Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 May 14;65(Pt 6):o1251. doi: 10.1107/S1600536809016948

Bis[4-(4-amino­phenyl­sulfanyl)phenyl] ketone

Gang Zhang a, Yan-lun Wang b, Sheng-ru Long c, Jie Yang c,*
PMCID: PMC2969735  PMID: 21583116

Abstract

The mol­ecule of the title compound, C25H20N2OS2, has imposed twofold rotation symmetry. The dihedral angle formed by the two crystallographically independent phenyl rings is 79.23 (7)°. In the crystal packing, the mol­ecules are linked by inter­molecular N—H⋯O hydrogen bonds, forming chains running parallel to [102].

Related literature

For the properties and applications of the title compound and related derivatives, see: Wang et al. (2006a ,b ); Jiang et al. (2006); Aritomi & Terauchi (1985); Aritomi & Fujiwara (1986). For the synthesis of the title compound, see: Yang et al. (2007); Chen et al. (2009).graphic file with name e-65-o1251-scheme1.jpg

Experimental

Crystal data

  • C25H20N2OS2

  • M r = 428.55

  • Monoclinic, Inline graphic

  • a = 18.945 (3) Å

  • b = 6.025 (2) Å

  • c = 20.793 (5) Å

  • β = 110.64 (4)°

  • V = 2221.1 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 292 K

  • 0.52 × 0.48 × 0.42 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: spherical (WinGX; Farrugia, 1999) T min = 0.877, T max = 0.899

  • 2261 measured reflections

  • 1990 independent reflections

  • 1441 reflections with I > 2σ(I)

  • R int = 0.010

  • 3 standard reflections every 150 reflections intensity decay: 2.4%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.050

  • wR(F 2) = 0.146

  • S = 1.05

  • 1990 reflections

  • 145 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.30 e Å−3

Data collection: DIFRAC (Gabe et al., 1993); cell refinement: DIFRAC; data reduction: NRCVAX (Gabe et al., 1989); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809016948/rz2311sup1.cif

e-65-o1251-sup1.cif (16.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809016948/rz2311Isup2.hkl

e-65-o1251-Isup2.hkl (98KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—HN2⋯O1i 0.77 (3) 2.52 (3) 3.231 (4) 154 (3)

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors thank Mr Zhi-Hua Mao of Sichuan University for the X-ray data collection.

supplementary crystallographic information

Comment

The title compound is a major active photo-initiator used in coatings, optics and microelectronic materials (Wang et al., 2006a,b; Jiang et al., 2006) and can be used as monomer in the synthesis of high performance polyamide. Moreover, as photo initiator it has showed superior to the natural compound 4,4'-difluorobenzophenone (Wang et al., 2006a). Besides their properties as photo-initiators, some derivatives of the title compound have also been reported to possess good thermostability and chemical resistance (Aritomi & Terauchi, 1985; Aritomi & Fujiwara, 1986). The synthetic procedure of the title compound have been reported elsewhere (Yang et al., 2007; Chen et al., 2009).

The molecule of the title compound (Fig. 1) has crystallographically imposed twofold rotation symmetry. In the asymmetric unit, the phenyl rings form a dihedral angle of 79.23 (7)°. The C2–C1–C2i–C7i torsion angle is 29.49 (15)° (symmetry code: i = 1-x, y, 1/2-z). In the crystal packing, intermolecular N—H···O hydrogen bonding interactions (Table 1) link the molecules into chains running parallel to the [102] direction.

Experimental

A mixture of 4,4'-difluorobenzophenone (21.8 g, 0.1 mol), 4-aminothiophenol (25 g, 0.2 mol), K2CO3 (14.0 g, 0.101 mol) and dimethyl acetamide (120 ml) were charged into a three-necked round-bottomed flask fitted with a mechanical stirrer, a thermometer and a nitrogen inlet. The mixture was stirred vigorously at 120°C for 3 h, then the mixture was heated to 166°C and kept for 5 h under nitrogen atmosphere. After the reactor was cooled to room temperature, the reaction solution was poured into water. The resulting solid was filtered, washed with hot water and methanol, dried and recrystallized from a mixture of dimethyl formamide and water (3:1 v/v) to get a yellow powder. Light yellow crystals suitable for X-ray analysis were obtained by slow evaporation of a formamide/water (3:1 v/v) solution at 60°C.

Refinement

The H atoms bound to the N atom were found in a difference Fourier map and refined freely. All other H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq (C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound. Unlabelled atoms are related to the labelled atoms by the symmetry operator (1-x, y, 1/2-z).

Crystal data

C25H20N2OS2 F(000) = 896
Mr = 428.55 Dx = 1.282 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yc Cell parameters from 31 reflections
a = 18.945 (3) Å θ = 4.3–9.4°
b = 6.025 (2) Å µ = 0.26 mm1
c = 20.793 (5) Å T = 292 K
β = 110.64 (4)° Block, yellow
V = 2221.1 (11) Å3 0.52 × 0.48 × 0.42 mm
Z = 4

Data collection

Enraf–Nonius CAD-4 diffractometer 1441 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.010
graphite θmax = 25.5°, θmin = 2.1°
ω–2θ scans h = −22→21
Absorption correction: for a sphere (WinGX; Farrugia, 1999) k = 0→7
Tmin = 0.877, Tmax = 0.899 l = −18→24
2261 measured reflections 3 standard reflections every 150 reflections
1990 independent reflections intensity decay: 2.4%

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050 Hydrogen site location: mixed
wR(F2) = 0.146 H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0979P)2 + 0.2492P] where P = (Fo2 + 2Fc2)/3
1990 reflections (Δ/σ)max = 0.001
145 parameters Δρmax = 0.22 e Å3
0 restraints Δρmin = −0.30 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.59611 (4) 0.88028 (12) 0.52196 (3) 0.0591 (3)
O1 0.5000 0.1894 (4) 0.2500 0.0638 (7)
N1 0.8241 (2) 0.3345 (7) 0.73370 (17) 0.0954 (11)
HN1 0.811 (2) 0.224 (7) 0.7515 (19) 0.096 (13)*
HN2 0.8651 (18) 0.371 (5) 0.7407 (16) 0.071 (11)*
C1 0.5000 0.3937 (5) 0.2500 0.0397 (7)
C2 0.52388 (11) 0.5146 (3) 0.31641 (10) 0.0364 (5)
C3 0.57458 (12) 0.4134 (4) 0.37505 (11) 0.0427 (5)
H3 0.5933 0.2731 0.3714 0.051*
C4 0.59739 (12) 0.5168 (4) 0.43805 (11) 0.0437 (5)
H4 0.6312 0.4466 0.4764 0.052*
C5 0.56977 (12) 0.7271 (4) 0.44448 (11) 0.0409 (5)
C6 0.51783 (12) 0.8281 (4) 0.38664 (10) 0.0396 (5)
H6 0.4979 0.9662 0.3907 0.048*
C7 0.49596 (11) 0.7241 (3) 0.32367 (10) 0.0371 (5)
H7 0.4621 0.7944 0.2854 0.045*
C8 0.66367 (12) 0.7082 (4) 0.58244 (11) 0.0484 (6)
C9 0.73981 (14) 0.7565 (5) 0.60170 (13) 0.0606 (7)
H9 0.7555 0.8750 0.5814 0.073*
C10 0.79254 (14) 0.6301 (5) 0.65085 (14) 0.0650 (8)
H10 0.8435 0.6644 0.6631 0.078*
C11 0.77125 (14) 0.4541 (5) 0.68221 (12) 0.0580 (7)
C12 0.69484 (15) 0.4026 (5) 0.66200 (13) 0.0634 (7)
H12 0.6794 0.2819 0.6816 0.076*
C13 0.64197 (13) 0.5290 (5) 0.61320 (12) 0.0567 (7)
H13 0.5911 0.4940 0.6007 0.068*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0615 (5) 0.0678 (5) 0.0395 (4) 0.0091 (3) 0.0073 (3) −0.0110 (3)
O1 0.0882 (19) 0.0344 (13) 0.0499 (14) 0.000 0.0009 (13) 0.000
N1 0.0612 (19) 0.134 (3) 0.084 (2) 0.0128 (19) 0.0163 (16) 0.042 (2)
C1 0.0395 (16) 0.0318 (16) 0.0397 (16) 0.000 0.0038 (13) 0.000
C2 0.0376 (11) 0.0363 (11) 0.0336 (10) −0.0016 (9) 0.0103 (8) 0.0045 (8)
C3 0.0456 (12) 0.0357 (12) 0.0413 (12) 0.0045 (9) 0.0084 (10) 0.0046 (9)
C4 0.0408 (12) 0.0475 (13) 0.0364 (11) 0.0030 (10) 0.0058 (9) 0.0049 (10)
C5 0.0375 (11) 0.0475 (13) 0.0379 (11) −0.0045 (10) 0.0137 (9) −0.0013 (9)
C6 0.0395 (11) 0.0413 (12) 0.0401 (11) 0.0021 (9) 0.0166 (10) 0.0012 (9)
C7 0.0350 (10) 0.0383 (11) 0.0366 (11) 0.0017 (9) 0.0109 (9) 0.0039 (9)
C8 0.0412 (13) 0.0668 (16) 0.0348 (11) −0.0065 (11) 0.0102 (10) −0.0071 (11)
C9 0.0500 (14) 0.0760 (18) 0.0540 (15) −0.0172 (13) 0.0164 (12) 0.0067 (13)
C10 0.0364 (13) 0.092 (2) 0.0602 (16) −0.0089 (13) 0.0092 (12) 0.0043 (15)
C11 0.0501 (15) 0.0776 (17) 0.0433 (13) 0.0015 (13) 0.0126 (11) 0.0023 (12)
C12 0.0585 (16) 0.079 (2) 0.0537 (15) −0.0130 (14) 0.0206 (13) 0.0093 (13)
C13 0.0380 (12) 0.0843 (19) 0.0454 (13) −0.0144 (12) 0.0115 (10) −0.0014 (13)

Geometric parameters (Å, °)

S1—C5 1.769 (2) C5—C6 1.397 (3)
S1—C8 1.777 (3) C6—C7 1.377 (3)
O1—C1 1.231 (3) C6—H6 0.9300
N1—C11 1.383 (4) C7—H7 0.9300
N1—HN1 0.84 (4) C8—C9 1.385 (3)
N1—HN2 0.77 (3) C8—C13 1.389 (4)
C1—C2 1.484 (2) C9—C10 1.380 (4)
C1—C2i 1.484 (2) C9—H9 0.9300
C2—C7 1.397 (3) C10—C11 1.377 (4)
C2—C3 1.398 (3) C10—H10 0.9300
C3—C4 1.375 (3) C11—C12 1.393 (4)
C3—H3 0.9300 C12—C13 1.377 (4)
C4—C5 1.395 (3) C12—H12 0.9300
C4—H4 0.9300 C13—H13 0.9300
C5—S1—C8 103.99 (12) C6—C7—C2 121.02 (19)
C11—N1—HN1 121 (2) C6—C7—H7 119.5
C11—N1—HN2 114 (2) C2—C7—H7 119.5
HN1—N1—HN2 125 (3) C9—C8—C13 118.5 (2)
O1—C1—C2 119.39 (12) C9—C8—S1 119.9 (2)
O1—C1—C2i 119.39 (12) C13—C8—S1 121.52 (17)
C2—C1—C2i 121.2 (2) C10—C9—C8 120.4 (2)
C7—C2—C3 118.00 (18) C10—C9—H9 119.8
C7—C2—C1 122.75 (18) C8—C9—H9 119.8
C3—C2—C1 119.21 (19) C11—C10—C9 121.3 (2)
C4—C3—C2 121.4 (2) C11—C10—H10 119.4
C4—C3—H3 119.3 C9—C10—H10 119.4
C2—C3—H3 119.3 C10—C11—N1 120.9 (3)
C3—C4—C5 120.0 (2) C10—C11—C12 118.4 (2)
C3—C4—H4 120.0 N1—C11—C12 120.7 (3)
C5—C4—H4 120.0 C13—C12—C11 120.5 (3)
C4—C5—C6 119.15 (19) C13—C12—H12 119.7
C4—C5—S1 124.48 (16) C11—C12—H12 119.7
C6—C5—S1 116.37 (17) C12—C13—C8 120.8 (2)
C7—C6—C5 120.3 (2) C12—C13—H13 119.6
C7—C6—H6 119.8 C8—C13—H13 119.6
C5—C6—H6 119.8
O1—C1—C2—C7 −150.51 (15) C3—C2—C7—C6 0.2 (3)
C2i—C1—C2—C7 29.49 (15) C1—C2—C7—C6 178.04 (18)
O1—C1—C2—C3 27.3 (2) C5—S1—C8—C9 102.6 (2)
C2i—C1—C2—C3 −152.7 (2) C5—S1—C8—C13 −79.8 (2)
C7—C2—C3—C4 −0.8 (3) C13—C8—C9—C10 −0.6 (4)
C1—C2—C3—C4 −178.80 (18) S1—C8—C9—C10 177.1 (2)
C2—C3—C4—C5 0.1 (3) C8—C9—C10—C11 −0.3 (4)
C3—C4—C5—C6 1.3 (3) C9—C10—C11—N1 −177.0 (3)
C3—C4—C5—S1 −178.56 (17) C9—C10—C11—C12 1.5 (4)
C8—S1—C5—C4 1.7 (2) C10—C11—C12—C13 −1.8 (4)
C8—S1—C5—C6 −178.18 (16) N1—C11—C12—C13 176.7 (3)
C4—C5—C6—C7 −2.0 (3) C11—C12—C13—C8 0.9 (4)
S1—C5—C6—C7 177.89 (16) C9—C8—C13—C12 0.3 (4)
C5—C6—C7—C2 1.3 (3) S1—C8—C13—C12 −177.4 (2)

Symmetry codes: (i) −x+1, y, −z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—HN2···O1ii 0.77 (3) 2.52 (3) 3.231 (4) 154 (3)

Symmetry codes: (ii) −x+3/2, −y+1/2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2311).

References

  1. Aritomi, M. & Fujiwara, H. (1986). Faming Zhuanli Shengqing Gongkai Shuomingshu, 61063647.
  2. Aritomi, M. & Terauchi, M. (1985). Faming Zhuanli Shengqing Gongkai Shuomingshu, 60188365.
  3. Chen, C. K., Liu, C. L., Zhang, G., Yang, J. & Long, S. R. (2009). Front. Chem. China, 4, 114–119.
  4. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  5. Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  6. Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst.22, 384–387.
  7. Gabe, E. J., White, P. S. & Enright, G. D. (1993). DIFRAC American Crystallographic Association, Pittsburgh Meeting Abstract, PA 104.
  8. Jiang, X. S., Li, H., Wang, H. Y., Shi, Z. X. & Yin, J. (2006). Polymer47, 2942–2945.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Wang, H. Y., Wei, J., Jiang, X. S. & Yin, J. (2006a). Polymer47, 4967–4975.
  11. Wang, H. Y., Wei, J., Jiang, X. S. & Yin, J. (2006b). Macromol. Chem. Phys.207, 1080–1086.
  12. Yang, J., Chen, C. K., Long, S. R. & Liu, C. L. (2007). Faming Zhuanli Shengqing Gongkai Shuomingshu, 1935874.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809016948/rz2311sup1.cif

e-65-o1251-sup1.cif (16.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809016948/rz2311Isup2.hkl

e-65-o1251-Isup2.hkl (98KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES