Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 May 23;65(Pt 6):o1397. doi: 10.1107/S1600536809018765

4-[2-(1-Acetyl-2-oxopropyl­idene)­hydrazino]-N-(pyrimidin-2-yl)benzene­sulfonamide

Priyanka Rai a, Shalini Upadhyay b, M Nethaji c, K K Upadhyay b,*
PMCID: PMC2969759  PMID: 21583242

Abstract

In the title compound, C15H15N5O4S, the dihedral angle between the pyrimidine and benzene rings is 84.56 (2)°. Intra­molecular hydrazine–carbonyl N—H⋯O and inter­molecular sulfonamide–pyridimine N—H⋯N hydrogen bonds stabilize the mol­ecular and crystal structures, respectively.

Related literature

For background to sulfa drugs and their derivatives, see: Abbate et al. (2004); Badr (2008); Gale et al. (2007); Hanafy et al. (2007); Novinson et al. (1976); Supuran et al. (2003). For the synthesis of the title compound, see: Goyal & Bhargava (1989).graphic file with name e-65-o1397-scheme1.jpg

Experimental

Crystal data

  • C15H15N5O4S

  • M r = 361.38

  • Monoclinic, Inline graphic

  • a = 11.354 (3) Å

  • b = 5.7875 (13) Å

  • c = 25.974 (6) Å

  • β = 101.877 (4)°

  • V = 1670.3 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 293 K

  • 0.24 × 0.22 × 0.20 mm

Data collection

  • Bruker SMART APEX diffractometer

  • Absorption correction: empirical (using intensity measurements) (SADABS; Bruker, 2005) T min = 0.947, T max = 0.957

  • 17935 measured reflections

  • 3999 independent reflections

  • 3164 reflections with I > 2σ(I)

  • R int = 0.027

Refinement

  • R[F 2 > 2σ(F 2)] = 0.047

  • wR(F 2) = 0.135

  • S = 1.07

  • 3999 reflections

  • 228 parameters

  • H-atom parameters constrained

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.27 e Å−3

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809018765/tk2450sup1.cif

e-65-o1397-sup1.cif (19.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809018765/tk2450Isup2.hkl

e-65-o1397-Isup2.hkl (196KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O3 0.86 2.01 2.654 (2) 131
C15—H15⋯O4i 0.93 2.46 3.262 (3) 144

Symmetry code: (i) Inline graphic.

Acknowledgments

KKU and SU are grateful to the UGC, New Delhi, for financial support.

supplementary crystallographic information

Comment

Sulfa drugs and their derivatives have attracted much attention due to their wide spectrum of applications as compounds with anti-bacterial (Badr, 2008), anti-fungal (Hanafy et al., 2007), anti-viral (Supuran et al., 2003), anti-malarial (Gale et al., 2007), and anti-cancer (Abbate et al., 2004) activities. Although the title compound (I) been reported in the literature (Goyal & Bhargava, 1989), its crystal structure was not reported. The molecule of (I), Fig. 1, is-non planar as seen in arrangement of the two aromatic moieties attached to sulfonamide, –NHSO2-, group; the C1—S1—N1—C12 torsion angle is 68.66 (15)°. Within the molecule, there is a prominent intramolecular interaction between the hydrazo-N—H and the carbonyl-O3 atoms, Fig. 2 and Table 1. Intermolecular hydrogen bonds formed between centrosymmetrically related molecules involving the sulfonamide-N—H and the pyrimidine-N4 atoms lead to dimeric aggregates, Fig. 2 and Table 1.

Experimental

Compound (I) was synthesized using the literature procedure (Novinson et al., 1976) as follows. Sulfadiazine (2 mmol, 501 mg) and sodium nitrite (~4 mmol, 300 mg) were dissolved separately in conc. HCl (2 ml) and distilled water (10 ml), respectively, followed by their cooling on crushed ice. The cooled sodium nitrite solution was added to the sulfdiazine solution with constant stirring while maintaining ice-cold temperature. The resulting yellow solution was added to a mixture of acetyl acetone (2 mmol, 0.2 ml) and sodium acetate (~37 mmol, 3 g) in distilled water (15 ml) with continuous stirring. The stirring was continued for 2 h maintaining the temperature of the reaction vessel between 293–298 K. The resulting solids were filtered, washed with water, ethanol and finally, by diethyl ether. The crude product was recrystallized from a water–ethanol mixture (50% v/v) and dried in vacuo. Crystals of (I) were developed by layering its supersaturated solution in ethanol with diethylether and leaving for a few days.

Yield 78%. Spectroscopic anaylysis: 1H NMR (DMSO-d6, TMS, δ p.p.m.) 13.51 (1H, NH) 11.79 (1H, NH), 8.51–7.04 (7H, Ar—H), 2.54–2.42 (6H, CH3). 13C NMR (DMSO-d6, TMS, δ p.p.m.) 197.41, 196.40 (>C═O), 158.3, 156.8, 145.44 (>C═C<), 135.4, 135.3, 129.35, 115.73 (ArC), 31.18, 26.24 (CH3).

Refinement

All H atoms were placed in the idealized positions with C—H = 0.93–0.96 Å and N—H = 0.86 Å, and with Uiso(H) = 1.2—1.5 Ueq(C, N).

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I) showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

View of (I) showing intermolecular and intramolecular hydrogen bonding, as thin lines.

Crystal data

C15H15N5O4S F(000) = 752
Mr = 361.38 Dx = 1.437 Mg m3
Monoclinic, P21/n Melting point: 508 K
Hall symbol: -P 2yn Mo Kα radiation, λ = 0.71073 Å
a = 11.354 (3) Å Cell parameters from 489 reflections
b = 5.7875 (13) Å θ = 2.5–27.5°
c = 25.974 (6) Å µ = 0.23 mm1
β = 101.877 (4)° T = 293 K
V = 1670.3 (7) Å3 Block, colourless
Z = 4 0.24 × 0.22 × 0.20 mm

Data collection

Bruker SMART APEX diffractometer 3999 independent reflections
Radiation source: fine-focus sealed tube 3164 reflections with I > 2σ(I)
graphite Rint = 0.027
Detector resolution: 0.3 pixels mm-1 θmax = 28.2°, θmin = 1.6°
ω scans h = −14→14
Absorption correction: empirical (using intensity measurements) (SADABS; Bruker, 2005) k = −7→7
Tmin = 0.947, Tmax = 0.957 l = −33→34
17935 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full with fixed elements per cycle Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.135 H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0735P)2 + 0.3686P] where P = (Fo2 + 2Fc2)/3
3999 reflections (Δ/σ)max < 0.001
228 parameters Δρmax = 0.43 e Å3
0 restraints Δρmin = −0.27 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.63840 (13) 0.4007 (3) 0.17280 (6) 0.0382 (3)
C2 0.65017 (14) 0.2375 (3) 0.21231 (6) 0.0423 (4)
H2 0.6861 0.0958 0.2085 0.051*
C3 0.60841 (14) 0.2856 (3) 0.25745 (6) 0.0442 (4)
H3 0.6172 0.1775 0.2845 0.053*
C4 0.55332 (13) 0.4960 (3) 0.26228 (6) 0.0403 (3)
C5 0.54124 (15) 0.6595 (3) 0.22244 (7) 0.0441 (4)
H5 0.5036 0.7998 0.2258 0.053*
C6 0.58527 (14) 0.6128 (3) 0.17784 (6) 0.0435 (4)
H6 0.5793 0.7229 0.1513 0.052*
C7 0.41088 (16) 0.7698 (3) 0.35557 (7) 0.0508 (4)
C8 0.32001 (18) 0.9556 (4) 0.35144 (8) 0.0640 (5)
C9 0.2914 (2) 1.0962 (4) 0.30216 (10) 0.0776 (6)
H9A 0.2278 1.0230 0.2775 0.116*
H9B 0.3617 1.1078 0.2871 0.116*
H9C 0.2663 1.2480 0.3102 0.116*
C10 0.46123 (17) 0.6545 (4) 0.40679 (7) 0.0588 (5)
C11 0.4767 (3) 0.7965 (5) 0.45552 (9) 0.0890 (8)
H11A 0.5122 0.7037 0.4853 0.134*
H11B 0.3996 0.8519 0.4599 0.134*
H11C 0.5282 0.9255 0.4528 0.134*
C12 0.48295 (14) 0.2255 (3) 0.05575 (6) 0.0410 (3)
C13 0.31325 (16) 0.1234 (3) −0.00211 (7) 0.0558 (5)
H13 0.2584 0.1438 −0.0337 0.067*
C14 0.29513 (18) −0.0519 (4) 0.03058 (9) 0.0672 (5)
H14 0.2297 −0.1513 0.0218 0.081*
C15 0.37720 (18) −0.0752 (4) 0.07679 (9) 0.0645 (5)
H15 0.3662 −0.1929 0.0997 0.077*
N1 0.58083 (12) 0.3715 (2) 0.06677 (5) 0.0448 (3)
H1 0.5816 0.4870 0.0460 0.054*
N2 0.51240 (12) 0.5382 (3) 0.30859 (5) 0.0473 (3)
H2A 0.5336 0.4483 0.3353 0.057*
N3 0.44158 (12) 0.7152 (3) 0.31136 (5) 0.0474 (3)
N4 0.40737 (12) 0.2669 (2) 0.00980 (5) 0.0447 (3)
N5 0.47232 (14) 0.0633 (3) 0.09050 (6) 0.0543 (4)
O1 0.77449 (10) 0.5273 (3) 0.10851 (5) 0.0599 (3)
O2 0.74016 (12) 0.1133 (2) 0.11958 (5) 0.0593 (3)
O3 0.49670 (15) 0.4579 (3) 0.40757 (6) 0.0857 (5)
O4 0.26722 (17) 0.9867 (4) 0.38702 (7) 0.1059 (6)
S1 0.69587 (3) 0.34360 (8) 0.116167 (15) 0.04382 (10)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0377 (7) 0.0417 (8) 0.0330 (7) 0.0005 (6) 0.0023 (6) −0.0020 (6)
C2 0.0458 (8) 0.0380 (8) 0.0418 (8) 0.0078 (6) 0.0060 (7) −0.0003 (6)
C3 0.0475 (8) 0.0447 (8) 0.0393 (8) 0.0065 (7) 0.0064 (7) 0.0082 (6)
C4 0.0375 (7) 0.0457 (8) 0.0361 (7) −0.0001 (6) 0.0037 (6) −0.0044 (6)
C5 0.0471 (8) 0.0370 (8) 0.0473 (9) 0.0071 (7) 0.0076 (7) −0.0012 (7)
C6 0.0494 (8) 0.0409 (8) 0.0381 (8) 0.0041 (7) 0.0043 (7) 0.0051 (6)
C7 0.0483 (8) 0.0587 (10) 0.0456 (9) 0.0016 (8) 0.0098 (7) −0.0085 (8)
C8 0.0610 (11) 0.0676 (12) 0.0638 (12) 0.0124 (10) 0.0139 (9) −0.0124 (10)
C9 0.0716 (13) 0.0735 (14) 0.0858 (16) 0.0217 (11) 0.0114 (12) 0.0035 (12)
C10 0.0551 (10) 0.0769 (13) 0.0471 (10) 0.0054 (9) 0.0167 (8) −0.0013 (9)
C11 0.0990 (17) 0.118 (2) 0.0458 (11) 0.0011 (16) 0.0061 (11) −0.0156 (12)
C12 0.0447 (8) 0.0441 (8) 0.0336 (7) −0.0011 (7) 0.0066 (6) −0.0013 (6)
C13 0.0510 (9) 0.0650 (11) 0.0470 (9) −0.0096 (9) −0.0002 (7) −0.0036 (8)
C14 0.0586 (11) 0.0666 (12) 0.0724 (13) −0.0220 (10) 0.0041 (9) 0.0041 (10)
C15 0.0647 (11) 0.0609 (11) 0.0665 (12) −0.0138 (10) 0.0104 (10) 0.0163 (10)
N1 0.0479 (7) 0.0494 (8) 0.0336 (6) −0.0079 (6) −0.0002 (5) 0.0049 (6)
N2 0.0508 (7) 0.0542 (8) 0.0367 (7) 0.0081 (6) 0.0085 (6) 0.0001 (6)
N3 0.0422 (7) 0.0553 (8) 0.0431 (7) 0.0034 (6) 0.0052 (6) −0.0083 (6)
N4 0.0469 (7) 0.0509 (8) 0.0343 (6) −0.0053 (6) 0.0038 (5) −0.0001 (6)
N5 0.0582 (8) 0.0566 (9) 0.0457 (8) −0.0083 (7) 0.0054 (6) 0.0123 (7)
O1 0.0471 (6) 0.0832 (9) 0.0491 (7) −0.0162 (6) 0.0089 (5) −0.0029 (6)
O2 0.0637 (7) 0.0686 (8) 0.0433 (6) 0.0224 (7) 0.0057 (5) −0.0072 (6)
O3 0.1122 (12) 0.0941 (11) 0.0564 (8) 0.0341 (10) 0.0303 (8) 0.0152 (8)
O4 0.1151 (12) 0.1252 (15) 0.0895 (12) 0.0543 (12) 0.0496 (10) −0.0011 (11)
S1 0.04035 (19) 0.0554 (2) 0.03392 (18) 0.00152 (17) 0.00343 (15) −0.00326 (16)

Geometric parameters (Å, °)

C1—C2 1.380 (2) C10—C11 1.489 (3)
C1—C6 1.386 (2) C11—H11A 0.9600
C1—S1 1.7590 (15) C11—H11B 0.9600
C2—C3 1.381 (2) C11—H11C 0.9600
C2—H2 0.9300 C12—N5 1.325 (2)
C3—C4 1.386 (2) C12—N4 1.340 (2)
C3—H3 0.9300 C12—N1 1.378 (2)
C4—C5 1.388 (2) C13—N4 1.339 (2)
C4—N2 1.397 (2) C13—C14 1.366 (3)
C5—C6 1.380 (2) C13—H13 0.9300
C5—H5 0.9300 C14—C15 1.366 (3)
C6—H6 0.9300 C14—H14 0.9300
C7—N3 1.306 (2) C15—N5 1.333 (2)
C7—C8 1.478 (3) C15—H15 0.9300
C7—C10 1.493 (3) N1—S1 1.6396 (13)
C8—O4 1.214 (2) N1—H1 0.8600
C8—C9 1.495 (3) N2—N3 1.3136 (19)
C9—H9A 0.9600 N2—H2A 0.8600
C9—H9B 0.9600 O1—S1 1.4284 (13)
C9—H9C 0.9600 O2—S1 1.4210 (13)
C10—O3 1.206 (2)
C2—C1—C6 120.88 (14) C10—C11—H11A 109.5
C2—C1—S1 119.82 (12) C10—C11—H11B 109.5
C6—C1—S1 119.27 (12) H11A—C11—H11B 109.5
C1—C2—C3 119.71 (15) C10—C11—H11C 109.5
C1—C2—H2 120.1 H11A—C11—H11C 109.5
C3—C2—H2 120.1 H11B—C11—H11C 109.5
C2—C3—C4 119.62 (15) N5—C12—N4 127.00 (15)
C2—C3—H3 120.2 N5—C12—N1 118.39 (14)
C4—C3—H3 120.2 N4—C12—N1 114.61 (14)
C3—C4—C5 120.56 (15) N4—C13—C14 122.19 (17)
C3—C4—N2 117.87 (14) N4—C13—H13 118.9
C5—C4—N2 121.56 (14) C14—C13—H13 118.9
C6—C5—C4 119.70 (15) C13—C14—C15 117.17 (18)
C6—C5—H5 120.2 C13—C14—H14 121.4
C4—C5—H5 120.2 C15—C14—H14 121.4
C5—C6—C1 119.51 (15) N5—C15—C14 122.95 (18)
C5—C6—H6 120.2 N5—C15—H15 118.5
C1—C6—H6 120.2 C14—C15—H15 118.5
N3—C7—C8 114.89 (17) C12—N1—S1 125.49 (11)
N3—C7—C10 123.56 (16) C12—N1—H1 117.3
C8—C7—C10 121.55 (16) S1—N1—H1 117.3
O4—C8—C7 119.93 (18) N3—N2—C4 119.95 (14)
O4—C8—C9 121.11 (18) N3—N2—H2A 120.0
C7—C8—C9 118.91 (18) C4—N2—H2A 120.0
C8—C9—H9A 109.5 C7—N3—N2 120.95 (15)
C8—C9—H9B 109.5 C13—N4—C12 115.42 (15)
H9A—C9—H9B 109.5 C12—N5—C15 115.25 (16)
C8—C9—H9C 109.5 O2—S1—O1 118.93 (9)
H9A—C9—H9C 109.5 O2—S1—N1 110.86 (6)
H9B—C9—H9C 109.5 O1—S1—N1 103.75 (6)
O3—C10—C11 121.73 (19) O2—S1—C1 108.15 (6)
O3—C10—C7 120.14 (16) O1—S1—C1 109.07 (6)
C11—C10—C7 117.9 (2) N1—S1—C1 105.24 (7)
C6—C1—C2—C3 0.1 (2) N4—C12—N1—S1 −172.23 (12)
S1—C1—C2—C3 177.95 (12) C3—C4—N2—N3 −168.07 (14)
C1—C2—C3—C4 1.0 (2) C5—C4—N2—N3 12.8 (2)
C2—C3—C4—C5 −0.8 (2) C8—C7—N3—N2 −173.28 (15)
C2—C3—C4—N2 −179.93 (14) C10—C7—N3—N2 6.1 (3)
C3—C4—C5—C6 −0.5 (2) C4—N2—N3—C7 −173.92 (15)
N2—C4—C5—C6 178.57 (14) C14—C13—N4—C12 0.5 (3)
C4—C5—C6—C1 1.6 (2) N5—C12—N4—C13 −1.8 (3)
C2—C1—C6—C5 −1.4 (2) N1—C12—N4—C13 178.52 (15)
S1—C1—C6—C5 −179.29 (12) N4—C12—N5—C15 1.9 (3)
N3—C7—C8—O4 164.74 (17) N1—C12—N5—C15 −178.47 (16)
C10—C7—C8—O4 −14.6 (3) C14—C15—N5—C12 −0.6 (3)
N3—C7—C8—C9 −12.8 (3) C12—N1—S1—O2 48.04 (14)
C10—C7—C8—C9 167.8 (2) C12—N1—S1—O1 176.80 (12)
N3—C7—C10—O3 −27.4 (3) C12—N1—S1—C1 −68.66 (15)
C8—C7—C10—O3 151.92 (17) C2—C1—S1—O2 4.63 (13)
N3—C7—C10—C11 146.9 (2) C6—C1—S1—O2 −177.48 (11)
C8—C7—C10—C11 −33.8 (3) C2—C1—S1—O1 −126.05 (12)
N4—C13—C14—C15 0.5 (3) C6—C1—S1—O1 51.84 (13)
C13—C14—C15—N5 −0.4 (3) C2—C1—S1—N1 123.16 (13)
N5—C12—N1—S1 8.0 (2) C6—C1—S1—N1 −58.95 (13)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N2—H2A···O3 0.86 2.01 2.654 (2) 131
C15—H15···O4i 0.93 2.46 3.262 (3) 144

Symmetry codes: (i) −x+1/2, y−3/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2450).

References

  1. Abbate, F., Casini, A., Owa, T., Scozzafava, A. & Supuran, C. T. (2004). Bioorg. Med. Chem. Lett.14, 217–223. [DOI] [PubMed]
  2. Badr, E. E. (2008). J. Dispersion Sci. Technol.29, 1143–1149.
  3. Bruker (2005). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Bruker (2008). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  6. Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  7. Gale, G. A., Kirtikara, K., Pittayakhajonwut, P., Sivichai, S., Thebtaranonth, Y., Thongpanchang, C. & Vichai, V. (2007). Pharmacol. Ther.115, 307–351. [DOI] [PubMed]
  8. Goyal, R. N. & Bhargava, S. (1989). Curr. Sci. (India), 58, 287–290.
  9. Hanafy, A., Uno, J., Mitani, H., Kang, Y. & Mikami, Y. (2007). Jpn. J. Med. Mycol.48, 47–50. [DOI] [PubMed]
  10. Novinson, T., Okabe, T., Robins, R. K. & Matthews, T. R. (1976). J. Med. Chem.19, 517–520. [DOI] [PubMed]
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Supuran, C. T., Casini, A. & Scozzafava, A. (2003). Med. Res. Rev.23, 535–558. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809018765/tk2450sup1.cif

e-65-o1397-sup1.cif (19.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809018765/tk2450Isup2.hkl

e-65-o1397-Isup2.hkl (196KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES