Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 May 7;65(Pt 6):o1225. doi: 10.1107/S1600536809016432

3-(2-Pyrid­yl)-5-(4-pyrid­yl)-4-(p-tol­yl)-1H-1,2,4-triazole

Lu-Tong Yuan a, Hai Zhang b, Zuo-Xiang Wang b, Zhi-Rong Qu b,*
PMCID: PMC2969765  PMID: 21583093

Abstract

In the mol­ecule of the title compound, C19H15N5, the dihedral angles formed by the plane of the triazole ring with those of the 2-pyridyl, 4-pyridyl and p-tolyl rings are 28.12 (10), 34.62 (10) and 71.43 (9)°, respectively. The crystal structure is consolidated by C—H⋯π hydrogen-bonding inter­actions and by π–π stacking inter­actions, with a centroid–centroid distance of 3.794 (4) Å.

Related literature

For the pharmaceutical and agricultural applications of triazoles, see: Grénman et al. (2003). For general background on the coordination chemistry of triazoles, see: Haasnoot (2000); Klingele & Brooker (2003); Beckmann & Brooker (2003). For the synthesis of the title compound, see: Erwin (1958).graphic file with name e-65-o1225-scheme1.jpg

Experimental

Crystal data

  • C19H15N5

  • M r = 313.36

  • Monoclinic, Inline graphic

  • a = 5.6104 (11) Å

  • b = 16.312 (3) Å

  • c = 16.902 (4) Å

  • β = 105.07 (3)°

  • V = 1493.6 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.20 × 0.20 × 0.20 mm

Data collection

  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) T min = 0.982, T max = 0.983

  • 13896 measured reflections

  • 2918 independent reflections

  • 1734 reflections with I > 2σ(I)

  • R int = 0.105

Refinement

  • R[F 2 > 2σ(F 2)] = 0.071

  • wR(F 2) = 0.159

  • S = 1.07

  • 2918 reflections

  • 217 parameters

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.26 e Å−3

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL/PC (Sheldrick, 2008); software used to prepare material for publication: PRPKAPPA (Ferguson, 1999).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809016432/rz2317sup1.cif

e-65-o1225-sup1.cif (17.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809016432/rz2317Isup2.hkl

e-65-o1225-Isup2.hkl (143.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11ACg1i 0.93 2.79 3.630 (4) 150
C12—H12ACg3 0.93 2.90 3.532 (4) 126
C14—H14ACg1ii 0.93 2.76 3.628 (4) 156
C18—H18ACg2iii 0.93 2.78 3.615 (4) 149
C19—H19CCg3iv 0.96 3.08 3.698 (4) 124

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic. Cg1, Cg2 and Cg3 are the centroids of the N1–N3/C1,C2, N4/C3–C7 and N5/C8–C12 rings, respectively.

Table 2. π–π Stacking interaction geometry.

Group 1 Group 2 α (°) DCC (Å) τ (°)
Cg2 Cg2i 0.0 3.794 (3) 31.30

Symmetry code: (i) 3 − x, 1 − y, 2 − z. α is the dihedral angle between the planes, DCC is the length of the centroid–centroid vector, τ is the angle subtended by the plane normal to CC and Cg2 is the centroid of ring N5/C8–C12.

Acknowledgments

This work was supported by the Technical Fund Financing Projects (grant Nos. 9207042464 and 9207041482) from Southeast University to ZRQ.

supplementary crystallographic information

Comment

The main interest in triazoles lies in their pharmaceutical and agricultural applications (Grénman et al., 2003). The utilization of 1,2,4-triazole derivatives as bridging ligands in transition-metal complexes is currently of considerable interest because of the fact that it represents a hybrid of pyrazole and imidazole with regard to the arrangement of its heteroatoms, thus promising a rich and versatile coordination chemistry (Haasnoot, 2000; Klingele & Brooker, 2003; Beckmann & Brooker, 2003). We report here the crystal structure of the title compound, which is a substituted 1,2,4-triazole synthesized by the reaction of 4,4'-dimethylphenylphosphazoanilide with N-(2-pyridyl)-N'-(4-pyridyl)hydrazine in o-dichlorobenzene (Erwin, 1958).

The structure of the title compound (Fig. 1) features a dihedral angle of 28.12 (10)° between the 2-pyridyl and triazole rings, a dihedral angle of 34.62 (10)° between the 4-pyridyl and triazole rings, and a dihedral angle of 71.43 (9) ° between the p-tolyl and the triazole rings. The crystal structure is stabilized by C—H···π hydrogen interactions (Table 1) and π–π stacking interactions (Table 2).

Experimental

A mixture of 4,4'-dimethylphenylphosphazoanilide (3.60 g, 14.9 mmol) and N-(2-pyridyl)-N'-(4-pyridyl)hydrazine (3.00 g, 12.4 mmol) in o-dichlorobenzene (30 ml) was refluxed for 3 h, then conc. HCl (5 ml) and H2O (5 ml) were added to the system after the removal of the solvent under reduced pressure. After refluxing for 1 h, the mixture was filtered and the fietrate was neutralized with K2CO3 to pH 8–9 to achieve a white solid. Colourless crystals of the title compound suitable for X-ray diffraction were obtained by slow evaporation of an ethanol solution.

Refinement

Positional parameters of all the H atoms were calculated geometrically and were allowed to ride on the C atoms to which they are bonded with, C—H = 0.93 Å (aromatic) or 0.96 Å (methyl), and with Uiso(H) = 1.2Ueq(Caromatic) or Uiso(H) = 1.5Ueq(Cmethyl).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level.

Crystal data

C19H15N5 F(000) = 656
Mr = 313.36 Dx = 1.394 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 1730 reflections
a = 5.6104 (11) Å θ = 3.0–27.5°
b = 16.312 (3) Å µ = 0.09 mm1
c = 16.902 (4) Å T = 293 K
β = 105.07 (3)° Prism, colourless
V = 1493.6 (6) Å3 0.20 × 0.20 × 0.20 mm
Z = 4

Data collection

Rigaku SCXmini diffractometer 2918 independent reflections
Radiation source: fine-focus sealed tube 1734 reflections with I > 2σ(I)
graphite Rint = 0.105
CCD_Profile_fitting scans θmax = 26.0°, θmin = 3.5°
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) h = −6→6
Tmin = 0.982, Tmax = 0.983 k = −20→20
13896 measured reflections l = −20→20

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.071 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.159 H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0527P)2 + 0.6603P] where P = (Fo2 + 2Fc2)/3
2918 reflections (Δ/σ)max < 0.001
217 parameters Δρmax = 0.32 e Å3
0 restraints Δρmin = −0.26 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 1.0349 (6) 0.66367 (18) 0.84606 (18) 0.0362 (8)
C2 0.7141 (5) 0.73132 (19) 0.78095 (17) 0.0349 (7)
C3 0.5160 (6) 0.79095 (19) 0.75540 (17) 0.0360 (8)
C4 0.3738 (7) 0.9211 (2) 0.7518 (2) 0.0508 (9)
H4B 0.4004 0.9757 0.7673 0.061*
C5 0.1503 (6) 0.9004 (2) 0.7039 (2) 0.0480 (9)
H5B 0.0273 0.9396 0.6870 0.058*
C6 0.1094 (6) 0.8215 (2) 0.6810 (2) 0.0522 (10)
H6A −0.0430 0.8056 0.6478 0.063*
C7 0.2918 (6) 0.7655 (2) 0.70656 (19) 0.0453 (8)
H7A 0.2658 0.7108 0.6914 0.054*
C8 1.2577 (6) 0.63716 (17) 0.90639 (19) 0.0346 (7)
C9 1.4365 (6) 0.59609 (18) 0.8799 (2) 0.0418 (8)
H9A 1.4153 0.5859 0.8243 0.050*
C10 1.6455 (6) 0.5704 (2) 0.9356 (2) 0.0471 (9)
H10A 1.7648 0.5428 0.9167 0.056*
C11 1.5079 (6) 0.6215 (2) 1.0397 (2) 0.0455 (9)
H11A 1.5303 0.6301 1.0956 0.055*
C12 1.2956 (6) 0.64888 (19) 0.98817 (19) 0.0406 (8)
H12A 1.1774 0.6754 1.0086 0.049*
C13 0.9579 (5) 0.79279 (17) 0.91387 (17) 0.0310 (7)
C14 1.1613 (6) 0.84102 (19) 0.92208 (19) 0.0407 (8)
H14A 1.2539 0.8385 0.8838 0.049*
C15 1.2267 (6) 0.8930 (2) 0.9874 (2) 0.0481 (9)
H15A 1.3659 0.9258 0.9935 0.058*
C16 1.0920 (6) 0.89820 (18) 1.04469 (19) 0.0421 (8)
C17 0.8873 (6) 0.84945 (19) 1.03423 (19) 0.0429 (8)
H17A 0.7930 0.8520 1.0720 0.052*
C18 0.8200 (5) 0.79711 (19) 0.96907 (17) 0.0362 (7)
H18A 0.6802 0.7645 0.9625 0.043*
C19 1.1735 (8) 0.9536 (2) 1.1171 (2) 0.0689 (12)
H19A 1.3198 0.9824 1.1138 0.103*
H19B 1.2082 0.9216 1.1665 0.103*
H19C 1.0450 0.9923 1.1176 0.103*
N1 0.9349 (5) 0.62309 (16) 0.77955 (16) 0.0446 (7)
N2 0.7292 (5) 0.66575 (17) 0.73835 (16) 0.0443 (7)
N3 0.9026 (4) 0.73278 (14) 0.84991 (14) 0.0324 (6)
N4 0.5604 (5) 0.86832 (16) 0.77874 (16) 0.0453 (7)
N5 1.6862 (5) 0.58304 (17) 1.01564 (19) 0.0508 (8)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.044 (2) 0.0345 (17) 0.0313 (17) −0.0008 (15) 0.0120 (15) −0.0043 (14)
C2 0.0358 (18) 0.0410 (18) 0.0263 (16) −0.0069 (14) 0.0054 (14) −0.0005 (15)
C3 0.0404 (18) 0.0421 (19) 0.0238 (15) −0.0069 (15) 0.0054 (14) −0.0014 (14)
C4 0.056 (2) 0.040 (2) 0.051 (2) 0.0005 (17) 0.0052 (19) 0.0049 (17)
C5 0.043 (2) 0.050 (2) 0.047 (2) 0.0048 (17) 0.0052 (17) 0.0093 (17)
C6 0.040 (2) 0.062 (3) 0.047 (2) −0.0066 (18) −0.0017 (17) 0.0049 (19)
C7 0.046 (2) 0.0430 (19) 0.0419 (19) −0.0092 (16) 0.0016 (16) −0.0041 (16)
C8 0.0388 (19) 0.0289 (16) 0.0374 (18) −0.0048 (13) 0.0122 (15) 0.0015 (14)
C9 0.049 (2) 0.0355 (18) 0.0425 (19) −0.0032 (16) 0.0153 (17) −0.0008 (15)
C10 0.048 (2) 0.0399 (19) 0.059 (2) −0.0016 (16) 0.0227 (19) 0.0037 (17)
C11 0.045 (2) 0.047 (2) 0.042 (2) −0.0038 (17) 0.0087 (17) −0.0008 (16)
C12 0.0382 (19) 0.047 (2) 0.0371 (18) 0.0025 (15) 0.0114 (15) 0.0003 (16)
C13 0.0326 (17) 0.0314 (16) 0.0264 (15) −0.0044 (13) 0.0030 (13) −0.0009 (13)
C14 0.0410 (19) 0.0423 (19) 0.0382 (18) −0.0073 (15) 0.0094 (15) −0.0019 (16)
C15 0.044 (2) 0.0390 (19) 0.055 (2) −0.0101 (16) 0.0024 (18) −0.0039 (17)
C16 0.055 (2) 0.0289 (17) 0.0324 (18) 0.0048 (16) −0.0056 (17) 0.0024 (14)
C17 0.056 (2) 0.0401 (19) 0.0331 (18) 0.0051 (16) 0.0132 (16) −0.0022 (15)
C18 0.0342 (17) 0.0413 (18) 0.0317 (17) −0.0066 (14) 0.0060 (14) −0.0033 (14)
C19 0.098 (3) 0.045 (2) 0.046 (2) 0.005 (2) −0.013 (2) −0.0117 (18)
N1 0.0515 (18) 0.0429 (16) 0.0381 (15) −0.0024 (13) 0.0093 (14) −0.0070 (13)
N2 0.0477 (17) 0.0464 (16) 0.0360 (15) −0.0020 (14) 0.0057 (13) −0.0070 (14)
N3 0.0372 (15) 0.0337 (14) 0.0257 (13) −0.0043 (11) 0.0070 (11) −0.0043 (11)
N4 0.0505 (18) 0.0413 (16) 0.0396 (16) −0.0045 (14) 0.0036 (14) −0.0006 (13)
N5 0.0429 (17) 0.0485 (18) 0.060 (2) −0.0045 (14) 0.0115 (15) 0.0045 (15)

Geometric parameters (Å, °)

C1—N1 1.300 (4) C10—H10A 0.9300
C1—N3 1.361 (4) C11—N5 1.331 (4)
C1—C8 1.458 (4) C11—C12 1.356 (4)
C2—N2 1.304 (4) C11—H11A 0.9300
C2—N3 1.355 (3) C12—H12A 0.9300
C2—C3 1.456 (4) C13—C18 1.360 (4)
C3—N4 1.326 (4) C13—C14 1.363 (4)
C3—C7 1.377 (4) C13—N3 1.431 (3)
C4—N4 1.340 (4) C14—C15 1.365 (4)
C4—C5 1.347 (4) C14—H14A 0.9300
C4—H4B 0.9300 C15—C16 1.376 (5)
C5—C6 1.345 (5) C15—H15A 0.9300
C5—H5B 0.9300 C16—C17 1.370 (5)
C6—C7 1.356 (5) C16—C19 1.494 (4)
C6—H6A 0.9300 C17—C18 1.367 (4)
C7—H7A 0.9300 C17—H17A 0.9300
C8—C12 1.356 (4) C18—H18A 0.9300
C8—C9 1.375 (4) C19—H19A 0.9600
C9—C10 1.365 (4) C19—H19B 0.9600
C9—H9A 0.9300 C19—H19C 0.9600
C10—N5 1.328 (4) N1—N2 1.372 (4)
N1—C1—N3 110.2 (3) C11—C12—H12A 120.4
N1—C1—C8 123.6 (3) C8—C12—H12A 120.4
N3—C1—C8 126.3 (3) C18—C13—C14 120.7 (3)
N2—C2—N3 109.9 (3) C18—C13—N3 120.2 (3)
N2—C2—C3 122.6 (3) C14—C13—N3 118.9 (3)
N3—C2—C3 127.5 (3) C13—C14—C15 118.9 (3)
N4—C3—C7 122.5 (3) C13—C14—H14A 120.6
N4—C3—C2 118.5 (3) C15—C14—H14A 120.6
C7—C3—C2 119.0 (3) C14—C15—C16 121.7 (3)
N4—C4—C5 124.5 (3) C14—C15—H15A 119.1
N4—C4—H4B 117.8 C16—C15—H15A 119.1
C5—C4—H4B 117.8 C17—C16—C15 117.9 (3)
C6—C5—C4 118.4 (3) C17—C16—C19 121.6 (3)
C6—C5—H5B 120.8 C15—C16—C19 120.4 (3)
C4—C5—H5B 120.8 C18—C17—C16 120.9 (3)
C5—C6—C7 119.6 (3) C18—C17—H17A 119.6
C5—C6—H6A 120.2 C16—C17—H17A 119.6
C7—C6—H6A 120.2 C13—C18—C17 119.9 (3)
C6—C7—C3 118.9 (3) C13—C18—H18A 120.1
C6—C7—H7A 120.5 C17—C18—H18A 120.1
C3—C7—H7A 120.5 C16—C19—H19A 109.5
C12—C8—C9 117.8 (3) C16—C19—H19B 109.5
C12—C8—C1 123.3 (3) H19A—C19—H19B 109.5
C9—C8—C1 118.8 (3) C16—C19—H19C 109.5
C10—C9—C8 119.5 (3) H19A—C19—H19C 109.5
C10—C9—H9A 120.2 H19B—C19—H19C 109.5
C8—C9—H9A 120.2 C1—N1—N2 107.3 (3)
N5—C10—C9 123.0 (3) C2—N2—N1 107.6 (2)
N5—C10—H10A 118.5 C2—N3—C1 104.9 (2)
C9—C10—H10A 118.5 C2—N3—C13 129.0 (2)
N5—C11—C12 124.3 (3) C1—N3—C13 126.1 (2)
N5—C11—H11A 117.9 C3—N4—C4 116.1 (3)
C12—C11—H11A 117.9 C10—N5—C11 116.2 (3)
C11—C12—C8 119.2 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C11—H11A···Cg1i 0.93 2.79 3.630 (4) 150
C12—H12A···Cg3 0.93 2.90 3.532 (4) 126
C14—H14A···Cg1ii 0.93 2.76 3.628 (4) 156
C18—H18A···Cg2iii 0.93 2.78 3.615 (4) 149
C19—H19C···Cg3iv 0.96 3.08 3.698 (4) 124

Symmetry codes: (i) x+1, −y−3/2, z−1/2; (ii) x+1, y, z; (iii) x−1, y, z; (iv) −x, −y, −z.

Table 2 π-π Stacking interaction geometry (α is the dihedral angle between the planes, DCC is the length of the centroid–centroid vector, τ is the angle subtended by the plane normal to CC. Cg2 is the centroid of ring N5/C8–C12)

Group 1 Group 2 α (°) DCC (Å) τ (°)
Cg2 Cg2i 0.0 3.794 (3) 31.30

Symmetry code: (i) 3-x, 1-y, 2-z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2317).

References

  1. Beckmann, U. & Brooker, S. (2003). Coord. Chem. Rev.245, 17–29.
  2. Erwin, K. (1958). J. Org. Chem.23, 1086–1087.
  3. Ferguson, G. (1999). PRPKAPPA University of Guelph, Canada.
  4. Grénman, H., Salmi, T., Mäki-Arvela, P., Wärnå, J., Eränen, K., Tirronen, E. & Pehkonen, A. (2003). Org. Process Res. Dev.7, 942–950.
  5. Haasnoot, J. G. (2000). Coord. Chem. Rev 200202, 131–185.
  6. Klingele, M. H. & Brooker, S. (2003). Coord. Chem. Rev.241, 119–132.
  7. Rigaku (2005). CrystalClear Rigaku Corporation, Tokyo, Japan.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809016432/rz2317sup1.cif

e-65-o1225-sup1.cif (17.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809016432/rz2317Isup2.hkl

e-65-o1225-Isup2.hkl (143.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES