Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 May 7;65(Pt 6):o1192. doi: 10.1107/S1600536809015190

(2,2-Dimethyl-1,3-dioxolan-4-yl)methyl 3-carboxy­propanoate

Piotr Kuś a, Marcin Rojkiewicz a, Grzegorz Zięba a, Monika Witoszek a, Peter G Jones b,*
PMCID: PMC2969742  PMID: 21583064

Abstract

In the title compound, C10H16O6, the five-membered ring has an envelope conformation. The packing involves hydrogen-bonded carboxylic acid inversion dimers and three C—H⋯O inter­actions.

Related literature

For related literature, see: Osanai et al. (1997); Scriba (1993, 1995). The structure of a related derivative is reported in the preceeding paper, see: Kuś et al. (2009). graphic file with name e-65-o1192-scheme1.jpg

Experimental

Crystal data

  • C10H16O6

  • M r = 232.23

  • Monoclinic, Inline graphic

  • a = 20.7650 (12) Å

  • b = 5.7007 (3) Å

  • c = 9.6964 (7) Å

  • β = 98.658 (5)°

  • V = 1134.73 (12) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.96 mm−1

  • T = 100 K

  • 0.2 × 0.1 × 0.1 mm

Data collection

  • Oxford Diffraction Xcalibur diffractometer with an Atlas (Nova) detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2008) T min = 0.880, T max = 1.000 (expected range = 0.799–0.908)

  • 10581 measured reflections

  • 2304 independent reflections

  • 2170 reflections with I > 2σ(I)

  • R int = 0.028

Refinement

  • R[F 2 > 2σ(F 2)] = 0.051

  • wR(F 2) = 0.125

  • S = 1.14

  • 2304 reflections

  • 156 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.25 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell refinement: CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Siemens, 1994); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809015190/bt2936sup1.cif

e-65-o1192-sup1.cif (18.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809015190/bt2936Isup2.hkl

e-65-o1192-Isup2.hkl (113.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H01⋯O2i 0.80 (3) 1.86 (3) 2.6582 (19) 175 (3)
C3—H3A⋯O3ii 0.99 2.36 3.211 (2) 144
C2—H2B⋯O4iii 0.99 2.57 3.489 (2) 155
C7—H7B⋯O5iv 0.99 2.60 3.506 (3) 152

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

Financial support by the Polish State Committee for Scientific Research (grant No. R0504303) is gratefully acknowledged.

supplementary crystallographic information

Comment

Isopropylidene groups are often used as protecting or activating units in polyhydroxyalkyl compounds used for synthesis of sugar-like derivatives; for a brief introduction and the structure of a related derivative, see the accompanying paper (Kuś et al., 2009).

Hemi-esters of succinic acid are often used for the synthesis of amphiphilic compounds with well organized structure (Osanai et al., 1997). Non-symmetrical esters of succinic acid have been used for the synthesis of prodrugs that release the corresponding drugs very slowly; e.g. steroid drugs (Scriba, 1995) or Phenytoin (Scriba, 1993). Solketal (D,L-isopropylideneglycerol, Aldrich) was used for the synthesis of compound 1.

The molecule of compound 1 is shown in Fig. 1. Bond lengths and angles may be regarded as normal. The chain C2 through to C7 has an approximately extended conformation (absolute torsion angles between 158 and 174°). The five-membered ring displays an envelope conformation, with local mirror symmetry about C8 and the midpoint of C6—C7.

The molecular packing (Fig. 2) is dominated by the formation of the well known carboxylic acid dimers via classical hydrogen bonding. Three further contacts, of the type C—H···O, link the molecules to a three-dimensional pattern.

Experimental

Compound 1 was obtained from solketal and succinic anhydride as described by Scriba (1993). Slow crystallization from petroleum ether gave crystals suitable for X-ray analysis. The analytical and spectroscopic data are consistent with the literature. M.p. 60° C. 1H NMR (CDCl3, 400 MHz): δ 4.32 (q, 1H), 4.21–4.05 (m, 3H), 3.75–3.72 (dd, 1H), 2.67 (t, 4H), 1.43 (s, 3H), 1.36 (s, 3H). 13C NMR (100 MHz): δ 207.34, 172.10, 110.03, 73.62, 66.39, 65.13, 31.03, 28.97, 26.78, 25.46. MS (ESI): m/z (%) = 231 (100) [M—H]-. IR: C═O at 1724, 1711 and 1694 cm-1 (s), C—O at 1234 cm-1 (m), 1,3-dioxalone at 975 cm-1 (s).

Refinement

The OH hydrogen was refined freely. Methyl H atoms were identified in difference syntheses and refined as idealized rigid groups (C—H 0.98 Å, H—C—H 109.5°) allowed to rotate but not tip. Other H atoms were included at calculated positions and refined using a riding model, with fixed C—H bond lengths of 0.95 Å (CH, aromatic), 0.99 Å (CH2) and 1.00 Å (CH, sp3); Uiso(H) values were fixed at 1.2Ueq of the parent C atom (1.2Ueq for methyl H).

The atom C6 is disordered over two sites with occupancy ratio 0.9:0.1, corresponding to a second conformation of the five-membered ring. An appropriate set of similarity restraints was used to ensure stability of refinement.

Figures

Fig. 1.

Fig. 1.

The title compound in the crystal structure. Displacement ellipsoids represent 50% probability levels.

Fig. 2.

Fig. 2.

Packing diagram of the title compound. H atoms not involved in H bonding (thick dashed lines) are omitted for clarity. The interaction H7B···O5, which links the five-membered rings parallel to the c axis (the view direction), is not shown.

Crystal data

C10H16O6 Dx = 1.359 Mg m3
Mr = 232.23 Melting point: 333 K
Monoclinic, P21/c Cu Kα radiation, λ = 1.54184 Å
a = 20.7650 (12) Å Cell parameters from 7029 reflections
b = 5.7007 (3) Å θ = 4.3–75.7°
c = 9.6964 (7) Å µ = 0.96 mm1
β = 98.658 (5)° T = 100 K
V = 1134.73 (12) Å3 Block, colourless
Z = 4 0.2 × 0.1 × 0.1 mm
F(000) = 496

Data collection

Oxford Diffraction Xcalibur diffractometer with an Atlas (Nova) detector 2304 independent reflections
Radiation source: Nova (Cu) X-ray Source 2170 reflections with I > 2σ(I)
mirror Rint = 0.028
Detector resolution: 10.3543 pixels mm-1 θmax = 74.5°, θmin = 4.3°
ω scans h = −25→25
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2008) k = −7→6
Tmin = 0.880, Tmax = 1.000 l = −10→12
10581 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.125 H atoms treated by a mixture of independent and constrained refinement
S = 1.14 w = 1/[σ2(Fo2) + (0.0399P)2 + 1.0966P] where P = (Fo2 + 2Fc2)/3
2304 reflections (Δ/σ)max = 0.015
156 parameters Δρmax = 0.27 e Å3
4 restraints Δρmin = −0.25 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
O1 0.44071 (7) −0.1502 (2) 0.58989 (15) 0.0287 (3)
H01 0.4643 (14) −0.164 (5) 0.533 (3) 0.047 (8)*
O2 0.47778 (6) 0.2189 (2) 0.59298 (14) 0.0278 (3)
C1 0.44377 (9) 0.0675 (3) 0.63543 (19) 0.0243 (4)
C2 0.40364 (9) 0.1107 (3) 0.7496 (2) 0.0265 (4)
H2A 0.4299 0.0701 0.8403 0.032*
H2B 0.3653 0.0055 0.7356 0.032*
C3 0.38031 (9) 0.3632 (3) 0.75537 (19) 0.0258 (4)
H3A 0.3599 0.3849 0.8405 0.031*
H3B 0.4183 0.4697 0.7620 0.031*
C4 0.33223 (9) 0.4289 (3) 0.6303 (2) 0.0258 (4)
O3 0.32078 (7) 0.3156 (3) 0.52376 (14) 0.0340 (4)
O4 0.30257 (6) 0.6315 (2) 0.65113 (14) 0.0295 (3)
C5 0.26115 (10) 0.7325 (4) 0.5323 (2) 0.0339 (5)
H5A 0.2372 0.6073 0.4752 0.041* 0.893 (8)
H5B 0.2877 0.8205 0.4731 0.041* 0.893 (8)
H5C 0.2798 0.8886 0.5170 0.041* 0.107 (8)
H5D 0.2675 0.6354 0.4508 0.041* 0.107 (8)
O5 0.16891 (7) 0.7592 (3) 0.65090 (18) 0.0426 (4)
O6 0.10733 (7) 0.9607 (3) 0.48082 (18) 0.0453 (4)
C6 0.21452 (11) 0.8932 (4) 0.5879 (3) 0.0318 (7) 0.893 (8)
H6 0.2385 1.0041 0.6573 0.038* 0.893 (8)
C7 0.17233 (11) 1.0302 (5) 0.4709 (3) 0.0459 (6)
H7A 0.1779 1.2014 0.4852 0.055* 0.893 (8)
H7B 0.1839 0.9886 0.3786 0.055* 0.893 (8)
H7C 0.1896 1.1553 0.5371 0.055* 0.107 (8)
H7D 0.1801 1.0664 0.3749 0.055* 0.107 (8)
C6' 0.1934 (9) 0.766 (4) 0.523 (2) 0.069 (10)* 0.107 (8)
H6' 0.1699 0.6485 0.4572 0.083* 0.107 (8)
C8 0.10751 (10) 0.8735 (4) 0.6185 (2) 0.0388 (5)
C9 0.10142 (14) 1.0693 (5) 0.7197 (3) 0.0568 (7)
H9A 0.1050 1.0054 0.8144 0.085*
H9B 0.0590 1.1461 0.6952 0.085*
H9C 0.1362 1.1841 0.7156 0.085*
C10 0.05421 (12) 0.6939 (5) 0.6160 (3) 0.0532 (7)
H10A 0.0609 0.5680 0.5508 0.080*
H10B 0.0119 0.7686 0.5861 0.080*
H10C 0.0552 0.6282 0.7097 0.080*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0314 (7) 0.0253 (7) 0.0316 (7) −0.0017 (6) 0.0123 (6) −0.0010 (6)
O2 0.0279 (7) 0.0250 (7) 0.0322 (7) −0.0018 (5) 0.0100 (5) −0.0003 (6)
C1 0.0223 (8) 0.0241 (9) 0.0256 (9) 0.0016 (7) 0.0007 (7) 0.0022 (7)
C2 0.0272 (9) 0.0277 (10) 0.0254 (9) −0.0004 (7) 0.0062 (7) 0.0022 (8)
C3 0.0266 (9) 0.0265 (10) 0.0247 (9) 0.0005 (7) 0.0055 (7) −0.0011 (7)
C4 0.0233 (9) 0.0273 (10) 0.0285 (9) −0.0009 (7) 0.0097 (7) 0.0007 (8)
O3 0.0374 (8) 0.0391 (8) 0.0256 (7) 0.0069 (6) 0.0048 (6) −0.0039 (6)
O4 0.0263 (7) 0.0284 (7) 0.0337 (7) 0.0036 (6) 0.0043 (5) 0.0010 (6)
C5 0.0313 (10) 0.0355 (11) 0.0351 (11) 0.0064 (9) 0.0060 (8) 0.0049 (9)
O5 0.0274 (7) 0.0484 (10) 0.0538 (10) 0.0046 (7) 0.0119 (7) 0.0075 (8)
O6 0.0294 (8) 0.0545 (11) 0.0509 (10) 0.0047 (7) 0.0020 (7) 0.0003 (8)
C6 0.0259 (12) 0.0271 (12) 0.0427 (14) −0.0002 (9) 0.0058 (9) −0.0001 (10)
C7 0.0337 (11) 0.0421 (13) 0.0610 (16) 0.0041 (10) 0.0038 (10) 0.0111 (12)
C8 0.0279 (10) 0.0437 (13) 0.0449 (12) 0.0028 (9) 0.0057 (9) −0.0062 (10)
C9 0.0505 (15) 0.0572 (17) 0.0653 (17) 0.0003 (13) 0.0173 (13) −0.0208 (14)
C10 0.0335 (12) 0.0614 (17) 0.0661 (17) −0.0081 (12) 0.0118 (11) −0.0125 (14)

Geometric parameters (Å, °)

O1—C1 1.316 (2) C2—H2A 0.9900
O2—C1 1.225 (2) C2—H2B 0.9900
C1—C2 1.502 (3) C3—H3A 0.9900
C2—C3 1.523 (3) C3—H3B 0.9900
C3—C4 1.498 (3) C5—H5A 0.9900
C4—O3 1.211 (2) C5—H5B 0.9900
C4—O4 1.338 (2) C5—H5C 0.9900
O4—C5 1.449 (2) C5—H5D 0.9900
C5—C6' 1.408 (16) C6—H6 1.0000
C5—C6 1.492 (3) C7—H7A 0.9900
O5—C6' 1.409 (17) C7—H7B 0.9900
O5—C8 1.424 (3) C7—H7C 0.9900
O5—C6 1.424 (3) C7—H7D 0.9900
O6—C7 1.424 (3) C6'—H6' 1.0000
O6—C8 1.424 (3) C9—H9A 0.9800
C6—C7 1.537 (3) C9—H9B 0.9800
C7—C6' 1.629 (17) C9—H9C 0.9800
C8—C9 1.505 (3) C10—H10A 0.9800
C8—C10 1.505 (3) C10—H10B 0.9800
O1—H01 0.80 (3) C10—H10C 0.9800
O2—C1—O1 123.58 (17) C6'—C5—H5B 122.2
O2—C1—C2 122.95 (17) O4—C5—H5B 110.3
O1—C1—C2 113.42 (16) C6—C5—H5B 110.3
C1—C2—C3 113.37 (16) H5A—C5—H5B 108.5
C4—C3—C2 112.54 (16) C6'—C5—H5C 106.1
O3—C4—O4 123.59 (18) O4—C5—H5C 106.1
O3—C4—C3 125.36 (18) H5A—C5—H5C 137.6
O4—C4—C3 111.05 (16) C6'—C5—H5D 106.1
C4—O4—C5 117.01 (16) O4—C5—H5D 106.1
C6'—C5—O4 124.8 (7) H5C—C5—H5D 106.3
O4—C5—C6 107.25 (17) O5—C6—H6 110.3
C6'—O5—C8 102.9 (7) C5—C6—H6 110.3
C8—O5—C6 106.90 (17) C7—C6—H6 110.3
C7—O6—C8 106.95 (17) O6—C7—H7A 110.9
O5—C6—C5 109.58 (19) C6—C7—H7A 110.9
O5—C6—C7 104.30 (18) O6—C7—H7B 110.9
C5—C6—C7 112.0 (2) C6—C7—H7B 110.9
O6—C7—C6 104.48 (19) H7A—C7—H7B 108.9
O6—C7—C6' 86.3 (7) O6—C7—H7C 114.3
C5—C6'—O5 115.5 (14) C6—C7—H7C 77.1
C5—C6'—C7 111.3 (13) C6'—C7—H7C 114.3
O5—C6'—C7 100.5 (11) O6—C7—H7D 114.3
O6—C8—O5 104.06 (17) C6—C7—H7D 130.1
O6—C8—C9 111.3 (2) C6'—C7—H7D 114.3
O5—C8—C9 110.8 (2) H7C—C7—H7D 111.4
O6—C8—C10 109.0 (2) C5—C6'—H6' 109.7
O5—C8—C10 108.9 (2) O5—C6'—H6' 109.7
C9—C8—C10 112.4 (2) C7—C6'—H6' 109.7
C1—O1—H01 109 (2) C8—C9—H9A 109.5
C1—C2—H2A 108.9 C8—C9—H9B 109.5
C3—C2—H2A 108.9 H9A—C9—H9B 109.5
C1—C2—H2B 108.9 C8—C9—H9C 109.5
C3—C2—H2B 108.9 H9A—C9—H9C 109.5
H2A—C2—H2B 107.7 H9B—C9—H9C 109.5
C4—C3—H3A 109.1 C8—C10—H10A 109.5
C2—C3—H3A 109.1 C8—C10—H10B 109.5
C4—C3—H3B 109.1 H10A—C10—H10B 109.5
C2—C3—H3B 109.1 C8—C10—H10C 109.5
H3A—C3—H3B 107.8 H10A—C10—H10C 109.5
O4—C5—H5A 110.3 H10B—C10—H10C 109.5
C6—C5—H5A 110.3
O2—C1—C2—C3 30.0 (3) C5—C6—C7—C6' 55.6 (9)
O1—C1—C2—C3 −152.49 (16) O4—C5—C6'—O5 18 (2)
C1—C2—C3—C4 67.0 (2) C6—C5—C6'—O5 −57.7 (14)
C2—C3—C4—O3 −12.7 (3) O4—C5—C6'—C7 131.5 (8)
C2—C3—C4—O4 167.00 (15) C6—C5—C6'—C7 56.1 (12)
O3—C4—O4—C5 −8.3 (3) C8—O5—C6'—C5 160.9 (13)
C3—C4—O4—C5 172.00 (16) C6—O5—C6'—C5 59.9 (15)
C4—O4—C5—C6' 116.4 (12) C8—O5—C6'—C7 41.0 (13)
C4—O4—C5—C6 157.92 (17) C6—O5—C6'—C7 −60.0 (10)
C6'—O5—C6—C5 −51.5 (9) O6—C7—C6'—C5 179.6 (14)
C8—O5—C6—C5 −142.17 (19) C6—C7—C6'—C5 −60.5 (13)
C6'—O5—C6—C7 68.5 (9) O6—C7—C6'—O5 −57.5 (11)
C8—O5—C6—C7 −22.1 (2) C6—C7—C6'—O5 62.4 (11)
C6'—C5—C6—O5 53.2 (10) C7—O6—C8—O5 −35.5 (2)
O4—C5—C6—O5 −70.5 (2) C7—O6—C8—C9 83.9 (2)
C6'—C5—C6—C7 −62.0 (10) C7—O6—C8—C10 −151.6 (2)
O4—C5—C6—C7 174.27 (18) C6'—O5—C8—O6 −7.5 (11)
C8—O6—C7—C6 21.4 (3) C6—O5—C8—O6 35.9 (2)
C8—O6—C7—C6' 54.2 (8) C6'—O5—C8—C9 −127.2 (11)
O5—C6—C7—O6 0.5 (3) C6—O5—C8—C9 −83.9 (2)
C5—C6—C7—O6 118.9 (2) C6'—O5—C8—C10 108.6 (11)
O5—C6—C7—C6' −62.8 (9) C6—O5—C8—C10 152.0 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1—H01···O2i 0.80 (3) 1.86 (3) 2.6582 (19) 175 (3)
C3—H3A···O3ii 0.99 2.36 3.211 (2) 144
C2—H2B···O4iii 0.99 2.57 3.489 (2) 155
C7—H7B···O5iv 0.99 2.60 3.506 (3) 152

Symmetry codes: (i) −x+1, −y, −z+1; (ii) x, −y+1/2, z+1/2; (iii) x, y−1, z; (iv) x, −y+3/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2936).

References

  1. Kuś, P., Rojkiewicz, M., Zięba, G., Witoszek, M. & Jones, P. G. (2009). Acta Cryst E65, o1191 [DOI] [PMC free article] [PubMed]
  2. Osanai, S., Higami, M., Ono, Y. & Ohta, E. (1997). J. Mater. Chem.7, 1405–1408.
  3. Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED Oxford Diffraction, Abingdon, England.
  4. Scriba, G. K. E. (1993). Arch. Pharm. (Weinheim), 326, 477–481. [DOI] [PubMed]
  5. Scriba, G. K. E. (1995). Arch. Pharm. (Weinheim), 328, 271–276. [DOI] [PubMed]
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Siemens (1994). XP Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809015190/bt2936sup1.cif

e-65-o1192-sup1.cif (18.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809015190/bt2936Isup2.hkl

e-65-o1192-Isup2.hkl (113.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES