang, J. & Kishi, Y. (2005). Org. Lett.7, 5417–5419. [DOI] [PubMed]
  7. Rigaku/MSC (2001). CrystalClear Rigaku/MSC, The Woodlands, Texas, USA.
  8. Rigaku/MSC (2004). CrystalStructure Rigaku/MSC, The Woodlands, Texas, USA.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Silva, J. F. M. da, Garden, S. J. & Pinto, A. C. (2001). J. Braz. Chem. Soc.12, 273–324.
  11. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  12. Zhu, S. L., Ji, S. J., Zhao, K. & Liu, Y. (2008). Tetrahedron Lett.49, 2578–2582.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809016195/hk2679sup1.cif

e-65-o1187-sup1.cif (21KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809016195/hk2679Isup2.hkl

e-65-o1187-Isup2.hkl (164.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES