Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 May 7;65(Pt 6):m623. doi: 10.1107/S1600536809016286

Poly[aqua[μ2-1,2-bis­(imidazol-1-yl­methyl)benzene-κ2 N 3:N 3′](μ2-5-bromo­benzene-1,3-dicarboxyl­ato-κ3 O 1,O 1′:O 3)nickel(II)]

Kun Zhu a, Hong Chen a, Guang-Xiang Liu a,*
PMCID: PMC2969767  PMID: 21582993

Abstract

In the two-dimensional title coordination polymer, [Ni(C8H3BrO4)(C14H14N4)(H2O)]n, the NiII atom adopts a distorted octa­hedral geometry, being ligated by three O atoms from two different 5-bromo­benzene-1,3-dicarboxyl­ate ligands, two N atoms from two 1,2-bis­(imidazol-1-ylmeth­yl)benzene ligands and one coordinated water mol­ecule. The Ni atoms are bridged by the 5-bromo­benzene-1,3-dicarboxyl­ate ligands, forming chains, which are further linked by 1,2-bis­(imidazol-1-ylmeth­yl)benzene, generating a layer structure parallel to (001).

Related literature

For general background to self-assembly coordination polymers with metal ions and bis­(imidazole) ligands inter­connected by flexible spacers, see: Qi et al. (2008); Liu et al. (2009). For the role played by different organic anions in directing the final structure and topology, see: Hu et al. (2008). For related structures, see: Liu et al. (2008).graphic file with name e-65-0m623-scheme1.jpg

Experimental

Crystal data

  • [Ni(C8H3BrO4)(C14H14N4)(H2O)]

  • M r = 558.03

  • Triclinic, Inline graphic

  • a = 9.1374 (12) Å

  • b = 10.1394 (14) Å

  • c = 12.9642 (18) Å

  • α = 80.046 (2)°

  • β = 83.233 (2)°

  • γ = 70.004 (2)°

  • V = 1109.5 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.72 mm−1

  • T = 293 K

  • 0.26 × 0.20 × 0.18 mm

Data collection

  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS: Bruker, 1997) T min = 0.538, T max = 0.641

  • 8172 measured reflections

  • 4055 independent reflections

  • 3029 reflections with I > 2σ(I)

  • R int = 0.029

Refinement

  • R[F 2 > 2σ(F 2)] = 0.040

  • wR(F 2) = 0.085

  • S = 1.04

  • 4055 reflections

  • 291 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.64 e Å−3

  • Δρmin = −1.12 e Å−3

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809016286/at2774sup1.cif

e-65-0m623-sup1.cif (24.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809016286/at2774Isup2.hkl

e-65-0m623-Isup2.hkl (198.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 20731004), the Natural Science Foundation for Outstanding Scholars of Anhui Province, China (grant No. 044-J-04011) and the Natural Science Foundation of Education Commission of Anhui Province, China (No. KJ2008B004).

supplementary crystallographic information

Comment

The self-assembly of coordination polymers has attracted considerable attention in the past decade. This arises mainly for their various intriguing topological structures and their potential applications in material chemistry. Recently significant work has been carried out by using metal ions assembly with bis(imidazole) ligands interconnected by flexible spacers (Qi et al., 2008; Liu et al., 2009). From careful inspection of the reported cases, we found that: the ligand exhibits a special ability to formulate the compounds, and different organic anions play an important role in directing the final structures and topologies (Hu et al., 2008). Inspired by the aftermentioned considerations, 1,2-bis(imidazol-1-ylmethyl)benzene was chosen as neutral ligands, 5-bromobenzene-1,3-dicarboxylate were chosen as co-ligands to construct the title complex (I).

The title coordination polymer is a two-dimensional layer coordination polymer. The NiII atom adopts a distorted octahedral geometry, being ligated by three O atoms from two different 5-bromobenzene-1,3-dicarboxylate ligand, two N atoms from two 1,2-bis(imidazol-1-ylmethyl)benzene and one coordinated water molecule, as shown in Fig. 1. The Ni atoms are bridged by 5-bromobenzene-1,3-dicarboxylate ligand to form one-dimensional chain, which are further linked by 1,2-bis(imidazol-1-ylmethyl)benzene to generate a two-dimensional layer structure, as shown in Fig. 2.

Experimental

A mixture of Ni(NO3)2.6H2O (58.2 mg, 0.2 mmol), 5-bromobenzene-1,3-dicarboxylate acid (33.0 mg, 0.1 mmol), 1,2-bis(imidazol-1-ylmethyl)benzene (23.8 mg, 0.1 mmol), NaOH (8 mg, 0.2 mmol) and H2O (15 ml) was added in a Teflon-lined stainless steel vessel. The vessel was sealed and heated for 3 d at 433 K. After the mixture was slowly cooled to room temperature, green block crystals were obtained in the yield of ca 67% based on Ni.

Refinement

H atoms were positioned geometrically, with C—H = 0.93 and 0.96 Å for aromatic and methyl H atoms, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x = 1.5 for methyl H and x = 1.2 for aromatic H atoms. The deepest hole is located 1.12 Å from atom C16.

Figures

Fig. 1.

Fig. 1.

The asymmetric unit of the title compound, extended to show the Ni coordination. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity. [Symmetry code: (i) x - 1, y + 1, z; (ii) x, y - 1, z.]

Fig. 2.

Fig. 2.

The two-dimensional layer structure of the title compound.

Crystal data

[Ni(C8H3BrO4)(C14H14N4)(H2O)] Z = 2
Mr = 558.03 F(000) = 564
Triclinic, P1 Dx = 1.670 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 9.1374 (12) Å Cell parameters from 2114 reflections
b = 10.1394 (14) Å θ = 2.4–24.0°
c = 12.9642 (18) Å µ = 2.72 mm1
α = 80.046 (2)° T = 293 K
β = 83.233 (2)° Block, green
γ = 70.004 (2)° 0.26 × 0.20 × 0.18 mm
V = 1109.5 (3) Å3

Data collection

Bruker SMART APEX CCD area-detector diffractometer 4055 independent reflections
Radiation source: sealed tube 3029 reflections with I > 2σ(I)
graphite Rint = 0.029
φ and ω scans θmax = 25.5°, θmin = 1.6°
Absorption correction: multi-scan (SADABS: Bruker, 1997) h = −11→9
Tmin = 0.538, Tmax = 0.641 k = −12→11
8172 measured reflections l = −15→15

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.085 H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.029P)2 + 0.735P] where P = (Fo2 + 2Fc2)/3
4055 reflections (Δ/σ)max < 0.001
291 parameters Δρmax = 0.64 e Å3
0 restraints Δρmin = −1.12 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Ni1 −0.11002 (5) 0.18147 (4) 0.34656 (3) 0.02475 (13)
N1 0.1280 (3) 0.0814 (3) 0.3229 (2) 0.0286 (7)
N2 0.3530 (3) −0.0730 (3) 0.2776 (2) 0.0332 (7)
N3 0.4261 (3) −0.5489 (3) 0.3554 (2) 0.0372 (8)
N4 0.6546 (3) −0.7159 (3) 0.3708 (2) 0.0313 (7)
O1 −0.0886 (3) 0.3683 (2) 0.27370 (18) 0.0326 (6)
O2 −0.0881 (4) 0.4666 (3) 0.4146 (2) 0.0581 (9)
O3 −0.1442 (3) 0.9777 (2) 0.37521 (17) 0.0287 (5)
O4 −0.1529 (3) 1.0986 (2) 0.21699 (17) 0.0308 (6)
O1W −0.0840 (3) 0.2116 (3) 0.4966 (2) 0.0341 (7)
Br1 −0.14928 (6) 0.76345 (5) −0.06669 (3) 0.06060 (18)
C1 −0.0961 (4) 0.4705 (3) 0.3195 (3) 0.0282 (8)
C2 −0.1196 (4) 0.6114 (3) 0.2502 (3) 0.0251 (8)
C3 −0.1282 (4) 0.6229 (4) 0.1422 (3) 0.0291 (8)
H3 −0.1227 0.5444 0.1120 0.035*
C4 −0.1448 (4) 0.7516 (4) 0.0806 (3) 0.0306 (8)
C5 −0.1547 (4) 0.8709 (4) 0.1226 (3) 0.0309 (8)
H5 −0.1661 0.9569 0.0796 0.037*
C6 −0.1473 (4) 0.8599 (3) 0.2307 (3) 0.0239 (7)
C7 −0.1303 (4) 0.7308 (3) 0.2944 (3) 0.0242 (7)
H7 −0.1260 0.7240 0.3665 0.029*
C8 −0.1508 (4) 0.9869 (3) 0.2772 (3) 0.0247 (8)
C9 0.2459 (5) 0.1249 (4) 0.3411 (3) 0.0454 (11)
H9 0.2329 0.2076 0.3682 0.055*
C10 0.3845 (5) 0.0317 (4) 0.3144 (3) 0.0489 (11)
H10 0.4826 0.0376 0.3199 0.059*
C11 0.1973 (4) −0.0380 (4) 0.2842 (3) 0.0342 (9)
H11 0.1444 −0.0919 0.2638 0.041*
C12 0.4673 (4) −0.2047 (4) 0.2455 (3) 0.0468 (11)
H12A 0.4975 −0.2743 0.3074 0.056*
H12B 0.5601 −0.1848 0.2128 0.056*
C13 0.4039 (4) −0.2660 (4) 0.1699 (3) 0.0388 (10)
C14 0.4232 (5) −0.2198 (5) 0.0633 (4) 0.0578 (12)
H14 0.4746 −0.1540 0.0412 0.069*
C15 0.3664 (5) −0.2713 (5) −0.0108 (4) 0.060
H15 0.3765 −0.2380 −0.0819 0.072*
C16 0.2960 (4) −0.3706 (3) 0.0223 (3) 0.060
H16 0.2594 −0.4069 −0.0267 0.072*
C17 0.2782 (4) −0.4182 (3) 0.1269 (3) 0.0678 (15)
H17 0.2305 −0.4871 0.1477 0.081*
C18 0.3299 (4) −0.3658 (4) 0.2031 (3) 0.0427 (10)
C19 0.3027 (5) −0.4184 (4) 0.3173 (4) 0.0550 (12)
H19A 0.2961 −0.3452 0.3587 0.066*
H19B 0.2035 −0.4356 0.3275 0.066*
C20 0.5718 (4) −0.6006 (4) 0.3131 (3) 0.0400 (10)
H20 0.6095 −0.5598 0.2505 0.048*
C21 0.5557 (5) −0.7398 (4) 0.4541 (3) 0.0456 (10)
H21 0.5813 −0.8154 0.5082 0.055*
C22 0.4150 (5) −0.6367 (5) 0.4458 (3) 0.0491 (11)
H22 0.3280 −0.6278 0.4926 0.059*
H1WA −0.067 (5) 0.285 (5) 0.483 (3) 0.059 (16)*
H1WB −0.008 (5) 0.158 (4) 0.529 (3) 0.047 (14)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Ni1 0.0333 (3) 0.0136 (2) 0.0266 (2) −0.00590 (19) −0.00584 (19) −0.00212 (18)
N1 0.0322 (18) 0.0215 (16) 0.0319 (16) −0.0074 (14) −0.0049 (13) −0.0040 (13)
N2 0.0253 (18) 0.0315 (18) 0.0413 (18) −0.0055 (14) −0.0041 (14) −0.0079 (14)
N3 0.0277 (18) 0.0291 (18) 0.048 (2) −0.0014 (14) −0.0009 (15) −0.0063 (15)
N4 0.0332 (18) 0.0224 (17) 0.0362 (17) −0.0061 (14) −0.0031 (14) −0.0044 (14)
O1 0.0496 (16) 0.0163 (12) 0.0325 (13) −0.0115 (12) −0.0013 (12) −0.0046 (10)
O2 0.118 (3) 0.0240 (15) 0.0365 (16) −0.0248 (16) −0.0304 (17) 0.0041 (12)
O3 0.0397 (15) 0.0172 (12) 0.0281 (13) −0.0078 (11) −0.0057 (11) −0.0015 (10)
O4 0.0452 (16) 0.0179 (13) 0.0313 (13) −0.0116 (12) −0.0099 (11) −0.0011 (10)
O1W 0.0465 (19) 0.0231 (16) 0.0311 (15) −0.0087 (15) −0.0100 (13) −0.0006 (12)
Br1 0.1137 (5) 0.0440 (3) 0.0264 (2) −0.0292 (3) −0.0036 (2) −0.00487 (19)
C1 0.035 (2) 0.0182 (19) 0.032 (2) −0.0078 (16) −0.0067 (16) −0.0026 (15)
C2 0.0250 (19) 0.0179 (18) 0.0340 (19) −0.0079 (15) −0.0046 (15) −0.0045 (15)
C3 0.036 (2) 0.0230 (19) 0.0308 (19) −0.0107 (16) −0.0016 (16) −0.0076 (15)
C4 0.041 (2) 0.029 (2) 0.0225 (18) −0.0123 (17) −0.0039 (16) −0.0030 (15)
C5 0.043 (2) 0.0176 (18) 0.0308 (19) −0.0116 (17) −0.0045 (17) 0.0044 (15)
C6 0.0235 (19) 0.0167 (17) 0.0319 (19) −0.0069 (15) −0.0033 (15) −0.0031 (14)
C7 0.0260 (19) 0.0187 (18) 0.0283 (18) −0.0070 (15) −0.0077 (15) −0.0016 (14)
C8 0.0231 (19) 0.0146 (18) 0.035 (2) −0.0040 (14) −0.0050 (15) −0.0012 (15)
C9 0.047 (3) 0.037 (2) 0.062 (3) −0.018 (2) −0.005 (2) −0.018 (2)
C10 0.038 (3) 0.050 (3) 0.067 (3) −0.022 (2) −0.004 (2) −0.016 (2)
C11 0.030 (2) 0.029 (2) 0.046 (2) −0.0084 (17) −0.0084 (17) −0.0067 (17)
C12 0.026 (2) 0.046 (3) 0.063 (3) 0.0006 (19) −0.003 (2) −0.018 (2)
C13 0.031 (2) 0.035 (2) 0.041 (2) 0.0059 (18) −0.0073 (18) −0.0122 (19)
C14 0.063 (3) 0.037 (3) 0.056 (3) 0.003 (2) −0.004 (2) −0.001 (2)
C15 0.059 0.050 0.054 0.015 −0.024 −0.016
C16 0.059 0.050 0.054 0.015 −0.024 −0.016
C17 0.038 (3) 0.050 (3) 0.115 (5) −0.002 (2) −0.015 (3) −0.029 (3)
C18 0.025 (2) 0.034 (2) 0.061 (3) 0.0076 (18) −0.0108 (19) −0.013 (2)
C19 0.032 (2) 0.039 (3) 0.079 (3) 0.003 (2) 0.007 (2) −0.003 (2)
C20 0.035 (2) 0.032 (2) 0.045 (2) −0.0026 (19) 0.0000 (19) −0.0001 (19)
C21 0.049 (3) 0.044 (3) 0.040 (2) −0.015 (2) −0.002 (2) 0.0038 (19)
C22 0.044 (3) 0.054 (3) 0.046 (3) −0.016 (2) 0.005 (2) −0.005 (2)

Geometric parameters (Å, °)

Ni1—O1 2.027 (2) C4—C5 1.381 (5)
Ni1—N4i 2.057 (3) C5—C6 1.395 (5)
Ni1—N1 2.072 (3) C5—H5 0.9300
Ni1—O1W 2.073 (3) C6—C7 1.392 (4)
Ni1—O4ii 2.133 (2) C6—C8 1.503 (4)
Ni1—O3ii 2.157 (2) C7—H7 0.9300
Ni1—C8ii 2.456 (3) C8—Ni1iv 2.456 (3)
N1—C11 1.315 (4) C9—C10 1.345 (5)
N1—C9 1.354 (4) C9—H9 0.9300
N2—C11 1.339 (4) C10—H10 0.9300
N2—C10 1.361 (5) C11—H11 0.9300
N2—C12 1.478 (4) C12—C13 1.508 (5)
N3—C20 1.341 (4) C12—H12A 0.9700
N3—C22 1.360 (5) C12—H12B 0.9700
N3—C19 1.466 (5) C13—C18 1.383 (6)
N4—C20 1.314 (4) C13—C14 1.392 (6)
N4—C21 1.368 (5) C14—C15 1.393 (6)
N4—Ni1iii 2.057 (3) C14—H14 0.9300
O1—C1 1.260 (4) C15—C16 1.357 (6)
O2—C1 1.237 (4) C15—H15 0.9300
O3—C8 1.264 (4) C16—C17 1.368 (6)
O3—Ni1iv 2.157 (2) C16—H16 0.9300
O4—C8 1.255 (4) C17—C18 1.395 (5)
O4—Ni1iv 2.133 (2) C17—H17 0.9300
O1W—H1WA 0.80 (5) C18—C19 1.507 (6)
O1W—H1WB 0.82 (4) C19—H19A 0.9700
Br1—C4 1.897 (3) C19—H19B 0.9700
C1—C2 1.512 (5) C20—H20 0.9300
C2—C3 1.394 (4) C21—C22 1.353 (5)
C2—C7 1.396 (4) C21—H21 0.9300
C3—C4 1.377 (5) C22—H22 0.9300
C3—H3 0.9300
O1—Ni1—N4i 88.51 (11) C6—C7—C2 120.1 (3)
O1—Ni1—N1 90.67 (10) C6—C7—H7 119.9
N4i—Ni1—N1 178.90 (11) C2—C7—H7 119.9
O1—Ni1—O1W 95.91 (11) O4—C8—O3 121.2 (3)
N4i—Ni1—O1W 87.85 (12) O4—C8—C6 118.9 (3)
N1—Ni1—O1W 91.50 (11) O3—C8—C6 119.8 (3)
O1—Ni1—O4ii 100.66 (9) O4—C8—Ni1iv 60.26 (16)
N4i—Ni1—O4ii 90.21 (10) O3—C8—Ni1iv 61.33 (16)
N1—Ni1—O4ii 90.66 (10) C6—C8—Ni1iv 170.6 (2)
O1W—Ni1—O4ii 163.26 (11) C10—C9—N1 110.4 (3)
O1—Ni1—O3ii 162.21 (9) C10—C9—H9 124.8
N4i—Ni1—O3ii 91.35 (10) N1—C9—H9 124.8
N1—Ni1—O3ii 89.66 (10) C9—C10—N2 106.4 (3)
O1W—Ni1—O3ii 101.87 (10) C9—C10—H10 126.8
O4ii—Ni1—O3ii 61.55 (9) N2—C10—H10 126.8
O1—Ni1—C8ii 131.29 (10) N1—C11—N2 112.2 (3)
N4i—Ni1—C8ii 93.07 (11) N1—C11—H11 123.9
N1—Ni1—C8ii 88.03 (11) N2—C11—H11 123.9
O1W—Ni1—C8ii 132.80 (12) N2—C12—C13 112.5 (3)
O4ii—Ni1—C8ii 30.73 (9) N2—C12—H12A 109.1
O3ii—Ni1—C8ii 30.95 (9) C13—C12—H12A 109.1
C11—N1—C9 104.8 (3) N2—C12—H12B 109.1
C11—N1—Ni1 127.0 (2) C13—C12—H12B 109.1
C9—N1—Ni1 128.2 (2) H12A—C12—H12B 107.8
C11—N2—C10 106.2 (3) C18—C13—C14 120.0 (4)
C11—N2—C12 126.8 (3) C18—C13—C12 122.4 (4)
C10—N2—C12 126.9 (3) C14—C13—C12 117.6 (4)
C20—N3—C22 106.9 (3) C15—C14—C13 120.7 (5)
C20—N3—C19 127.8 (3) C15—C14—H14 119.7
C22—N3—C19 125.2 (3) C13—C14—H14 119.7
C20—N4—C21 105.2 (3) C16—C15—C14 119.0 (4)
C20—N4—Ni1iii 125.5 (3) C16—C15—H15 120.5
C21—N4—Ni1iii 128.8 (3) C14—C15—H15 120.5
C1—O1—Ni1 124.9 (2) C15—C16—C17 120.9 (3)
C8—O3—Ni1iv 87.72 (19) C15—C16—H16 119.6
C8—O4—Ni1iv 89.01 (19) C17—C16—H16 119.6
Ni1—O1W—H1WA 99 (3) C16—C17—C18 121.5 (3)
Ni1—O1W—H1WB 120 (3) C16—C17—H17 119.3
H1WA—O1W—H1WB 104 (4) C18—C17—H17 119.2
O2—C1—O1 126.4 (3) C13—C18—C17 118.0 (4)
O2—C1—C2 117.8 (3) C13—C18—C19 122.7 (4)
O1—C1—C2 115.9 (3) C17—C18—C19 119.3 (4)
C3—C2—C7 119.6 (3) N3—C19—C18 112.9 (3)
C3—C2—C1 120.7 (3) N3—C19—H19A 109.0
C7—C2—C1 119.8 (3) C18—C19—H19A 109.0
C4—C3—C2 119.3 (3) N3—C19—H19B 109.0
C4—C3—H3 120.3 C18—C19—H19B 109.0
C2—C3—H3 120.3 H19A—C19—H19B 107.8
C3—C4—C5 122.1 (3) N4—C20—N3 111.8 (3)
C3—C4—Br1 118.7 (2) N4—C20—H20 124.1
C5—C4—Br1 119.3 (3) N3—C20—H20 124.1
C4—C5—C6 118.7 (3) C22—C21—N4 109.7 (4)
C4—C5—H5 120.7 C22—C21—H21 125.1
C6—C5—H5 120.7 N4—C21—H21 125.1
C7—C6—C5 120.2 (3) C21—C22—N3 106.4 (4)
C7—C6—C8 120.3 (3) C21—C22—H22 126.8
C5—C6—C8 119.5 (3) N3—C22—H22 126.8
O1—Ni1—N1—C11 −131.0 (3) C7—C6—C8—O3 −2.7 (5)
N4i—Ni1—N1—C11 −173 (47) C5—C6—C8—O3 179.9 (3)
O1W—Ni1—N1—C11 133.1 (3) C7—C6—C8—Ni1iv 91.6 (15)
O4ii—Ni1—N1—C11 −30.3 (3) C5—C6—C8—Ni1iv −85.7 (15)
O3ii—Ni1—N1—C11 31.2 (3) C11—N1—C9—C10 −0.5 (5)
C8ii—Ni1—N1—C11 0.3 (3) Ni1—N1—C9—C10 −179.1 (3)
O1—Ni1—N1—C9 47.3 (3) N1—C9—C10—N2 0.4 (5)
N4i—Ni1—N1—C9 5(6) C11—N2—C10—C9 −0.1 (5)
O1W—Ni1—N1—C9 −48.6 (3) C12—N2—C10—C9 −175.4 (4)
O4ii—Ni1—N1—C9 148.0 (3) C9—N1—C11—N2 0.5 (4)
O3ii—Ni1—N1—C9 −150.5 (3) Ni1—N1—C11—N2 179.1 (2)
C8ii—Ni1—N1—C9 178.6 (3) C10—N2—C11—N1 −0.2 (4)
N4i—Ni1—O1—C1 73.7 (3) C12—N2—C11—N1 175.1 (3)
N1—Ni1—O1—C1 −105.6 (3) C11—N2—C12—C13 29.1 (5)
O1W—Ni1—O1—C1 −14.0 (3) C10—N2—C12—C13 −156.5 (4)
O4ii—Ni1—O1—C1 163.6 (3) N2—C12—C13—C18 −91.9 (4)
O3ii—Ni1—O1—C1 163.4 (3) N2—C12—C13—C14 88.7 (4)
C8ii—Ni1—O1—C1 166.5 (3) C18—C13—C14—C15 1.1 (6)
Ni1—O1—C1—O2 14.5 (5) C12—C13—C14—C15 −179.5 (3)
Ni1—O1—C1—C2 −164.5 (2) C13—C14—C15—C16 −2.1 (6)
O2—C1—C2—C3 179.4 (3) C14—C15—C16—C17 1.2 (5)
O1—C1—C2—C3 −1.5 (5) C15—C16—C17—C18 0.6 (3)
O2—C1—C2—C7 0.5 (5) C14—C13—C18—C17 0.7 (5)
O1—C1—C2—C7 179.6 (3) C12—C13—C18—C17 −178.7 (3)
C7—C2—C3—C4 0.9 (5) C14—C13—C18—C19 −178.9 (3)
C1—C2—C3—C4 −178.0 (3) C12—C13—C18—C19 1.7 (5)
C2—C3—C4—C5 −0.6 (5) C16—C17—C18—C13 −1.6 (4)
C2—C3—C4—Br1 177.9 (3) C16—C17—C18—C19 178.0 (2)
C3—C4—C5—C6 0.1 (6) C20—N3—C19—C18 20.2 (6)
Br1—C4—C5—C6 −178.4 (3) C22—N3—C19—C18 −163.9 (4)
C4—C5—C6—C7 0.0 (5) C13—C18—C19—N3 −94.0 (5)
C4—C5—C6—C8 177.3 (3) C17—C18—C19—N3 86.4 (4)
C5—C6—C7—C2 0.4 (5) C21—N4—C20—N3 0.6 (4)
C8—C6—C7—C2 −177.0 (3) Ni1iii—N4—C20—N3 −172.4 (2)
C3—C2—C7—C6 −0.8 (5) C22—N3—C20—N4 −0.1 (4)
C1—C2—C7—C6 178.1 (3) C19—N3—C20—N4 176.4 (4)
Ni1iv—O4—C8—O3 7.4 (3) C20—N4—C21—C22 −0.9 (4)
Ni1iv—O4—C8—C6 −169.3 (3) Ni1iii—N4—C21—C22 171.8 (3)
Ni1iv—O3—C8—O4 −7.4 (3) N4—C21—C22—N3 0.8 (5)
Ni1iv—O3—C8—C6 169.3 (3) C20—N3—C22—C21 −0.5 (4)
C7—C6—C8—O4 174.1 (3) C19—N3—C22—C21 −177.1 (4)
C5—C6—C8—O4 −3.3 (5)

Symmetry codes: (i) x−1, y+1, z; (ii) x, y−1, z; (iii) x+1, y−1, z; (iv) x, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2774).

References

  1. Bruker (1997). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Hu, T.-L., Zou, R.-Q., Li, J.-R. & Bu, X.-H. (2008). Dalton Trans pp. 1302–1311. [DOI] [PubMed]
  3. Liu, G.-X., Huang, R.-Y., Xu, H., Kong, X.-J., Huang, L.-F., Zhu, K. & Ren, X.-M. (2008). Polyhedron, 27, 2327–2336.
  4. Liu, G.-X., Zhu, K., Chen, H., Huang, R.-Y., Xu, H. & Ren, X.-M. (2009). Inorg. Chim. Acta, 362, 1605–1610.
  5. Qi, Y., Chi, Y. X. & Zheng, J. M. (2008). Cryst. Growth Des 8, 606–611.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809016286/at2774sup1.cif

e-65-0m623-sup1.cif (24.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809016286/at2774Isup2.hkl

e-65-0m623-Isup2.hkl (198.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES