Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 May 20;65(Pt 6):m663. doi: 10.1107/S1600536809017590

Bis[4-(dimethyl­amino)pyridinium] tetra­bromidobis(3,4-dichloro­phen­yl)stannate(IV)–1-bromo-3,4-dichloro­benzene (1/1)

Yau Chin Koon a, Kong Mun Lo a, Seik Weng Ng a,*
PMCID: PMC2969743  PMID: 21583025

Abstract

The Sn atom in the title substituted pyridinium stannate bromo-3,4-dichloro­benzene solvate, (C7H11N2)2[SnBr4(C6H3Cl2)2]·C6H3BrCl2, lies on a twofold axis within an octa­hedral C2Br4 donor set. Each cation forms an N—H⋯Br hydrogen bond to one of the Br atoms of the anion. The solvent mol­ecule is disordered about the twofold rotation axis with equal occupancy. The crystal under investigation was non-merohedrally twinned, with a twin component ratio of 0.76:0.24.

Related literature

For bis­(4-dimethyl­amino­pyridinium) tetra­halido­diorgano­stan­nates, see: Lo & Ng (2008a ,b ); Yap et al. (2008). For deconvolution of the diffraction data, see: Spek (2009).graphic file with name e-65-0m663-scheme1.jpg

Experimental

Crystal data

  • (C7H11N2)2[SnBr4(C6H3Cl2)2]·C6H3BrCl2

  • M r = 1202.55

  • Monoclinic, Inline graphic

  • a = 19.2308 (2) Å

  • b = 13.8983 (2) Å

  • c = 15.4961 (2) Å

  • β = 107.491 (1)°

  • V = 3950.23 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 6.14 mm−1

  • T = 100 K

  • 0.25 × 0.20 × 0.15 mm

Data collection

  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.309, T max = 0.459 (expected range = 0.268–0.398)

  • 17636 measured reflections

  • 4495 independent reflections

  • 4061 reflections with I > 2σ(I)

  • R int = 0.030

Refinement

  • R[F 2 > 2σ(F 2)] = 0.050

  • wR(F 2) = 0.243

  • S = 1.47

  • 4495 reflections

  • 225 parameters

  • 39 restraints

  • H-atom parameters constrained

  • Δρmax = 2.01 e Å−3

  • Δρmin = −1.80 e Å−3

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2009).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809017590/tk2446sup1.cif

e-65-0m663-sup1.cif (19.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809017590/tk2446Isup2.hkl

e-65-0m663-Isup2.hkl (220.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯Br1 0.88 2.58 3.315 (3) 142

Acknowledgments

We thank the University of Malaya for funding this study (RG020/09AFR).

supplementary crystallographic information

Experimental

Tetrakis(3,4-dichlorophenyl)tin (0.70 g, 1 mol) and 4-dimethylaminopyridine hydrobromide perbromide (0.73 g, 2 mmol) were heated in ethanol/chloroform (1:1 v/v, 100 ml) for 3 h. Crystals separated from the cool solution after a day.

The presence of bromo-3,4-dichlorobenzene in the crystal structure probably arose from contamination of the tetrakis(3,4-dichlorophenyl)tin reactant, which itself was synthesized in a Grignard reaction with bromo-3,4-dichlorobenzene as the starting halogen-bearing compound.

Refinement

The structure initially refined to 7.7%. PLATON (Spek, 2009) gave the twin law as (1 0 0.746, 0 - 1 0, 0 0 - 1); a new hkl file was generated by using the detwinning tool in the program.

The aromatic and pyridyl rings were refined as rigid hexagons of 1.39 Å sides. For the lattice solvent molecule, which is situated about a 2-fold axis, the C–Cl distance was restrained to 1.74±0.01 Å and the C–Br distance to 1.90±0.01 Å. The molecule was allowed to refine off the 2-fold rotation axis. The anisotropic displacement factors of the carbon atoms were restrained to be nearly isotropic.

SHELXL-97 suggested an unusually large values for a and b in the weighting scheme, and so the suggested scheme was not used. Instead, an arbitrary value of a = 0.15 was used which gave a statisfactory Goodness-of-Fit of about 1.5.

Hydrogen atoms were placed in calculated positions (C—H 0.95, N–H 0.88 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2U(C,N). The torsion angles of the methyl groups were refined.

The final difference Fourier map had a large peak at 1.3 Å from H7 and a deep hole at 1.5 Å from H15.

Figures

Fig. 1.

Fig. 1.

70% Probability thermal ellipsoid plot of the ion-pair (C7H11N2)2 [SnBr4(C6H3Cl2)2].C6H3BrCl2. Unlabelled atoms are related by a 2-fold axis. Hydrogen atoms are drawn as spheres of arbitrary radius.

Crystal data

(C7H11N2)2[SnBr4(C6H3Cl2)2]·C6H3BrCl2 F(000) = 2312
Mr = 1202.55 Dx = 2.022 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yc Cell parameters from 9914 reflections
a = 19.2308 (2) Å θ = 2.2–28.4°
b = 13.8983 (2) Å µ = 6.14 mm1
c = 15.4961 (2) Å T = 100 K
β = 107.491 (1)° Block, colorless
V = 3950.23 (9) Å3 0.25 × 0.20 × 0.15 mm
Z = 4

Data collection

Bruker SMART APEX diffractometer 4495 independent reflections
Radiation source: fine-focus sealed tube 4061 reflections with I > 2σ(I)
graphite Rint = 0.030
ω scans θmax = 27.5°, θmin = 1.8°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −24→24
Tmin = 0.309, Tmax = 0.459 k = −18→18
17636 measured reflections l = −20→20

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.243 H-atom parameters constrained
S = 1.47 w = 1/[σ2(Fo2) + (0.15P)2] where P = (Fo2 + 2Fc2)/3
4495 reflections (Δ/σ)max = 0.001
225 parameters Δρmax = 2.01 e Å3
39 restraints Δρmin = −1.80 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Sn1 0.5000 0.61725 (3) 0.7500 0.0092 (2)
Br2 0.44267 (3) 0.48127 (5) 0.62311 (4) 0.0174 (2)
Br1 0.44630 (3) 0.75638 (5) 0.62507 (4) 0.0186 (2)
Cl1 0.81264 (8) 0.62573 (10) 0.85386 (12) 0.0179 (4)
Cl2 0.81408 (10) 0.62116 (11) 0.65044 (13) 0.0243 (4)
N2 0.2115 (3) 0.6236 (4) 0.1836 (4) 0.0196 (12)
C1 0.60066 (16) 0.6174 (2) 0.7153 (3) 0.0102 (11)
C2 0.6660 (2) 0.6216 (2) 0.7850 (2) 0.0102 (11)
H2 0.6657 0.6238 0.8461 0.012*
C3 0.73187 (16) 0.6224 (2) 0.7651 (2) 0.0138 (12)
C4 0.73233 (17) 0.6191 (3) 0.6756 (3) 0.0155 (13)
C5 0.6670 (2) 0.6150 (3) 0.6060 (2) 0.0151 (13)
H5 0.6673 0.6128 0.5449 0.018*
C6 0.60113 (17) 0.6142 (2) 0.6259 (2) 0.0175 (13)
H6 0.5564 0.6113 0.5783 0.021*
N1 0.3539 (2) 0.6345 (3) 0.4428 (2) 0.0293 (14)
H1 0.3842 0.6371 0.4981 0.035*
C7 0.38080 (17) 0.6245 (3) 0.3695 (3) 0.0244 (16)
H7 0.4319 0.6205 0.3790 0.029*
C8 0.3330 (2) 0.6204 (3) 0.2822 (3) 0.0185 (14)
H8 0.3514 0.6135 0.2320 0.022*
C9 0.2582 (2) 0.6262 (3) 0.2682 (2) 0.0144 (12)
C10 0.23132 (17) 0.6362 (3) 0.3415 (3) 0.0185 (13)
H10 0.1802 0.6401 0.3320 0.022*
C11 0.2791 (2) 0.6403 (3) 0.4288 (2) 0.0239 (14)
H11 0.2608 0.6471 0.4790 0.029*
C12 0.2386 (5) 0.6177 (5) 0.1057 (5) 0.0273 (17)
H12A 0.2695 0.6737 0.1050 0.041*
H12B 0.1974 0.6168 0.0501 0.041*
H12C 0.2672 0.5587 0.1095 0.041*
C13 0.1323 (4) 0.6238 (5) 0.1685 (6) 0.0268 (17)
H13A 0.1196 0.5727 0.2047 0.040*
H13B 0.1071 0.6126 0.1043 0.040*
H13C 0.1175 0.6862 0.1866 0.040*
Br3 0.5258 (5) 0.7963 (5) 0.4343 (4) 0.0355 (11) 0.50
Cl3 0.4624 (2) 0.9970 (3) 0.0505 (2) 0.0351 (9) 0.50
Cl4 0.4620 (14) 0.7751 (14) 0.0633 (11) 0.038 (3) 0.50
C14 0.5139 (16) 0.8551 (8) 0.3234 (8) 0.027 (4) 0.50
C15 0.501 (2) 0.7983 (4) 0.2464 (11) 0.027 (3) 0.50
H15 0.5033 0.7302 0.2517 0.032* 0.50
C16 0.4852 (16) 0.8411 (7) 0.1616 (9) 0.025 (4) 0.50
C17 0.4820 (8) 0.9408 (8) 0.1538 (4) 0.023 (4) 0.50
C18 0.4948 (9) 0.9976 (4) 0.2309 (6) 0.023 (4) 0.50
H18 0.4926 1.0657 0.2255 0.028* 0.50
C19 0.5107 (8) 0.9548 (8) 0.3156 (4) 0.021 (3) 0.50
H19 0.5194 0.9936 0.3683 0.025* 0.50

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Sn1 0.0068 (4) 0.0113 (4) 0.0099 (3) 0.000 0.0031 (2) 0.000
Br2 0.0141 (4) 0.0186 (4) 0.0195 (4) −0.0016 (2) 0.0048 (3) −0.0054 (2)
Br1 0.0175 (4) 0.0215 (4) 0.0169 (4) 0.0013 (2) 0.0050 (3) 0.0030 (2)
Cl1 0.0082 (7) 0.0195 (8) 0.0236 (8) 0.0003 (5) 0.0010 (6) −0.0001 (5)
Cl2 0.0133 (8) 0.0351 (10) 0.0291 (9) −0.0020 (5) 0.0132 (7) −0.0020 (6)
N2 0.019 (3) 0.019 (3) 0.018 (3) 0.0001 (18) 0.001 (2) 0.0001 (19)
C1 0.011 (3) 0.009 (3) 0.011 (3) 0.0016 (17) 0.003 (2) 0.0001 (17)
C2 0.007 (3) 0.014 (3) 0.010 (3) 0.0001 (17) 0.003 (2) −0.0007 (18)
C3 0.008 (3) 0.014 (3) 0.019 (3) −0.0021 (18) 0.004 (2) −0.001 (2)
C4 0.008 (3) 0.015 (3) 0.026 (4) −0.0011 (18) 0.008 (3) 0.000 (2)
C5 0.016 (3) 0.017 (3) 0.014 (3) −0.003 (2) 0.007 (2) −0.002 (2)
C6 0.018 (3) 0.019 (3) 0.016 (3) −0.002 (2) 0.006 (3) −0.002 (2)
N1 0.027 (4) 0.033 (3) 0.018 (3) 0.008 (2) −0.007 (3) −0.007 (2)
C7 0.016 (3) 0.018 (3) 0.033 (4) 0.003 (2) −0.002 (3) −0.006 (3)
C8 0.016 (3) 0.016 (3) 0.023 (3) 0.001 (2) 0.007 (3) −0.002 (2)
C9 0.017 (3) 0.012 (3) 0.014 (3) −0.002 (2) 0.003 (2) −0.0018 (19)
C10 0.015 (3) 0.013 (3) 0.027 (3) 0.000 (2) 0.006 (3) 0.001 (2)
C11 0.033 (4) 0.026 (3) 0.012 (3) 0.008 (3) 0.007 (3) −0.002 (3)
C12 0.036 (5) 0.031 (4) 0.011 (3) 0.001 (3) 0.001 (3) 0.001 (2)
C13 0.013 (4) 0.032 (4) 0.030 (4) 0.001 (2) −0.002 (3) −0.004 (3)
Br3 0.050 (3) 0.036 (3) 0.0186 (11) −0.0140 (19) 0.0077 (13) −0.0007 (11)
Cl3 0.049 (2) 0.0289 (19) 0.0208 (16) −0.0123 (16) −0.0002 (15) 0.0031 (14)
Cl4 0.047 (7) 0.039 (8) 0.026 (3) 0.008 (4) 0.009 (3) −0.003 (3)
C14 0.030 (8) 0.036 (7) 0.017 (6) −0.012 (7) 0.012 (6) 0.003 (6)
C15 0.028 (5) 0.024 (5) 0.032 (5) 0.003 (9) 0.014 (4) −0.008 (9)
C16 0.018 (7) 0.039 (8) 0.027 (6) 0.014 (6) 0.018 (6) 0.001 (6)
C17 0.024 (6) 0.028 (7) 0.020 (7) −0.007 (5) 0.012 (5) −0.009 (6)
C18 0.026 (6) 0.025 (5) 0.019 (9) 0.003 (5) 0.007 (7) 0.000 (4)
C19 0.022 (6) 0.022 (6) 0.023 (7) −0.007 (5) 0.015 (6) 0.000 (6)

Geometric parameters (Å, °)

Sn1—C1i 2.159 (3) C8—C9 1.3900
Sn1—C1 2.159 (3) C8—H8 0.9500
Sn1—Br2 2.7111 (7) C9—C10 1.3900
Sn1—Br2i 2.7111 (7) C10—C11 1.3900
Sn1—Br1i 2.7114 (7) C10—H10 0.9500
Sn1—Br1 2.7114 (7) C11—H11 0.9500
Cl1—C3 1.739 (3) C12—H12A 0.9800
Cl2—C4 1.730 (3) C12—H12B 0.9800
N2—C9 1.349 (7) C12—H12C 0.9800
N2—C12 1.454 (10) C13—H13A 0.9800
N2—C13 1.468 (10) C13—H13B 0.9800
C1—C2 1.3900 C13—H13C 0.9800
C1—C6 1.3900 Br3—C14 1.855 (6)
C2—C3 1.3900 Cl3—C17 1.719 (7)
C2—H2 0.9500 Cl4—C16 1.718 (9)
C3—C4 1.3900 C14—C15 1.3900
C4—C5 1.3900 C14—C19 1.3900
C5—C6 1.3900 C15—C16 1.3900
C5—H5 0.9500 C15—H15 0.9500
C6—H6 0.9500 C16—C17 1.3900
N1—C7 1.3900 C17—C18 1.3900
N1—C11 1.3900 C18—C19 1.3900
N1—H1 0.8800 C18—H18 0.9500
C7—C8 1.3900 C19—H19 0.9500
C7—H7 0.9500
C1i—Sn1—C1 179.87 (18) C7—C8—C9 120.0
C1i—Sn1—Br2 88.95 (10) C7—C8—H8 120.0
C1—Sn1—Br2 91.15 (10) C9—C8—H8 120.0
C1i—Sn1—Br2i 91.15 (10) N2—C9—C8 120.4 (4)
C1—Sn1—Br2i 88.95 (10) N2—C9—C10 119.6 (4)
Br2—Sn1—Br2i 91.62 (3) C8—C9—C10 120.0
C1i—Sn1—Br1i 89.95 (10) C11—C10—C9 120.0
C1—Sn1—Br1i 89.95 (10) C11—C10—H10 120.0
Br2—Sn1—Br1i 178.301 (19) C9—C10—H10 120.0
Br2i—Sn1—Br1i 89.70 (2) C10—C11—N1 120.0
C1i—Sn1—Br1 89.95 (10) C10—C11—H11 120.0
C1—Sn1—Br1 89.95 (10) N1—C11—H11 120.0
Br2—Sn1—Br1 89.70 (2) N2—C12—H12A 109.5
Br2i—Sn1—Br1 178.301 (19) N2—C12—H12B 109.5
Br1i—Sn1—Br1 89.01 (3) H12A—C12—H12B 109.5
C9—N2—C12 120.5 (6) N2—C12—H12C 109.5
C9—N2—C13 120.7 (6) H12A—C12—H12C 109.5
C12—N2—C13 118.8 (6) H12B—C12—H12C 109.5
C2—C1—C6 120.0 N2—C13—H13A 109.5
C2—C1—Sn1 118.5 (2) N2—C13—H13B 109.5
C6—C1—Sn1 121.5 (2) H13A—C13—H13B 109.5
C3—C2—C1 120.0 N2—C13—H13C 109.5
C3—C2—H2 120.0 H13A—C13—H13C 109.5
C1—C2—H2 120.0 H13B—C13—H13C 109.5
C2—C3—C4 120.0 C15—C14—C19 120.0
C2—C3—Cl1 118.8 (2) C15—C14—Br3 119.1 (9)
C4—C3—Cl1 121.2 (2) C19—C14—Br3 120.6 (9)
C5—C4—C3 120.0 C16—C15—C14 120.0
C5—C4—Cl2 119.8 (2) C16—C15—H15 120.0
C3—C4—Cl2 120.2 (2) C14—C15—H15 120.0
C4—C5—C6 120.0 C15—C16—C17 120.0
C4—C5—H5 120.0 C15—C16—Cl4 122.3 (11)
C6—C5—H5 120.0 C17—C16—Cl4 117.6 (11)
C5—C6—C1 120.0 C18—C17—C16 120.0
C5—C6—H6 120.0 C18—C17—Cl3 118.3 (8)
C1—C6—H6 120.0 C16—C17—Cl3 121.7 (8)
C7—N1—C11 120.0 C17—C18—C19 120.0
C7—N1—H1 120.0 C17—C18—H18 120.0
C11—N1—H1 120.0 C19—C18—H18 120.0
C8—C7—N1 120.0 C18—C19—C14 120.0
C8—C7—H7 120.0 C18—C19—H19 120.0
N1—C7—H7 120.0 C14—C19—H19 120.0
Br2—Sn1—C1—C2 −138.45 (15) C12—N2—C9—C8 −1.9 (6)
Br2i—Sn1—C1—C2 −46.86 (16) C13—N2—C9—C8 176.2 (4)
Br1i—Sn1—C1—C2 42.84 (16) C12—N2—C9—C10 177.2 (4)
Br1—Sn1—C1—C2 131.85 (16) C13—N2—C9—C10 −4.7 (6)
Br2—Sn1—C1—C6 41.96 (17) C7—C8—C9—N2 179.0 (4)
Br2i—Sn1—C1—C6 133.56 (17) C7—C8—C9—C10 0.0
Br1i—Sn1—C1—C6 −136.74 (17) N2—C9—C10—C11 −179.0 (4)
Br1—Sn1—C1—C6 −47.73 (17) C8—C9—C10—C11 0.0
C6—C1—C2—C3 0.0 C9—C10—C11—N1 0.0
Sn1—C1—C2—C3 −179.6 (2) C7—N1—C11—C10 0.0
C1—C2—C3—C4 0.0 C19—C14—C15—C16 0.0
C1—C2—C3—Cl1 −179.0 (2) Br3—C14—C15—C16 173.9 (18)
C2—C3—C4—C5 0.0 C14—C15—C16—C17 0.0
Cl1—C3—C4—C5 179.0 (3) C14—C15—C16—Cl4 −175 (2)
C2—C3—C4—Cl2 179.5 (3) C15—C16—C17—C18 0.0
Cl1—C3—C4—Cl2 −1.5 (3) Cl4—C16—C17—C18 175.1 (19)
C3—C4—C5—C6 0.0 C15—C16—C17—Cl3 −179.9 (11)
Cl2—C4—C5—C6 −179.5 (3) Cl4—C16—C17—Cl3 −5(2)
C4—C5—C6—C1 0.0 C16—C17—C18—C19 0.0
C2—C1—C6—C5 0.0 Cl3—C17—C18—C19 179.9 (10)
Sn1—C1—C6—C5 179.6 (2) C17—C18—C19—C14 0.0
C11—N1—C7—C8 0.0 C15—C14—C19—C18 0.0
N1—C7—C8—C9 0.0 Br3—C14—C19—C18 −173.8 (18)

Symmetry codes: (i) −x+1, y, −z+3/2.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1···Br1 0.88 2.58 3.315 (3) 142

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2446).

References

  1. Barbour, L. J. (2001). J. Supramol. Chem.1, 189–191.
  2. Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Lo, K. M. & Ng, S. W. (2008a). Acta Cryst. E64, m800. [DOI] [PMC free article] [PubMed]
  4. Lo, K. M. & Ng, S. W. (2008b). Acta Cryst. E64, m834. [DOI] [PMC free article] [PubMed]
  5. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  8. Westrip, S. P. (2009). publCIF In preparation.
  9. Yap, Q. L., Lo, K. M. & Ng, S. W. (2008). Acta Cryst. E64, m696. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809017590/tk2446sup1.cif

e-65-0m663-sup1.cif (19.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809017590/tk2446Isup2.hkl

e-65-0m663-Isup2.hkl (220.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES