Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 May 14;65(Pt 6):m636. doi: 10.1107/S1600536809016535

trans-Tetra­chloridobis(diphenyl­aceto­nitrile)platinum(IV)

Nadezhda A Bokach a, Vadim Yu Kukushkin b, Matti Haukka c,*
PMCID: PMC2969749  PMID: 21583004

Abstract

In the title compound, [PtCl4(C14H11N)2], the Pt atom lies on an inversion center and has a distorted octa­hedral environment. The main geometric parameters are Pt—N = 1.960 (5) Å, and Pt—Cl = 2.3177 (12) and 2.3196 (12) Å. The N C bond is a typical triple bond [1.137 (7) Å]. The Pt—N C—C unit is almost linear, with Pt—N—C and N—C—C angles of 174.6 (4) and 177.1 (6)°, respectively.

Related literature

For background literature, see: Kukushkin & Pombeiro (2002); Luzyanin et al. (2002); Pombeiro & Kukushkin (2004), For related structures, see: Allen et al. (1987); Eysel et al. (1983); Johansson et al. (1998); Kritzenberger et al. (1994); Orpen et al. (1989); Scollard et al. (2001); Svensson et al. (1995); Yagyu et al. (2002).graphic file with name e-65-0m636-scheme1.jpg

Experimental

Crystal data

  • [PtCl4(C14H11N)2]

  • M r = 723.37

  • Triclinic, Inline graphic

  • a = 5.7980 (3) Å

  • b = 10.8650 (6) Å

  • c = 11.2200 (7) Å

  • α = 92.236 (3)°

  • β = 101.601 (4)°

  • γ = 98.565 (4)°

  • V = 682.91 (7) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 5.55 mm−1

  • T = 100 K

  • 0.33 × 0.09 × 0.06 mm

Data collection

  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2008a ) T min = 0.255, T max = 0.717

  • 13055 measured reflections

  • 3096 independent reflections

  • 3076 reflections with I > 2σ(I)

  • R int = 0.048

Refinement

  • R[F 2 > 2σ(F 2)] = 0.038

  • wR(F 2) = 0.099

  • S = 1.09

  • 3096 reflections

  • 160 parameters

  • 36 restraints

  • H-atom parameters constrained

  • Δρmax = 4.19 e Å−3

  • Δρmin = −2.02 e Å−3

Data collection: COLLECT (Hooft, 2008); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008b ); molecular graphics: DIAMOND (Brandenburg, 2008); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809016535/pv2142sup1.cif

e-65-0m636-sup1.cif (15.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809016535/pv2142Isup2.hkl

e-65-0m636-Isup2.hkl (636.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Russian Fund for Basic Research (grant No. 08-03-00247) and the Academy of Finland (grant No. 112392).

supplementary crystallographic information

Comment

In the past decade, a PtIV center was recognized as one of the most efficient electrophilic activators of the C≡N bond in nitriles (Pombeiro & Kukushkin, 2004; Kukushkin & Pombeiro, 2002). Within the framework of our project focused on reactivity of metal-activated nitriles, a novel platinum(IV) complex, i.e. trans-[PtCl4(N≡CCHPh2)2], (I), was synthesized and characterized by single-crystal X-ray diffraction. It should be mentioned that only few structures of platinum(IV) nitrile complexes are known, e.g. (Yagyu et al., 2002; Johansson et al., 1998; Scollard et al., 2001). Probably the small number of examples is related to the high reactivity of various (nitrile)PtIV species, where nitrile ligands are subject to facile nucleophilic attack even by weak nucleophiles or H2O in wet solvents.

The complex (I) crystallized in the centrosymmetrical P1 space group wherein the Pt atom lies on an inversion center and it has an octahedral environment and nitrile ligands have the mutual trans orientation (Fig. 1). The angles N1—Pt1—Cl2, N1—Pt1—Cl1, Cl2—Pt1—Cl1 are close to the ideal 90°. The Pt1—Cl bond distances (2.3177 (12) and 2.3196 (12) Å) are similar within 3σ with many other Pt—Cl bond lengths (2.323 (38) Å) in related PtIV complexes (Orpen et al., 1989). The Pt1—N distances (1.960 (5) Å) are common for (nitrile)Pt complexes bearing two trans-coordinated nitriles, e.g. 1.943 (11)–1.978 (3) Å in PtII complexes (Eysel et al., 1983; Kritzenberger et al., 1994; Svensson et al. 1995).

The value of the N1≡C1 bond (1.137 (7) Å) is typical for the triple bonds in PtII-coordinated (1.129 (9)–1.154 (18) Å in trans-[PtCl2(NCR)2] (Eysel et al., 1983; Kritzenberger et al., 1994; Svensson et al. 1995), in PtIV-bound (1.09 (4)–1.157 (12) Å) (Yagyu et al., 2002; Johansson et al., 1998; Scollard et al., 2001), and in uncomplexed (1.136 (10) Å (Allen et al., 1987) nitriles. The value of the C1—C2 bond (1.469 (7) Å) agrees well with those reported for Csp–Csp3 single bonds (1.470 (13) Å) (Allen et al., 1987). The Pt1/N1/C1/C2 moiety is almost linear with Pt1—N1≡C1 and N1≡C1—C2 angles of 174.6 (4) and 177.1 (6)°, correspondingly. The angle C3—C2—C9 (114.7 (5)°) is larger than 109° probably due to steric repulsion between two phenyl rings.

Experimental

Diphenylacetonitrile (8.5 mg, 0.044 mmol; purchased from Aldrich) was added to a suspension of trans-[PtCl4(EtCN)2] (9.7 mg, 0.022 mmol) (Luzyanin et al., 2002) in CDCl3 (1 ml) and the reaction mixture was left to stand for 2 d at 323 K in an NMR tube, whereupon orange–yellow crystals were formed on walls of the tube. The crystals were mechanically separated.

Refinement

The phenyl ring C3–C8 was slightly disordered. However, no disordered model was used in the final refined but the C atoms on phenyl ring C3–C8 were restrained with effective standard deviation 0.1 so that its Uij components approximate to isotropic behavior. All H atoms were positioned geometrically and constrained to ride on their parent atoms, with C—H = 0.95 and 1.00 Å, for methine and aryl H atoms, respectively, and Uiso = 1.2Ueq(parent atom). The residual electron density in the final difference map could be attributed to insufficient absorption correction as well as twinning, which could not be corrected.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Crystal data

[PtCl4(C14H11N)2] Z = 1
Mr = 723.37 F(000) = 350
Triclinic, P1 Dx = 1.759 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 5.7980 (3) Å Cell parameters from 30861 reflections
b = 10.8650 (6) Å θ = 1.0–27.5°
c = 11.2200 (7) Å µ = 5.55 mm1
α = 92.236 (3)° T = 100 K
β = 101.601 (4)° Needle, yellow
γ = 98.565 (4)° 0.33 × 0.09 × 0.06 mm
V = 682.91 (7) Å3

Data collection

Nonius KappaCCD diffractometer 3096 independent reflections
Radiation source: fine-focus sealed tube 3076 reflections with I > 2σ(I)
horizontally mounted graphite crystal Rint = 0.048
Detector resolution: 9 pixels mm-1 θmax = 27.4°, θmin = 1.9°
φ scans and ω scans with κ offset h = −6→7
Absorption correction: multi-scan (SADABS; Sheldrick, 2008a) k = −13→14
Tmin = 0.255, Tmax = 0.717 l = −14→14
13055 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.099 H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0722P)2 + 0.3244P] where P = (Fo2 + 2Fc2)/3
3096 reflections (Δ/σ)max < 0.001
160 parameters Δρmax = 4.19 e Å3
36 restraints Δρmin = −2.02 e Å3

Special details

Experimental. IR spectrum in KBr, selected bonds, cm-1: 2340 s ν(C≡N). 1H NMR spectrum in CDCl3, δ: 5.85 (s, 1H, CH), 7.42 (m, 10H, Ph).
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Pt1 0.0000 0.0000 0.0000 0.01907 (11)
Cl1 −0.1642 (2) 0.18164 (11) −0.02653 (11) 0.0242 (3)
Cl2 0.1559 (2) 0.03117 (12) −0.17314 (11) 0.0259 (3)
N1 0.2869 (8) 0.0989 (4) 0.1023 (4) 0.0219 (9)
C1 0.4426 (9) 0.1634 (5) 0.1627 (5) 0.0223 (10)
C2 0.6350 (10) 0.2492 (5) 0.2438 (5) 0.0244 (10)
H2 0.7905 0.2282 0.2306 0.029*
C3 0.6198 (10) 0.2260 (6) 0.3764 (5) 0.0304 (12)
C4 0.7693 (19) 0.1559 (9) 0.4421 (7) 0.060 (2)
H4 0.8855 0.1233 0.4068 0.072*
C5 0.751 (3) 0.1322 (10) 0.5624 (8) 0.083 (4)
H5 0.8513 0.0808 0.6067 0.100*
C6 0.5929 (16) 0.1807 (9) 0.6164 (7) 0.058 (2)
H6 0.5877 0.1677 0.6992 0.069*
C7 0.442 (2) 0.2487 (14) 0.5495 (9) 0.084 (3)
H7 0.3263 0.2819 0.5849 0.101*
C8 0.4554 (18) 0.2700 (12) 0.4286 (8) 0.071 (3)
H8 0.3468 0.3164 0.3825 0.085*
C9 0.6217 (10) 0.3826 (5) 0.2100 (5) 0.0253 (11)
C10 0.8298 (11) 0.4709 (6) 0.2383 (6) 0.0335 (13)
H10 0.9758 0.4464 0.2767 0.040*
C11 0.8249 (13) 0.5941 (6) 0.2106 (7) 0.0415 (15)
H11 0.9671 0.6535 0.2298 0.050*
C12 0.6130 (13) 0.6299 (6) 0.1552 (7) 0.0396 (14)
H12 0.6094 0.7139 0.1355 0.047*
C13 0.4058 (12) 0.5434 (6) 0.1285 (6) 0.0352 (13)
H13 0.2597 0.5691 0.0919 0.042*
C14 0.4085 (11) 0.4201 (5) 0.1543 (5) 0.0297 (12)
H14 0.2656 0.3612 0.1342 0.036*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Pt1 0.02018 (16) 0.01738 (16) 0.01892 (16) 0.00369 (10) 0.00211 (10) 0.00008 (10)
Cl1 0.0285 (6) 0.0191 (6) 0.0254 (6) 0.0078 (5) 0.0035 (5) 0.0017 (5)
Cl2 0.0321 (7) 0.0243 (6) 0.0224 (6) 0.0052 (5) 0.0078 (5) 0.0018 (5)
N1 0.022 (2) 0.023 (2) 0.022 (2) 0.0071 (17) 0.0047 (17) 0.0036 (17)
C1 0.025 (3) 0.021 (2) 0.023 (2) 0.008 (2) 0.005 (2) 0.002 (2)
C2 0.023 (2) 0.024 (3) 0.024 (2) 0.002 (2) 0.002 (2) −0.002 (2)
C3 0.027 (3) 0.037 (3) 0.023 (2) 0.001 (2) −0.001 (2) 0.001 (2)
C4 0.084 (5) 0.059 (4) 0.041 (4) 0.035 (4) 0.007 (3) 0.002 (3)
C5 0.150 (11) 0.072 (7) 0.033 (4) 0.057 (7) 0.002 (5) 0.014 (4)
C6 0.066 (5) 0.072 (5) 0.027 (3) −0.008 (4) 0.001 (3) 0.007 (3)
C7 0.078 (6) 0.139 (8) 0.046 (4) 0.037 (6) 0.024 (4) 0.019 (5)
C8 0.063 (5) 0.123 (7) 0.039 (4) 0.046 (5) 0.013 (3) 0.019 (4)
C9 0.028 (3) 0.024 (3) 0.025 (2) 0.003 (2) 0.008 (2) −0.002 (2)
C10 0.030 (3) 0.029 (3) 0.039 (3) −0.001 (2) 0.007 (2) −0.006 (2)
C11 0.040 (4) 0.028 (3) 0.055 (4) −0.004 (3) 0.015 (3) −0.001 (3)
C12 0.046 (4) 0.025 (3) 0.049 (4) 0.004 (3) 0.014 (3) 0.001 (3)
C13 0.040 (3) 0.028 (3) 0.040 (3) 0.011 (2) 0.008 (3) 0.004 (2)
C14 0.030 (3) 0.024 (3) 0.034 (3) 0.003 (2) 0.005 (2) −0.001 (2)

Geometric parameters (Å, °)

Pt1—N1i 1.960 (5) C6—C7 1.360 (15)
Pt1—N1 1.960 (5) C6—H6 0.9500
Pt1—Cl2 2.3177 (12) C7—C8 1.400 (12)
Pt1—Cl2i 2.3178 (12) C7—H7 0.9500
Pt1—Cl1 2.3196 (12) C8—H8 0.9500
Pt1—Cl1i 2.3196 (12) C9—C14 1.394 (8)
N1—C1 1.137 (7) C9—C10 1.398 (8)
C1—C2 1.469 (7) C10—C11 1.389 (9)
C2—C9 1.522 (8) C10—H10 0.9500
C2—C3 1.536 (8) C11—C12 1.379 (10)
C2—H2 1.0000 C11—H11 0.9500
C3—C8 1.348 (11) C12—C13 1.383 (9)
C3—C4 1.363 (10) C12—H12 0.9500
C4—C5 1.406 (13) C13—C14 1.383 (9)
C4—H4 0.9500 C13—H13 0.9500
C5—C6 1.350 (15) C14—H14 0.9500
C5—H5 0.9500
N1i—Pt1—N1 180.0 C6—C5—H5 119.2
N1i—Pt1—Cl2 88.94 (13) C4—C5—H5 119.2
N1—Pt1—Cl2 91.06 (13) C5—C6—C7 118.4 (8)
N1i—Pt1—Cl2i 91.06 (13) C5—C6—H6 120.8
N1—Pt1—Cl2i 88.94 (13) C7—C6—H6 120.8
Cl2—Pt1—Cl2i 180.0 C6—C7—C8 120.2 (10)
N1i—Pt1—Cl1 91.31 (13) C6—C7—H7 119.9
N1—Pt1—Cl1 88.69 (13) C8—C7—H7 119.9
Cl2—Pt1—Cl1 89.95 (5) C3—C8—C7 121.4 (9)
Cl2i—Pt1—Cl1 90.05 (5) C3—C8—H8 119.3
N1i—Pt1—Cl1i 88.69 (13) C7—C8—H8 119.3
N1—Pt1—Cl1i 91.31 (13) C14—C9—C10 119.1 (6)
Cl2—Pt1—Cl1i 90.05 (5) C14—C9—C2 122.2 (5)
Cl2i—Pt1—Cl1i 89.95 (5) C10—C9—C2 118.7 (5)
Cl1—Pt1—Cl1i 180.0 C11—C10—C9 120.5 (6)
C1—N1—Pt1 174.6 (4) C11—C10—H10 119.7
N1—C1—C2 177.1 (6) C9—C10—H10 119.7
C1—C2—C9 109.6 (4) C12—C11—C10 119.8 (6)
C1—C2—C3 108.4 (5) C12—C11—H11 120.1
C9—C2—C3 114.7 (5) C10—C11—H11 120.1
C1—C2—H2 107.9 C11—C12—C13 120.0 (6)
C9—C2—H2 107.9 C11—C12—H12 120.0
C3—C2—H2 107.9 C13—C12—H12 120.0
C8—C3—C4 118.8 (7) C12—C13—C14 120.8 (6)
C8—C3—C2 121.4 (6) C12—C13—H13 119.6
C4—C3—C2 119.8 (6) C14—C13—H13 119.6
C3—C4—C5 119.6 (9) C13—C14—C9 119.8 (6)
C3—C4—H4 120.2 C13—C14—H14 120.1
C5—C4—H4 120.2 C9—C14—H14 120.1
C6—C5—C4 121.6 (8)

Symmetry codes: (i) −x, −y, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2142).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Brandenburg, K. (2008). DIAMOND Crystal Impact GbR, Bonn, Germany.
  3. Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst.38, 381–388.
  4. Eysel, H. H., Guggolz, E., Kopp, M. & Ziegler, M. L. (1983). Z. Anorg. Allg. Chem 499, 31–43.
  5. Hooft, R. (2008). COLLECT Bruker AXS, Delft, The Netherlands.
  6. Johansson, L., Ryan, O. B., Romming, C. & Tilset, M. (1998). Organometallics, 17, 3957–3966.
  7. Kritzenberger, J., Yersin, H., Range, K.-J. & Zabel, M. Z. (1994). Z. Naturforsch. Teil B, 49, 297–300.
  8. Kukushkin, V. Yu. & Pombeiro, A. J. L. (2002). Chem. Rev.102, 1771–1802. [DOI] [PubMed]
  9. Luzyanin, K. V., Haukka, M., Bokach, N. A., Kuznetsov, M. L., Kukushkin, V. Y. & Pombeiro, A. J. L. (2002). J. Chem. Soc. Dalton Trans. pp. 1882–1887.
  10. Orpen, A. G., Brammer, L., Allen, F. H., Kennard, O., Watson, D. G. & Taylor, R. (1989). J. Chem. Soc. Dalton Trans. pp. S1–S83.
  11. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter & R. M. Sweet, pp. 307–326. New York: Academic Press.
  12. Pombeiro, A. J. L. & Kukushkin, V. Y. (2004). Comprehensive Coordination Chemistry II, Vol. 1, edited by A. B. P. Lever, pp. 639–660. Elsevier.
  13. Scollard, J. D., Day, M., Labinger, J. A. & Bercaw, J. E. (2001). Helv. Chim. Acta, 84, 3247–3268.
  14. Sheldrick, G. M. (2008a). SADABS. Bruker AXS, Wisconsin, USA.
  15. Sheldrick, G. M. (2008b). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  16. Svensson, P., Lövqvist, K., Kukushkin, V. Y. & Oskarsson, Å. (1995). Acta Chem. Scand.49, 72–75.
  17. Yagyu, T., Suzaki, Y. & Osakada, K. (2002). Organometallics, 21, 2088–2094.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809016535/pv2142sup1.cif

e-65-0m636-sup1.cif (15.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809016535/pv2142Isup2.hkl

e-65-0m636-Isup2.hkl (636.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES