Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 May 20;65(Pt 6):o1348. doi: 10.1107/S1600536809018297

(2S)-Methyl 2-(4-chloro­benzene­sulfon­amido)-4-(methyl­sulfan­yl)butanoate

Tayyaba Syed a, Shahid Hameed a,*, Peter G Jones b
PMCID: PMC2969768  PMID: 21583200

Abstract

The enanti­omerically pure title compound, C12H16ClNO4S2, contains a pyramidal N atom with an S—N bond length of 1.6306 (15) Å. Mol­ecules are linked to form chains parallel to the a axis by classical N—H⋯O hydrogen bonding involving a sulfonyl O atom, supported by three weak C—H⋯X inter­actions. (X = S, O).

Related literature

For the applications of esters in industry and as inter­mediates in the synthesis of heterocycles, see: Akhtar et al. (2007, 2008); Kashif et al. (2008); Serwar et al. (2009); Syed et al. (2009).graphic file with name e-65-o1348-scheme1.jpg

Experimental

Crystal data

  • C12H16ClNO4S2

  • M r = 337.83

  • Orthorhombic, Inline graphic

  • a = 5.1814 (3) Å

  • b = 12.6089 (8) Å

  • c = 23.2137 (13) Å

  • V = 1516.59 (16) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 4.92 mm−1

  • T = 100 K

  • 0.20 × 0.12 × 0.06 mm

Data collection

  • Oxford Diffraction Xcalibur Nova A diffractometer

  • Absorption correction: multi-scan (CrysAlis Pro; Oxford Diffraction, 2008) T min = 0.548, T max = 1.000 (expected range = 0.408–0.744)

  • 14469 measured reflections

  • 3093 independent reflections

  • 3027 reflections with I > 2σ(I)

  • R int = 0.033

Refinement

  • R[F 2 > 2σ(F 2)] = 0.025

  • wR(F 2) = 0.062

  • S = 1.04

  • 3093 reflections

  • 187 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.35 e Å−3

  • Absolute structure: Flack (1983), 1250 Friedel pairs

  • Flack parameter: 0.005 (12)

Data collection: CrysAlis Pro (Oxford Diffraction, 2008); cell refinement: CrysAlis Pro; data reduction: CrysAlis Pro; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Siemens, 1994); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809018297/bt2959sup1.cif

e-65-o1348-sup1.cif (18.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809018297/bt2959Isup2.hkl

e-65-o1348-Isup2.hkl (151.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N—H01⋯O3i 0.81 (3) 2.30 (3) 3.1048 (18) 169 (3)
C2—H2⋯O1ii 1.00 2.66 3.637 (2) 166
C12—H12⋯O1ii 0.95 2.37 3.315 (2) 173
C3—H3B⋯O3iii 0.99 2.66 3.635 (2) 170
C5—H5B⋯S1iv 0.98 2.97 3.892 (2) 157
C5—H5C⋯S1i 0.98 2.88 3.665 (2) 138

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

The authors are grateful to the Higher Education Commission of Pakistan for financial support through project No. 20-674/R&D/06/1764 under the National Research Program for Universities.

supplementary crystallographic information

Comment

Esters have attracted widespread attention due to their applications in industry and as intermediates in the synthesis of heterocycles (Syed et al., 2009; Akhtar et al., 2008, 2007; Serwar et al., 2009). several types of pharmacological activities have also been associated with sulfonamides (Akhtar et al., 2008, Kashif et al., 2008). The title compound (I), a methionine derivative, was synthesized in our laboratory as an intermediate for onward conversion to 1,3,4-oxadiazole derivatives, and here we report its structure.

Molecular dimensions of (I) may be considered normal. The nitrogen atom displays a pyramidal geometry (Syed et al., 2009), lying 0.27 (1) Å out of the plane of its substituents. The molecule adopts the general shape of a thick disc (as is reflected in the short a axis length), with the ester group folded under the aromatic ring (C1···C11 3.374 (2) Å, C11—S2···C2—C1 - 19.3 (1)°). The molecules are connected in chains parallel to the a axis by the classical hydrogen bond N—H01···O3 (H···O 2.30 (3) Å), supported by the "weak" hydrogen bonds H2···O1, H12···O1 (a bifurcated system) and H5C···S1 (H···X 2.66, 2.37, 2.88 Å respectively). Symmetry operators for all these H bonds involve a axis translation.

Experimental

The title compound was synthesized by the reaction of methionine (0.02 mol) and 4-chlorobenzenesulfonyl chloride according to a reported procedure (Syed et al., 2009). Recrystallization of the product from acetone/water afforded crystals suitable for X-ray analysis.

Refinement

The NH hydrogen was refined freely. Methyl H atoms were located in difference syntheses, idealized to C—H 0.98 Å and H—C—H 109.5°, and refined as rigid groups allowed to rotate but not tip. Other H atoms were placed in calculated positions and refined using a riding model with C—H 0.95 Å for aromatic H and 1.00 Å for methine CH. Hydrogen U values were fixed at 1.5 × U(eq) of the parent atom for methyl H and 1.2 × U(eq) of the parent atom for other H. The compound is enantiomerically pure and its absolute configuration (S at C2) was confirmed by the Flack (1983) parameter. Data are 99.6% complete to 2θ 145°.

Figures

Fig. 1.

Fig. 1.

The molecule of the title compound. Ellipsoids correspond to 50% probability levels.

Fig. 2.

Fig. 2.

Packing diagram of the title compound, showing classical hydrogen bonds (thick dashed lines) and "weak" hydrogen bonds (thin dashed lines). H atoms not involved in these H bonds have been omitted. The interactions H2···O1 are omitted for clarity.

Crystal data

C12H16ClNO4S2 Dx = 1.480 Mg m3
Mr = 337.83 Melting point = 331–333 K
Orthorhombic, P212121 Cu Kα radiation, λ = 1.54184 Å
a = 5.1814 (3) Å Cell parameters from 10903 reflections
b = 12.6089 (8) Å θ = 3.5–75.6°
c = 23.2137 (13) Å µ = 4.92 mm1
V = 1516.59 (16) Å3 T = 100 K
Z = 4 Tablet, colourless
F(000) = 704 0.20 × 0.12 × 0.06 mm

Data collection

Oxford Diffraction Xcalibur Nova A diffractometer 3093 independent reflections
Radiation source: Nova (Cu) X-ray Source 3027 reflections with I > 2σ(I)
mirror Rint = 0.033
Detector resolution: 10.3543 pixels mm-1 θmax = 75.7°, θmin = 3.8°
ω scans h = −6→5
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2008) k = −15→15
Tmin = 0.548, Tmax = 1.000 l = −29→27
14469 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.025 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.062 w = 1/[σ2(Fo2) + (0.0339P)2 + 0.6444P] where P = (Fo2 + 2Fc2)/3
S = 1.04 (Δ/σ)max = 0.001
3093 reflections Δρmax = 0.20 e Å3
187 parameters Δρmin = −0.35 e Å3
0 restraints Absolute structure: Flack (1983), 1250 Friedel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: 0.005 (12)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.6060 (3) 0.70856 (13) 0.30125 (7) 0.0157 (3)
C2 0.7658 (3) 0.64578 (13) 0.25767 (7) 0.0149 (3)
H2 0.9529 0.6527 0.2676 0.018*
C3 0.7198 (3) 0.69178 (13) 0.19720 (7) 0.0157 (3)
H3A 0.5399 0.6770 0.1853 0.019*
H3B 0.7427 0.7697 0.1984 0.019*
C4 0.9040 (3) 0.64498 (13) 0.15292 (7) 0.0175 (3)
H4A 0.8724 0.5677 0.1501 0.021*
H4B 1.0834 0.6552 0.1665 0.021*
C5 0.5616 (4) 0.65296 (18) 0.06022 (8) 0.0279 (4)
H5A 0.5565 0.5761 0.0662 0.042*
H5B 0.5334 0.6687 0.0194 0.042*
H5C 0.4261 0.6868 0.0833 0.042*
C6 0.5679 (4) 0.87023 (14) 0.34955 (8) 0.0267 (4)
H6A 0.3949 0.8791 0.3332 0.040*
H6B 0.6529 0.9395 0.3522 0.040*
H6C 0.5541 0.8390 0.3881 0.040*
C11 0.7949 (3) 0.48637 (13) 0.37042 (7) 0.0166 (3)
C12 0.9359 (3) 0.56678 (13) 0.39648 (7) 0.0194 (3)
H12 1.0801 0.5972 0.3774 0.023*
C13 0.8635 (4) 0.60215 (14) 0.45083 (8) 0.0230 (3)
H13 0.9576 0.6570 0.4694 0.028*
C14 0.6511 (4) 0.55597 (14) 0.47751 (7) 0.0225 (3)
C15 0.5128 (4) 0.47418 (15) 0.45226 (8) 0.0224 (4)
H15 0.3716 0.4425 0.4719 0.027*
C16 0.5837 (3) 0.43950 (13) 0.39798 (7) 0.0192 (3)
H16 0.4898 0.3843 0.3796 0.023*
O1 0.4034 (3) 0.67950 (10) 0.32058 (5) 0.0225 (3)
O2 0.7177 (2) 0.80112 (10) 0.31298 (5) 0.0202 (3)
O3 1.1274 (2) 0.47165 (9) 0.28709 (5) 0.0187 (2)
O4 0.7538 (2) 0.34783 (10) 0.28792 (5) 0.0199 (3)
S1 0.87182 (9) 0.70331 (3) 0.081959 (17) 0.02100 (10)
S2 0.86006 (8) 0.45109 (3) 0.298219 (16) 0.01470 (9)
Cl 0.55423 (10) 0.60320 (4) 0.54465 (2) 0.03195 (12)
N 0.6935 (3) 0.53293 (11) 0.25852 (6) 0.0151 (3)
H01 0.540 (6) 0.521 (2) 0.2616 (12) 0.041 (7)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0189 (8) 0.0141 (7) 0.0140 (7) 0.0002 (7) −0.0010 (7) 0.0023 (6)
C2 0.0149 (7) 0.0120 (7) 0.0176 (8) −0.0009 (6) −0.0006 (6) −0.0011 (6)
C3 0.0160 (7) 0.0143 (7) 0.0168 (8) 0.0003 (6) −0.0005 (6) 0.0005 (6)
C4 0.0157 (8) 0.0201 (8) 0.0168 (7) 0.0025 (6) 0.0004 (6) 0.0016 (6)
C5 0.0225 (9) 0.0396 (10) 0.0216 (9) 0.0020 (8) −0.0013 (7) 0.0023 (8)
C6 0.0365 (11) 0.0214 (8) 0.0223 (8) 0.0063 (8) 0.0019 (8) −0.0074 (7)
C11 0.0165 (8) 0.0140 (7) 0.0192 (8) 0.0022 (6) −0.0011 (6) 0.0035 (6)
C12 0.0187 (8) 0.0184 (8) 0.0212 (8) −0.0017 (6) 0.0012 (6) 0.0032 (6)
C13 0.0266 (9) 0.0195 (8) 0.0228 (8) −0.0008 (8) −0.0022 (8) −0.0008 (7)
C14 0.0259 (9) 0.0222 (8) 0.0194 (8) 0.0043 (8) 0.0005 (7) 0.0026 (6)
C15 0.0211 (8) 0.0249 (8) 0.0211 (8) −0.0006 (7) 0.0031 (7) 0.0068 (7)
C16 0.0189 (8) 0.0168 (8) 0.0219 (8) −0.0030 (7) −0.0019 (7) 0.0025 (6)
O1 0.0205 (7) 0.0197 (6) 0.0272 (6) −0.0006 (5) 0.0076 (5) −0.0008 (5)
O2 0.0254 (6) 0.0149 (6) 0.0204 (6) −0.0018 (5) 0.0014 (5) −0.0049 (5)
O3 0.0154 (5) 0.0161 (5) 0.0246 (6) 0.0007 (5) 0.0006 (5) −0.0021 (4)
O4 0.0214 (6) 0.0126 (6) 0.0256 (6) −0.0028 (5) 0.0000 (5) −0.0004 (5)
S1 0.01868 (19) 0.0276 (2) 0.01674 (19) 0.00114 (18) 0.00273 (16) 0.00482 (15)
S2 0.01470 (18) 0.01144 (17) 0.01797 (18) −0.00017 (15) 0.00043 (15) 0.00026 (13)
Cl 0.0416 (3) 0.0336 (2) 0.0206 (2) 0.0050 (2) 0.00561 (18) −0.00285 (18)
N 0.0140 (6) 0.0128 (6) 0.0186 (7) −0.0027 (5) −0.0002 (5) 0.0000 (5)

Geometric parameters (Å, °)

C1—O1 1.199 (2) O4—S2 1.4337 (13)
C1—O2 1.331 (2) S2—N 1.6306 (15)
C1—C2 1.528 (2) C2—H2 1.0000
C2—N 1.472 (2) C3—H3A 0.9900
C2—C3 1.538 (2) C3—H3B 0.9900
C3—C4 1.522 (2) C4—H4A 0.9900
C4—S1 1.8117 (17) C4—H4B 0.9900
C5—S1 1.800 (2) C5—H5A 0.9800
C6—O2 1.443 (2) C5—H5B 0.9800
C11—C12 1.388 (2) C5—H5C 0.9800
C11—C16 1.398 (2) C6—H6A 0.9800
C11—S2 1.7667 (18) C6—H6B 0.9800
C12—C13 1.390 (2) C6—H6C 0.9800
C13—C14 1.391 (3) C12—H12 0.9500
C14—C15 1.386 (3) C13—H13 0.9500
C14—Cl 1.7422 (18) C15—H15 0.9500
C15—C16 1.384 (2) C16—H16 0.9500
O3—S2 1.4327 (13) N—H01 0.81 (3)
O1—C1—O2 124.89 (16) C2—C3—H3A 109.2
O1—C1—C2 124.31 (15) C4—C3—H3B 109.2
O2—C1—C2 110.75 (14) C2—C3—H3B 109.2
N—C2—C1 110.74 (13) H3A—C3—H3B 107.9
N—C2—C3 109.73 (13) C3—C4—H4A 108.9
C1—C2—C3 108.97 (13) S1—C4—H4A 108.9
C4—C3—C2 111.92 (14) C3—C4—H4B 108.9
C3—C4—S1 113.52 (11) S1—C4—H4B 108.9
C12—C11—C16 121.41 (16) H4A—C4—H4B 107.7
C12—C11—S2 119.77 (13) S1—C5—H5A 109.5
C16—C11—S2 118.50 (13) S1—C5—H5B 109.5
C11—C12—C13 119.20 (17) H5A—C5—H5B 109.5
C12—C13—C14 118.92 (17) S1—C5—H5C 109.5
C15—C14—C13 122.17 (17) H5A—C5—H5C 109.5
C15—C14—Cl 118.93 (14) H5B—C5—H5C 109.5
C13—C14—Cl 118.90 (14) O2—C6—H6A 109.5
C16—C15—C14 118.88 (17) O2—C6—H6B 109.5
C15—C16—C11 119.40 (16) H6A—C6—H6B 109.5
C1—O2—C6 114.59 (14) O2—C6—H6C 109.5
C5—S1—C4 101.18 (9) H6A—C6—H6C 109.5
O3—S2—O4 120.36 (7) H6B—C6—H6C 109.5
O3—S2—N 107.18 (7) C11—C12—H12 120.4
O4—S2—N 106.09 (7) C13—C12—H12 120.4
O3—S2—C11 108.08 (8) C12—C13—H13 120.5
O4—S2—C11 108.27 (8) C14—C13—H13 120.5
N—S2—C11 106.00 (7) C16—C15—H15 120.6
C2—N—S2 118.99 (11) C14—C15—H15 120.6
N—C2—H2 109.1 C15—C16—H16 120.3
C1—C2—H2 109.1 C11—C16—H16 120.3
C3—C2—H2 109.1 C2—N—H01 115.6 (19)
C4—C3—H3A 109.2 S2—N—H01 110.5 (19)
O1—C1—C2—N −20.6 (2) S2—C11—C16—C15 −173.17 (13)
O2—C1—C2—N 161.73 (13) O1—C1—O2—C6 −3.3 (2)
O1—C1—C2—C3 100.19 (18) C2—C1—O2—C6 174.33 (14)
O2—C1—C2—C3 −77.48 (16) C3—C4—S1—C5 −69.77 (14)
N—C2—C3—C4 −67.63 (17) C12—C11—S2—O3 29.75 (15)
C1—C2—C3—C4 170.97 (14) C16—C11—S2—O3 −156.70 (13)
C2—C3—C4—S1 −176.06 (11) C12—C11—S2—O4 161.63 (13)
C16—C11—C12—C13 −0.7 (3) C16—C11—S2—O4 −24.82 (15)
S2—C11—C12—C13 172.62 (13) C12—C11—S2—N −84.90 (15)
C11—C12—C13—C14 −0.1 (3) C16—C11—S2—N 88.66 (14)
C12—C13—C14—C15 1.5 (3) C1—C2—N—S2 −94.83 (15)
C12—C13—C14—Cl −177.99 (13) C3—C2—N—S2 144.83 (12)
C13—C14—C15—C16 −2.0 (3) O3—S2—N—C2 −47.30 (14)
Cl—C14—C15—C16 177.52 (14) O4—S2—N—C2 −177.08 (12)
C14—C15—C16—C11 1.1 (3) C11—S2—N—C2 67.96 (14)
C12—C11—C16—C15 0.3 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N—H01···O3i 0.81 (3) 2.30 (3) 3.1048 (18) 169 (3)
C2—H2···O1ii 1.00 2.66 3.637 (2) 166
C12—H12···O1ii 0.95 2.37 3.315 (2) 173
C3—H3B···O3iii 0.99 2.66 3.635 (2) 170
C5—H5B···S1iv 0.98 2.97 3.892 (2) 157
C5—H5C···S1i 0.98 2.88 3.665 (2) 138

Symmetry codes: (i) x−1, y, z; (ii) x+1, y, z; (iii) −x+2, y+1/2, −z+1/2; (iv) x−1/2, −y+3/2, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2959).

References

  1. Akhtar, T., Hameed, S., Al-Masoudi, N. A. & Khan, K. M. (2007). Heteroat. Chem.18, 316–322.
  2. Akhtar, T., Hameed, S., Al-Masoudi, N. A., Loddo, R. & La Colla, P. (2008). Acta Pharm.58, 135–149. [DOI] [PubMed]
  3. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  4. Kashif, M. K., Ahmad, I. & Hameed, S. (2008). ARKIVOC, xvi, 311–317.
  5. Oxford Diffraction (2008). CrysAlis Pro Oxford Diffraction Ltd, Abingdon, England.
  6. Serwar, M., Akhtar, T., Hameed, S. & Khan, K. M. (2009). ARKIVOC, vii, 210–221.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Siemens (1994). XP Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
  9. Syed, T., Hameed, S., Jones, P. G. & Schmidt-Meier, A. (2009). Acta Cryst. E65, o1300. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809018297/bt2959sup1.cif

e-65-o1348-sup1.cif (18.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809018297/bt2959Isup2.hkl

e-65-o1348-Isup2.hkl (151.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES