Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 May 14;65(Pt 6):o1262. doi: 10.1107/S1600536809016675

(E)-17β,19-Epoxy­methano-17,23,24-tridemethyl-4-nor-5β,18α-olean-3-one oxime

Anna Froelich a, Oxana B Kazakova b, Genrikh Tolstikov b, Andrzej K Gzella a,*
PMCID: PMC2969752  PMID: 21583127

Abstract

In the penta­cyclic triterpenoide skeleton of the title mol­ecule, C27H43NO2 [systematic name: (3E,3aS,5aR,5bR,7aR,11R,11aR,11bR,13aR,13bR)-5a,5b,10,10,13b-penta­methyl­icosa­hydro-1H-11,7a-(epoxy­methano)cyclo­penta­[a]chrysen-3-one oxime], the five-membered ring A has an envelope conformation, while the six-membered rings BE adopt chair conformations. Rings A and B are cis-fused. The hydroximino group has an E configuration. Strong inter­molecular O—H⋯O hydrogen bonds link the mol­ecules into helical chains.

Related literature

For the syntheses of related compounds, see: Medvedeva et al. (2004, 2006); Gzella et al. (1997, 1998); Zaprutko (1995, 1997). For a description of the Cambridge Structural Database, see: Allen (2002). For puckering parameters, see: Cremer & Pople (1975); Spek (2009).graphic file with name e-65-o1262-scheme1.jpg

Experimental

Crystal data

  • C27H43NO2

  • M r = 413.62

  • Orthorhombic, Inline graphic

  • a = 12.5887 (16) Å

  • b = 13.2550 (11) Å

  • c = 14.5355 (12) Å

  • V = 2425.4 (4) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.53 mm−1

  • T = 293 K

  • 0.40 × 0.22 × 0.13 mm

Data collection

  • Kuma Diffraction KM-4 diffractometer

  • Absorption correction: none

  • 4994 measured reflections

  • 2610 independent reflections

  • 2240 reflections with I > 2σ(I)

  • R int = 0.037

  • 3 standard reflections every 100 reflections intensity decay: 2.3%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.031

  • wR(F 2) = 0.094

  • S = 1.06

  • 2610 reflections

  • 281 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.12 e Å−3

  • Δρmin = −0.12 e Å−3

Data collection: KM-4 Software (Kuma Diffraction, 1996); cell refinement: KM-4 Software; data reduction: KM-4 Software; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809016675/fb2138sup1.cif

e-65-o1262-sup1.cif (27.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809016675/fb2138Isup2.hkl

e-65-o1262-Isup2.hkl (128.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2i 0.87 (3) 1.93 (3) 2.782 (2) 164 (3)

Symmetry code: (i) Inline graphic.

supplementary crystallographic information

Comment

One of the steps in our synthesis of the title compound, (E)-17β,19-epoxymethano-17,23,24-tridemethyl-4-nor-5β,18α-olean-3-one oxime (Scheme 1; Fig. 3 - (IV)), from allobetulin (Fig. 3 - (I)) involved ozonolysis of the intermediate δ-apoallobetulin, Fig. 3 - (II), to give 17β,19-epoxymethano-17,23,24-tridemethyl-4-nor-5β,18α-olean-3-one (Fig. 3 - (III)) as the transformation product with a cis-junction between the A/B rings. It should be mentioned that synthetic conversions to new derivatives with altered junction of A/B rings are rarely observed in triterpenoids of the oleanane group [Zaprutko (1995, 1997); Gzella et al. (1997); Gzella et al. (1998); Medvedeva et al. (2004)].

The X-ray structure determination of the title compound was carried out in order to confirm its spatial structure that had been proposed on the basis of spectroscopic data by Medvedeva et al. (2004).

The results obtained for the title compound confirm the cis-junction of A/B rings. The corresponding interplanar angle between the least-squares planes of the A/B rings is 71.85 (8)°. The H atom at the C5 asymmetric centre exhibits β-orientation and occupies a pseudo-axial position with respect to the A ring and an equatorial position to the B ring [the angles of the H5—C5 bond vector to the Cremer & Pople A and B ring plane normals are 9.60 (9) and 64.05 (7)°, respectively (Cremer & Pople, 1975; Spek, 2009)]. The torsion angle H5—C5—C10—C25 of 38° reveals a halfway conformation between synperiplanar and synclinal for bonds H5—C5 and C10—C25.

In the molecule the six-membered rings BE of the pentacyclic ring system are trans-fused as in allobetuline. The dihedral angles between the least-squares planes of these rings are B/C 7.09 (10), C/D 0.80 (10), D/E 14.95 (9)°.

In the title structure, each of the six-membered rings BE has a differently distorted chair conformation, whereas both five-membered rings, i.e. the carbocyclic ring A and the heterocyclic ring C17\C18\C19\O2\C28 including epoxymethylene group, assume envelope conformations. The respective puckering parameters (Cremer & Pople, 1975) are Q = 0.373 (2) Å, Φ = 147.1 (4)° and Q = 0.470 (2)Å, Φ = 253.2 (2)°.

The hydroximino function in C3 position has the E configuration. The value of the torsion angle O1—N1—C3—C5 is -179.80 (18)°.

The molecular packing is stabilized by O1—H···O2i hydrogen bonds (Tab. 1). The hydroxyl hydrogen is donated to the remote-ring epoxy O atom from the neighbour molecule. These hydrogen bonds link the molecules into helical chains which proceed in the c direction (Fig. 2).

Experimental

The title compound was obtained according to the procedure described by Medvedeva et al. (2004). Single colourless needle-crystals suitable for analysis were grown from ethanol by slow evaporation at room temperature.

Refinement

All the hydrogens were discernible in the difference electron density map. Except for the hydroxyl H atom that was refined freely the remaining hydrogens were situated into the idealized positions and were refined within the riding model approximation: Cmethyl—H = 0.96, Cmethylene—H 0.97, Cmethine= 0.98 Å. Uiso(H) = 1.2 UeqCmethylene/Cmethine; Uiso(H) = 1.5Ueq(Cmethyl). The methyl group was allowed to rotate during refinement. The absolute configuration of the title structure is known by reference to the known chirality of the enantiopure allobetulin employed as the initial reagent used in the synthesis as well as to the chirality of the other oleanane derivatives [see: CSD, Cambridge; Allen (2002)].

Figures

Fig. 1.

Fig. 1.

The title molecule showing the atomic labeling scheme. The displacement ellipsoids are shown at the 30% probability level.

Fig. 2.

Fig. 2.

The hydrogen bonding (dashed lines) in the title structure. Symmetry code: (i) 0.5-x, 2-y, 1/2+z. The H atoms not involved in hydrogen bonds have been omitted for clarity.

Crystal data

C27H43NO2 Dx = 1.133 Mg m3
Mr = 413.62 Melting point = 468–470 K
Orthorhombic, P212121 Cu Kα radiation, λ = 1.54178 Å
Hall symbol: P 2ac 2ab Cell parameters from 54 reflections
a = 12.5887 (16) Å θ = 14.5–28.5°
b = 13.2550 (11) Å µ = 0.53 mm1
c = 14.5355 (12) Å T = 293 K
V = 2425.4 (4) Å3 Needle, colourless
Z = 4 0.40 × 0.22 × 0.13 mm
F(000) = 912

Data collection

Kuma Diffraction KM-4 diffractometer Rint = 0.037
Radiation source: fine-focus sealed tube θmax = 70.1°, θmin = 4.5°
graphite h = −15→15
ω/2θ scans k = 0→16
4994 measured reflections l = 0→17
2610 independent reflections 3 standard reflections every 100 reflections
2240 reflections with I > 2σ(I) intensity decay: 2.3%

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.094 w = 1/[σ2(Fo2) + (0.0523P)2 + 0.1689P] where P = (Fo2 + 2Fc2)/3
S = 1.06 (Δ/σ)max < 0.001
2610 reflections Δρmax = 0.12 e Å3
281 parameters Δρmin = −0.12 e Å3
0 restraints Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
163 constraints Extinction coefficient: 0.0011 (2)
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.50319 (13) 0.77700 (17) 0.33765 (13) 0.0806 (5)
H1 0.491 (2) 0.762 (2) 0.395 (2) 0.100 (10)*
O2 0.06258 (10) 1.29692 (10) 0.00744 (9) 0.0561 (3)
N1 0.40209 (14) 0.75851 (15) 0.29992 (12) 0.0620 (5)
C1 0.43803 (18) 0.79829 (17) 0.05510 (15) 0.0631 (5)
H1A 0.4512 0.7343 0.0248 0.076*
H1B 0.4666 0.8519 0.0170 0.076*
C2 0.49002 (17) 0.7997 (2) 0.15037 (16) 0.0680 (6)
H2A 0.5484 0.7521 0.1537 0.082*
H2B 0.5162 0.8666 0.1654 0.082*
C3 0.40138 (16) 0.76952 (16) 0.21323 (14) 0.0561 (5)
C5 0.30026 (17) 0.75334 (15) 0.16039 (14) 0.0576 (5)
H5 0.2966 0.6817 0.1441 0.069*
C6 0.19970 (17) 0.77938 (18) 0.21268 (15) 0.0658 (6)
H6A 0.1384 0.7587 0.1769 0.079*
H6B 0.1985 0.7425 0.2703 0.079*
C7 0.19268 (16) 0.89107 (17) 0.23218 (13) 0.0591 (5)
H7A 0.2513 0.9103 0.2718 0.071*
H7B 0.1272 0.9046 0.2652 0.071*
C8 0.19556 (13) 0.95683 (15) 0.14448 (11) 0.0455 (4)
C9 0.29594 (14) 0.92829 (13) 0.08732 (11) 0.0427 (4)
H9 0.3562 0.9514 0.1245 0.051*
C10 0.31736 (16) 0.81371 (14) 0.07022 (13) 0.0526 (4)
C11 0.30140 (16) 0.99102 (13) −0.00084 (11) 0.0475 (4)
H11A 0.3657 0.9740 −0.0341 0.057*
H11B 0.2413 0.9743 −0.0397 0.057*
C12 0.30058 (14) 1.10370 (13) 0.01892 (12) 0.0457 (4)
H12A 0.2966 1.1402 −0.0388 0.055*
H12B 0.3667 1.1221 0.0488 0.055*
C13 0.20788 (13) 1.13561 (13) 0.08002 (11) 0.0415 (4)
H13 0.1426 1.1200 0.0462 0.050*
C14 0.20485 (13) 1.07304 (15) 0.17054 (10) 0.0456 (4)
C15 0.10814 (16) 1.10874 (19) 0.22730 (13) 0.0629 (6)
H15A 0.0437 1.0922 0.1940 0.075*
H15B 0.1067 1.0722 0.2851 0.075*
C16 0.10920 (18) 1.2219 (2) 0.24743 (13) 0.0690 (6)
H16A 0.0434 1.2399 0.2781 0.083*
H16B 0.1671 1.2365 0.2894 0.083*
C17 0.12164 (15) 1.28729 (17) 0.16219 (13) 0.0558 (5)
C18 0.20859 (14) 1.24982 (14) 0.09614 (12) 0.0476 (4)
H18 0.2786 1.2714 0.1180 0.057*
C19 0.17728 (14) 1.31005 (14) 0.01104 (14) 0.0503 (4)
H19 0.2103 1.2809 −0.0439 0.060*
C20 0.20282 (19) 1.42351 (16) 0.01733 (18) 0.0691 (6)
C21 0.1451 (2) 1.46632 (19) 0.1015 (2) 0.0814 (8)
H21A 0.1774 1.5304 0.1177 0.098*
H21B 0.0718 1.4794 0.0849 0.098*
C22 0.14688 (19) 1.3980 (2) 0.18554 (18) 0.0773 (7)
H22A 0.0954 1.4224 0.2299 0.093*
H22B 0.2165 1.4016 0.2139 0.093*
C25 0.2534 (2) 0.76839 (18) −0.00933 (16) 0.0742 (7)
H25A 0.2774 0.7008 −0.0209 0.111*
H25B 0.2634 0.8086 −0.0636 0.111*
H25C 0.1794 0.7673 0.0066 0.111*
C26 0.09170 (15) 0.93677 (17) 0.09073 (15) 0.0596 (5)
H26A 0.0862 0.8661 0.0770 0.089*
H26B 0.0924 0.9746 0.0344 0.089*
H26C 0.0320 0.9572 0.1274 0.089*
C27 0.30490 (15) 1.09487 (17) 0.22921 (12) 0.0561 (5)
H27A 0.3666 1.0694 0.1981 0.084*
H27B 0.2981 1.0624 0.2879 0.084*
H27C 0.3120 1.1663 0.2380 0.084*
C28 0.02439 (14) 1.28226 (19) 0.09950 (14) 0.0597 (5)
H28A −0.0103 1.2172 0.1051 0.072*
H28B −0.0261 1.3346 0.1157 0.072*
C29 0.3229 (2) 1.43864 (18) 0.0252 (2) 0.0896 (9)
H29A 0.3395 1.5088 0.0175 0.134*
H29B 0.3581 1.4000 −0.0216 0.134*
H29C 0.3465 1.4166 0.0847 0.134*
C30 0.1626 (2) 1.47527 (18) −0.0701 (2) 0.0876 (8)
H30A 0.1719 1.5469 −0.0646 0.131*
H30B 0.0886 1.4603 −0.0784 0.131*
H30C 0.2020 1.4510 −0.1222 0.131*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0541 (8) 0.1201 (15) 0.0675 (10) 0.0019 (9) −0.0063 (8) 0.0231 (10)
O2 0.0432 (6) 0.0761 (8) 0.0490 (7) 0.0101 (6) −0.0029 (5) −0.0061 (7)
N1 0.0510 (9) 0.0778 (12) 0.0573 (9) 0.0013 (8) −0.0003 (8) 0.0150 (9)
C1 0.0741 (13) 0.0589 (11) 0.0564 (11) 0.0148 (11) 0.0171 (10) 0.0079 (9)
C2 0.0541 (11) 0.0841 (15) 0.0657 (13) 0.0125 (11) 0.0103 (10) 0.0207 (11)
C3 0.0550 (11) 0.0573 (11) 0.0558 (11) 0.0022 (9) 0.0036 (9) 0.0129 (9)
C5 0.0644 (11) 0.0537 (10) 0.0547 (10) −0.0088 (9) −0.0001 (10) 0.0128 (9)
C6 0.0531 (11) 0.0814 (14) 0.0629 (12) −0.0158 (11) 0.0009 (10) 0.0286 (11)
C7 0.0456 (9) 0.0859 (14) 0.0458 (9) 0.0003 (10) 0.0111 (8) 0.0187 (9)
C8 0.0357 (8) 0.0656 (11) 0.0354 (8) −0.0061 (8) 0.0018 (7) 0.0076 (7)
C9 0.0423 (8) 0.0524 (9) 0.0333 (7) −0.0045 (7) 0.0039 (7) 0.0028 (7)
C10 0.0635 (11) 0.0504 (9) 0.0440 (9) −0.0045 (9) 0.0029 (9) 0.0037 (8)
C11 0.0561 (10) 0.0525 (9) 0.0341 (8) 0.0009 (8) 0.0106 (8) 0.0016 (7)
C12 0.0455 (8) 0.0504 (9) 0.0413 (8) 0.0016 (8) 0.0123 (8) 0.0026 (7)
C13 0.0346 (7) 0.0561 (9) 0.0337 (7) 0.0005 (7) 0.0040 (7) −0.0027 (7)
C14 0.0352 (8) 0.0693 (11) 0.0324 (7) 0.0020 (8) 0.0033 (7) −0.0014 (7)
C15 0.0471 (10) 0.1020 (17) 0.0395 (9) 0.0119 (10) 0.0126 (8) 0.0045 (10)
C16 0.0566 (11) 0.1094 (18) 0.0408 (9) 0.0257 (12) 0.0037 (9) −0.0167 (11)
C17 0.0433 (9) 0.0761 (13) 0.0481 (10) 0.0139 (9) −0.0016 (8) −0.0173 (10)
C18 0.0354 (8) 0.0603 (11) 0.0472 (9) 0.0046 (7) 0.0007 (8) −0.0105 (8)
C19 0.0428 (9) 0.0542 (9) 0.0539 (10) 0.0089 (7) 0.0016 (8) −0.0039 (8)
C20 0.0627 (12) 0.0550 (11) 0.0897 (15) 0.0113 (10) 0.0011 (13) −0.0083 (11)
C21 0.0754 (15) 0.0661 (14) 0.103 (2) 0.0176 (12) −0.0056 (14) −0.0248 (14)
C22 0.0650 (13) 0.0908 (17) 0.0761 (15) 0.0210 (12) −0.0096 (12) −0.0400 (14)
C25 0.1048 (18) 0.0607 (14) 0.0572 (12) −0.0073 (12) −0.0101 (13) −0.0062 (11)
C26 0.0426 (9) 0.0751 (13) 0.0609 (11) −0.0125 (9) −0.0076 (9) 0.0090 (11)
C27 0.0492 (10) 0.0764 (13) 0.0427 (9) 0.0034 (10) −0.0086 (8) −0.0082 (9)
C28 0.0413 (9) 0.0864 (14) 0.0514 (10) 0.0148 (10) 0.0010 (8) −0.0128 (10)
C29 0.0691 (14) 0.0581 (12) 0.142 (3) −0.0061 (11) 0.0053 (17) −0.0063 (15)
C30 0.1021 (19) 0.0549 (12) 0.106 (2) 0.0156 (13) −0.0037 (17) 0.0115 (13)

Geometric parameters (Å, °)

O1—N1 1.407 (2) C14—C27 1.548 (2)
O1—H1 0.88 (3) C15—C16 1.529 (4)
O2—C28 1.435 (2) C15—H15A 0.9700
O2—C19 1.455 (2) C15—H15B 0.9700
N1—C3 1.268 (3) C16—C17 1.520 (3)
C1—C2 1.532 (3) C16—H16A 0.9700
C1—C10 1.548 (3) C16—H16B 0.9700
C1—H1A 0.9700 C17—C28 1.528 (3)
C1—H1B 0.9700 C17—C18 1.538 (2)
C2—C3 1.497 (3) C17—C22 1.540 (3)
C2—H2A 0.9700 C18—C19 1.524 (3)
C2—H2B 0.9700 C18—H18 0.9800
C3—C5 1.502 (3) C19—C20 1.541 (3)
C5—C6 1.516 (3) C19—H19 0.9800
C5—C10 1.551 (3) C20—C29 1.529 (3)
C5—H5 0.9800 C20—C30 1.531 (4)
C6—C7 1.510 (3) C20—C21 1.532 (3)
C6—H6A 0.9700 C21—C22 1.520 (4)
C6—H6B 0.9700 C21—H21A 0.9700
C7—C8 1.545 (2) C21—H21B 0.9700
C7—H7A 0.9700 C22—H22A 0.9700
C7—H7B 0.9700 C22—H22B 0.9700
C8—C26 1.546 (2) C25—H25A 0.9600
C8—C9 1.559 (2) C25—H25B 0.9600
C8—C14 1.591 (3) C25—H25C 0.9600
C9—C11 1.529 (2) C26—H26A 0.9600
C9—C10 1.562 (3) C26—H26B 0.9600
C9—H9 0.9800 C26—H26C 0.9600
C10—C25 1.532 (3) C27—H27A 0.9600
C11—C12 1.521 (2) C27—H27B 0.9600
C11—H11A 0.9700 C27—H27C 0.9600
C11—H11B 0.9700 C28—H28A 0.9700
C12—C13 1.526 (2) C28—H28B 0.9700
C12—H12A 0.9700 C29—H29A 0.9600
C12—H12B 0.9700 C29—H29B 0.9600
C13—C18 1.532 (2) C29—H29C 0.9600
C13—C14 1.556 (2) C30—H30A 0.9600
C13—H13 0.9800 C30—H30B 0.9600
C14—C15 1.545 (2) C30—H30C 0.9600
N1—O1—H1 100 (2) C16—C15—H15B 108.9
C28—O2—C19 108.36 (14) C14—C15—H15B 108.9
C3—N1—O1 111.93 (18) H15A—C15—H15B 107.7
C2—C1—C10 106.80 (16) C17—C16—C15 113.84 (16)
C2—C1—H1A 110.4 C17—C16—H16A 108.8
C10—C1—H1A 110.4 C15—C16—H16A 108.8
C2—C1—H1B 110.4 C17—C16—H16B 108.8
C10—C1—H1B 110.4 C15—C16—H16B 108.8
H1A—C1—H1B 108.6 H16A—C16—H16B 107.7
C3—C2—C1 103.30 (18) C16—C17—C28 112.25 (19)
C3—C2—H2A 111.1 C16—C17—C18 113.46 (16)
C1—C2—H2A 111.1 C28—C17—C18 100.60 (14)
C3—C2—H2B 111.1 C16—C17—C22 112.64 (18)
C1—C2—H2B 111.1 C28—C17—C22 109.79 (18)
H2A—C2—H2B 109.1 C18—C17—C22 107.37 (18)
N1—C3—C2 129.2 (2) C19—C18—C13 113.07 (14)
N1—C3—C5 119.83 (19) C19—C18—C17 98.82 (14)
C2—C3—C5 110.97 (17) C13—C18—C17 114.23 (16)
C3—C5—C6 114.75 (17) C19—C18—H18 110.1
C3—C5—C10 103.94 (16) C13—C18—H18 110.1
C6—C5—C10 114.97 (17) C17—C18—H18 110.1
C3—C5—H5 107.6 O2—C19—C18 102.90 (15)
C6—C5—H5 107.6 O2—C19—C20 109.03 (15)
C10—C5—H5 107.6 C18—C19—C20 114.15 (17)
C7—C6—C5 111.48 (16) O2—C19—H19 110.2
C7—C6—H6A 109.3 C18—C19—H19 110.2
C5—C6—H6A 109.3 C20—C19—H19 110.2
C7—C6—H6B 109.3 C29—C20—C30 109.3 (2)
C5—C6—H6B 109.3 C29—C20—C21 111.1 (2)
H6A—C6—H6B 108.0 C30—C20—C21 109.90 (19)
C6—C7—C8 113.39 (17) C29—C20—C19 109.80 (17)
C6—C7—H7A 108.9 C30—C20—C19 108.6 (2)
C8—C7—H7A 108.9 C21—C20—C19 108.1 (2)
C6—C7—H7B 108.9 C22—C21—C20 114.47 (19)
C8—C7—H7B 108.9 C22—C21—H21A 108.6
H7A—C7—H7B 107.7 C20—C21—H21A 108.6
C7—C8—C26 107.47 (15) C22—C21—H21B 108.6
C7—C8—C9 108.78 (15) C20—C21—H21B 108.6
C26—C8—C9 111.99 (14) H21A—C21—H21B 107.6
C7—C8—C14 110.59 (15) C21—C22—C17 112.79 (19)
C26—C8—C14 110.43 (15) C21—C22—H22A 109.0
C9—C8—C14 107.59 (14) C17—C22—H22A 109.0
C11—C9—C8 110.56 (14) C21—C22—H22B 109.0
C11—C9—C10 112.80 (14) C17—C22—H22B 109.0
C8—C9—C10 117.42 (14) H22A—C22—H22B 107.8
C11—C9—H9 104.9 C10—C25—H25A 109.5
C8—C9—H9 104.9 C10—C25—H25B 109.5
C10—C9—H9 104.9 H25A—C25—H25B 109.5
C25—C10—C1 110.89 (19) C10—C25—H25C 109.5
C25—C10—C5 111.27 (16) H25A—C25—H25C 109.5
C1—C10—C5 100.84 (16) H25B—C25—H25C 109.5
C25—C10—C9 114.24 (17) C8—C26—H26A 109.5
C1—C10—C9 108.67 (16) C8—C26—H26B 109.5
C5—C10—C9 110.08 (15) H26A—C26—H26B 109.5
C12—C11—C9 112.05 (14) C8—C26—H26C 109.5
C12—C11—H11A 109.2 H26A—C26—H26C 109.5
C9—C11—H11A 109.2 H26B—C26—H26C 109.5
C12—C11—H11B 109.2 C14—C27—H27A 109.5
C9—C11—H11B 109.2 C14—C27—H27B 109.5
H11A—C11—H11B 107.9 H27A—C27—H27B 109.5
C11—C12—C13 112.78 (14) C14—C27—H27C 109.5
C11—C12—H12A 109.0 H27A—C27—H27C 109.5
C13—C12—H12A 109.0 H27B—C27—H27C 109.5
C11—C12—H12B 109.0 O2—C28—C17 106.37 (15)
C13—C12—H12B 109.0 O2—C28—H28A 110.5
H12A—C12—H12B 107.8 C17—C28—H28A 110.5
C12—C13—C18 111.00 (14) O2—C28—H28B 110.5
C12—C13—C14 111.29 (14) C17—C28—H28B 110.5
C18—C13—C14 113.42 (14) H28A—C28—H28B 108.6
C12—C13—H13 106.9 C20—C29—H29A 109.5
C18—C13—H13 106.9 C20—C29—H29B 109.5
C14—C13—H13 106.9 H29A—C29—H29B 109.5
C15—C14—C27 106.84 (14) C20—C29—H29C 109.5
C15—C14—C13 107.91 (15) H29A—C29—H29C 109.5
C27—C14—C13 110.26 (15) H29B—C29—H29C 109.5
C15—C14—C8 111.46 (16) C20—C30—H30A 109.5
C27—C14—C8 111.84 (15) C20—C30—H30B 109.5
C13—C14—C8 108.46 (13) H30A—C30—H30B 109.5
C16—C15—C14 113.33 (18) C20—C30—H30C 109.5
C16—C15—H15A 108.9 H30A—C30—H30C 109.5
C14—C15—H15A 108.9 H30B—C30—H30C 109.5
C10—C1—C2—C3 24.3 (2) C26—C8—C14—C15 57.27 (18)
O1—N1—C3—C2 −1.0 (4) C9—C8—C14—C15 179.76 (13)
O1—N1—C3—C5 −179.80 (18) C7—C8—C14—C27 57.97 (18)
C1—C2—C3—N1 179.6 (2) C26—C8—C14—C27 176.80 (14)
C1—C2—C3—C5 −1.5 (2) C9—C8—C14—C27 −60.70 (17)
N1—C3—C5—C6 31.2 (3) C7—C8—C14—C13 179.78 (14)
C2—C3—C5—C6 −147.80 (19) C26—C8—C14—C13 −61.40 (17)
N1—C3—C5—C10 157.6 (2) C9—C8—C14—C13 61.10 (16)
C2—C3—C5—C10 −21.4 (2) C27—C14—C15—C16 62.1 (2)
C3—C5—C6—C7 66.3 (2) C13—C14—C15—C16 −56.4 (2)
C10—C5—C6—C7 −54.2 (2) C8—C14—C15—C16 −175.40 (15)
C5—C6—C7—C8 58.2 (2) C14—C15—C16—C17 53.3 (2)
C6—C7—C8—C26 67.6 (2) C15—C16—C17—C28 68.0 (2)
C6—C7—C8—C9 −53.8 (2) C15—C16—C17—C18 −45.2 (2)
C6—C7—C8—C14 −171.76 (16) C15—C16—C17—C22 −167.46 (18)
C7—C8—C9—C11 179.45 (15) C12—C13—C18—C19 71.70 (19)
C26—C8—C9—C11 60.81 (19) C14—C13—C18—C19 −162.14 (14)
C14—C8—C9—C11 −60.72 (17) C12—C13—C18—C17 −176.31 (14)
C7—C8—C9—C10 48.1 (2) C14—C13—C18—C17 −50.1 (2)
C26—C8—C9—C10 −70.6 (2) C16—C17—C18—C19 164.25 (17)
C14—C8—C9—C10 167.91 (14) C28—C17—C18—C19 44.17 (19)
C2—C1—C10—C25 −154.75 (18) C22—C17—C18—C19 −70.62 (18)
C2—C1—C10—C5 −36.8 (2) C16—C17—C18—C13 43.9 (2)
C2—C1—C10—C9 78.9 (2) C28—C17—C18—C13 −76.1 (2)
C3—C5—C10—C25 152.20 (18) C22—C17—C18—C13 169.06 (16)
C6—C5—C10—C25 −81.5 (2) C28—O2—C19—C18 28.72 (19)
C3—C5—C10—C1 34.5 (2) C28—O2—C19—C20 −92.8 (2)
C6—C5—C10—C1 160.79 (18) C13—C18—C19—O2 75.99 (17)
C3—C5—C10—C9 −80.1 (2) C17—C18—C19—O2 −45.17 (17)
C6—C5—C10—C9 46.1 (2) C13—C18—C19—C20 −166.02 (16)
C11—C9—C10—C25 −48.7 (2) C17—C18—C19—C20 72.81 (19)
C8—C9—C10—C25 81.7 (2) O2—C19—C20—C29 177.7 (2)
C11—C9—C10—C1 75.7 (2) C18—C19—C20—C29 63.3 (3)
C8—C9—C10—C1 −153.95 (15) O2—C19—C20—C30 −62.9 (2)
C11—C9—C10—C5 −174.71 (16) C18—C19—C20—C30 −177.28 (18)
C8—C9—C10—C5 −44.4 (2) O2—C19—C20—C21 56.3 (2)
C8—C9—C11—C12 56.7 (2) C18—C19—C20—C21 −58.1 (2)
C10—C9—C11—C12 −169.56 (16) C29—C20—C21—C22 −80.1 (3)
C9—C11—C12—C13 −52.8 (2) C30—C20—C21—C22 158.8 (2)
C11—C12—C13—C18 −178.59 (15) C19—C20—C21—C22 40.4 (3)
C11—C12—C13—C14 54.06 (19) C20—C21—C22—C17 −45.1 (3)
C12—C13—C14—C15 −179.09 (15) C16—C17—C22—C21 −172.49 (18)
C18—C13—C14—C15 54.9 (2) C28—C17—C22—C21 −46.6 (2)
C12—C13—C14—C27 64.56 (18) C18—C17—C22—C21 61.9 (2)
C18—C13—C14—C27 −61.45 (19) C19—O2—C28—C17 0.2 (2)
C12—C13—C14—C8 −58.21 (17) C16—C17—C28—O2 −149.50 (17)
C18—C13—C14—C8 175.78 (14) C18—C17—C28—O2 −28.6 (2)
C7—C8—C14—C15 −61.56 (19) C22—C17—C28—O2 84.4 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1—H1···O2i 0.87 (3) 1.93 (3) 2.782 (2) 164 (3)

Symmetry codes: (i) −x+1/2, −y+2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FB2138).

References

  1. Allen, F. H. (2002). Acta Cryst. B58, 380–388. [DOI] [PubMed]
  2. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  3. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  4. Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  5. Gzella, A., Zaprutko, L. & Wrzeciono, U. (1997). Acta Cryst. C53, 261–264.
  6. Gzella, A., Zaprutko, L. & Wrzeciono, U. (1998). Acta Cryst. C54, 1309–1312.
  7. Kuma Diffraction (1996). KM-4 Software. Kuma Diffraction, Wrocław, Poland.
  8. Medvedeva, N. I., Flekhter, O. B., Gzella, A. & Zaprutko, L. (2006). Chem. Nat. Comp.42, 618–619.
  9. Medvedeva, N. I., Flekhter, O. B., Tretyakova, E. V., Galin, F. Z., Baltina, L. A., Spirikhin, L. V. & Tolstikov, G. A. (2004). Russ. J. Org. Chem.40, 1092–1097.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Spek, A. L. (2009). Acta Cryst D65, 148–155. [DOI] [PMC free article] [PubMed]
  12. Zaprutko, L. (1995). Pol. J. Chem.69, 1003–1012.
  13. Zaprutko, L. (1997). Pol. J. Chem.71, 1499–1501.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809016675/fb2138sup1.cif

e-65-o1262-sup1.cif (27.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809016675/fb2138Isup2.hkl

e-65-o1262-Isup2.hkl (128.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES