Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 May 14;65(Pt 6):o1297. doi: 10.1107/S1600536809017425

5-[(4-Acetyl­phenyl)­aminomethyl­ene]-2,2-dimethyl-1,3-dioxane-4,6-dione

Rui Li a,*, Zhen-Yu Ding a, Yu-Quan Wei a, Jian Ding b
PMCID: PMC2969769  PMID: 21583156

Abstract

In the title compound, C15H15NO5, the six-membered dioxane ring assumes an envelope conformation with the dimethyl substituted C atom as the flap atom. An intra­molecular N—H⋯O inter­action is also present. In the crystal structure the mol­ecules are linked via C—H⋯O hydrogen bonds into supra­molecular chains along the b axis.

Related literature

For the biological activity of 4(1H)-quinolone structures, see: Ruchelman et al. (2003). 5-Aryl­amino­methyl­ene-2,2-dimethyl-1,3-dioxane-4,6-diones are key inter­mediates in the synthesis of 4(1H)quinolone derivatives by thermolysis (Cassis et al., 1985).graphic file with name e-65-o1297-scheme1.jpg

Experimental

Crystal data

  • C15H15NO5

  • M r = 289.28

  • Triclinic, Inline graphic

  • a = 7.102 (3) Å

  • b = 7.356 (4) Å

  • c = 13.856 (4) Å

  • α = 82.79 (4)°

  • β = 83.19 (4)°

  • γ = 86.03 (4)°

  • V = 712.0 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 292 K

  • 0.44 × 0.36 × 0.32 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: none

  • 2894 measured reflections

  • 2621 independent reflections

  • 1399 reflections with I > 2σ(I)

  • R int = 0.008

  • 3 standard reflections every 100 reflections intensity decay: 1.8%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.064

  • wR(F 2) = 0.179

  • S = 1.03

  • 2621 reflections

  • 197 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.34 e Å−3

Data collection: DIFRAC (Gabe & White, 1993); cell refinement: DIFRAC; data reduction: NRCVAX (Gabe et al., 1989); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, New_Global_Publ_Block. DOI: 10.1107/S1600536809017425/xu2521sup1.cif

e-65-o1297-sup1.cif (16.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809017425/xu2521Isup2.hkl

e-65-o1297-Isup2.hkl (128.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O4 0.84 (4) 2.05 (3) 2.699 (3) 133 (2)
C1—H1B⋯O3i 0.96 2.57 3.480 (4) 158
C9—H9⋯O5i 0.93 2.59 3.429 (4) 150

Symmetry code: (i) Inline graphic.

Acknowledgments

This research is financially supported by the State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences.

supplementary crystallographic information

Comment

The 4(1H)quinolone structure plays an extremely important role in the field of pharmaceutical chemistry. These compounds have been used as precursors for anticancer agents, anti-malarial agents and reversible (H+/K+) ATPase inhibitors (Ruchelman et al., 2003). 5-Arylaminomethylene-2,2-dimethyl-1,3-dioxane-4,6-diones are the key intermediates which can be used to synthesize the 4(1H)quinolone derivatives by thermolysis (Cassis et al., 1985).

The molecular structure is shown in Fig. 1. The six membered dioxane ring assumes an envelope conformation. The imino group links with the adjacent O atom via O—H···O hydrogen bonding. In the crystal structure the molecules are linked via C—H···O hydrogen bonding into one dimensional supra-molecualr chain along the b axis (Table 1).

Experimental

A methanol solution (50 ml) of Meldrum's acid (1.44 g, 0.01 mol) and methylorthoformate (1.27 g, 0.012 mol) was heated to reflux for 2 h, then the arylamine (1.35 g, 0.01 mol) was added into the above solution. The mixture was heated under reflux for another 8 h and then filtered. Single crystals were obtained from the filtrate after 2 d.

Refinement

The imino H atom was located in a difference Fourier map and refined isotropically. Other H atoms were positioned geometrically with C—H = 0.93 (aromatic) or 0.96 Å (methyl), and refined using a riding model with Uiso(H) = 1.5Ueq(C) for methyl and 1.2Ueq(C) for the others.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level.

Crystal data

C15H15NO5 Z = 2
Mr = 289.28 F(000) = 304
Triclinic, P1 Dx = 1.349 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 7.102 (3) Å Cell parameters from 25 reflections
b = 7.356 (4) Å θ = 4.4–7.4°
c = 13.856 (4) Å µ = 0.10 mm1
α = 82.79 (4)° T = 292 K
β = 83.19 (4)° Block, colourless
γ = 86.03 (4)° 0.44 × 0.36 × 0.32 mm
V = 712.0 (5) Å3

Data collection

Enraf–Nonius CAD-4 diffractometer Rint = 0.008
Radiation source: fine-focus sealed tube θmax = 25.5°, θmin = 1.5°
graphite h = −8→8
ω/2θ scans k = −3→8
2894 measured reflections l = −16→16
2621 independent reflections 3 standard reflections every 100 reflections
1399 reflections with I > 2σ(I) intensity decay: 1.8%

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.064 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.179 H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0987P)2] where P = (Fo2 + 2Fc2)/3
2621 reflections (Δ/σ)max < 0.001
197 parameters Δρmax = 0.23 e Å3
0 restraints Δρmin = −0.34 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.4606 (3) 0.5224 (2) 0.87501 (13) 0.0548 (6)
O2 0.4847 (3) 0.3153 (3) 0.75537 (13) 0.0585 (6)
O3 0.5363 (3) 0.8104 (3) 0.83800 (15) 0.0713 (7)
O4 0.5696 (3) 0.4044 (3) 0.60005 (14) 0.0688 (7)
O5 0.9300 (3) 1.4570 (3) 0.25900 (17) 0.0767 (7)
N1 0.6950 (3) 0.7445 (3) 0.54722 (17) 0.0485 (6)
H1N 0.674 (4) 0.644 (5) 0.528 (2) 0.066 (9)*
C1 0.3511 (5) 0.2250 (4) 0.9154 (2) 0.0677 (9)
H1A 0.3605 0.2286 0.9836 0.101*
H1B 0.3674 0.1003 0.9010 0.101*
H1C 0.2284 0.2754 0.8999 0.101*
C2 0.6988 (5) 0.2750 (5) 0.8795 (2) 0.0708 (9)
H2A 0.7894 0.3472 0.8371 0.106*
H2B 0.7236 0.1478 0.8706 0.106*
H2C 0.7094 0.2910 0.9463 0.106*
C3 0.5022 (4) 0.3356 (4) 0.8554 (2) 0.0504 (7)
C4 0.5331 (4) 0.6609 (4) 0.8097 (2) 0.0503 (7)
C5 0.5861 (4) 0.6195 (3) 0.71100 (18) 0.0440 (6)
C6 0.5512 (4) 0.4421 (4) 0.6835 (2) 0.0486 (7)
C7 0.6522 (4) 0.7568 (3) 0.64119 (19) 0.0443 (7)
H7 0.6681 0.8692 0.6625 0.053*
C8 0.7584 (4) 0.8835 (4) 0.47359 (19) 0.0443 (7)
C9 0.8222 (4) 0.8338 (4) 0.3821 (2) 0.0561 (8)
H9 0.8262 0.7113 0.3711 0.067*
C10 0.8804 (4) 0.9674 (4) 0.3063 (2) 0.0562 (8)
H10 0.9233 0.9337 0.2447 0.067*
C11 0.8752 (4) 1.1500 (4) 0.3217 (2) 0.0475 (7)
C12 0.8132 (4) 1.1971 (4) 0.4143 (2) 0.0510 (7)
H12 0.8113 1.3192 0.4256 0.061*
C13 0.7541 (4) 1.0661 (4) 0.4903 (2) 0.0491 (7)
H13 0.7118 1.0998 0.5521 0.059*
C14 0.9294 (4) 1.2990 (4) 0.2415 (2) 0.0558 (8)
C15 0.9783 (5) 1.2522 (5) 0.1391 (2) 0.0731 (10)
H15A 1.0042 1.3622 0.0958 0.110*
H15B 0.8735 1.1954 0.1195 0.110*
H15C 1.0885 1.1690 0.1365 0.110*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0800 (14) 0.0361 (11) 0.0476 (11) 0.0014 (9) −0.0018 (10) −0.0097 (9)
O2 0.0936 (15) 0.0361 (11) 0.0467 (11) −0.0137 (10) −0.0013 (10) −0.0087 (9)
O3 0.125 (2) 0.0320 (11) 0.0598 (12) −0.0023 (11) −0.0121 (12) −0.0163 (9)
O4 0.1213 (19) 0.0381 (11) 0.0475 (12) −0.0173 (12) 0.0040 (11) −0.0130 (9)
O5 0.0993 (18) 0.0370 (13) 0.0893 (17) −0.0106 (11) 0.0019 (13) 0.0012 (11)
N1 0.0641 (16) 0.0299 (13) 0.0525 (15) −0.0091 (11) −0.0043 (12) −0.0071 (11)
C1 0.087 (2) 0.056 (2) 0.0591 (19) −0.0135 (17) 0.0026 (17) −0.0095 (16)
C2 0.078 (2) 0.053 (2) 0.078 (2) 0.0051 (16) −0.0068 (18) 0.0021 (16)
C3 0.071 (2) 0.0296 (14) 0.0505 (16) 0.0001 (13) −0.0032 (14) −0.0068 (12)
C4 0.0647 (19) 0.0389 (16) 0.0488 (16) 0.0057 (13) −0.0135 (14) −0.0092 (13)
C5 0.0512 (16) 0.0371 (15) 0.0455 (15) 0.0007 (12) −0.0106 (13) −0.0086 (12)
C6 0.0670 (19) 0.0346 (15) 0.0435 (16) −0.0027 (13) −0.0018 (13) −0.0065 (12)
C7 0.0527 (16) 0.0300 (14) 0.0525 (17) −0.0017 (12) −0.0121 (13) −0.0086 (12)
C8 0.0449 (16) 0.0374 (15) 0.0520 (16) −0.0071 (12) −0.0067 (12) −0.0067 (12)
C9 0.069 (2) 0.0416 (16) 0.0597 (18) −0.0133 (14) 0.0005 (15) −0.0137 (14)
C10 0.0639 (19) 0.0526 (19) 0.0525 (17) −0.0094 (15) 0.0036 (14) −0.0140 (14)
C11 0.0434 (16) 0.0431 (16) 0.0548 (17) −0.0042 (12) −0.0029 (13) −0.0029 (13)
C12 0.0608 (19) 0.0312 (14) 0.0611 (18) −0.0040 (12) −0.0069 (14) −0.0048 (13)
C13 0.0588 (18) 0.0377 (15) 0.0518 (16) 0.0021 (13) −0.0048 (13) −0.0129 (13)
C14 0.0464 (17) 0.0531 (19) 0.066 (2) 0.0003 (14) −0.0062 (14) −0.0001 (15)
C15 0.083 (2) 0.063 (2) 0.065 (2) −0.0021 (18) 0.0077 (18) 0.0072 (16)

Geometric parameters (Å, °)

O1—C4 1.361 (3) C5—C7 1.374 (4)
O1—C3 1.438 (3) C5—C6 1.450 (4)
O2—C6 1.342 (3) C7—H7 0.9300
O2—C3 1.434 (3) C8—C9 1.380 (4)
O3—C4 1.216 (3) C8—C13 1.389 (4)
O4—C6 1.212 (3) C9—C10 1.390 (4)
O5—C14 1.217 (3) C9—H9 0.9300
N1—C7 1.315 (3) C10—C11 1.383 (4)
N1—C8 1.408 (3) C10—H10 0.9300
N1—H1N 0.85 (3) C11—C12 1.384 (4)
C1—C3 1.498 (4) C11—C14 1.495 (4)
C1—H1A 0.9600 C12—C13 1.383 (4)
C1—H1B 0.9600 C12—H12 0.9300
C1—H1C 0.9600 C13—H13 0.9300
C2—C3 1.499 (4) C14—C15 1.497 (4)
C2—H2A 0.9600 C15—H15A 0.9600
C2—H2B 0.9600 C15—H15B 0.9600
C2—H2C 0.9600 C15—H15C 0.9600
C4—C5 1.438 (3)
C4—O1—C3 119.3 (2) O2—C6—C5 117.1 (2)
C6—O2—C3 120.1 (2) N1—C7—C5 126.2 (2)
C7—N1—C8 127.6 (2) N1—C7—H7 116.9
C7—N1—H1N 116 (2) C5—C7—H7 116.9
C8—N1—H1N 116 (2) C9—C8—C13 120.2 (3)
C3—C1—H1A 109.5 C9—C8—N1 117.8 (3)
C3—C1—H1B 109.5 C13—C8—N1 122.0 (2)
H1A—C1—H1B 109.5 C8—C9—C10 119.7 (3)
C3—C1—H1C 109.5 C8—C9—H9 120.1
H1A—C1—H1C 109.5 C10—C9—H9 120.1
H1B—C1—H1C 109.5 C11—C10—C9 120.7 (3)
C3—C2—H2A 109.5 C11—C10—H10 119.7
C3—C2—H2B 109.5 C9—C10—H10 119.7
H2A—C2—H2B 109.5 C10—C11—C12 118.8 (3)
C3—C2—H2C 109.5 C10—C11—C14 122.5 (3)
H2A—C2—H2C 109.5 C12—C11—C14 118.7 (3)
H2B—C2—H2C 109.5 C13—C12—C11 121.3 (3)
O2—C3—O1 111.4 (2) C13—C12—H12 119.4
O2—C3—C1 105.9 (2) C11—C12—H12 119.4
O1—C3—C1 106.4 (2) C12—C13—C8 119.3 (3)
O2—C3—C2 110.2 (2) C12—C13—H13 120.4
O1—C3—C2 109.4 (2) C8—C13—H13 120.4
C1—C3—C2 113.4 (3) O5—C14—C11 120.4 (3)
O3—C4—O1 117.5 (2) O5—C14—C15 120.4 (3)
O3—C4—C5 125.9 (3) C11—C14—C15 119.2 (3)
O1—C4—C5 116.5 (2) C14—C15—H15A 109.5
C7—C5—C4 118.8 (2) C14—C15—H15B 109.5
C7—C5—C6 120.4 (2) H15A—C15—H15B 109.5
C4—C5—C6 120.5 (2) C14—C15—H15C 109.5
O4—C6—O2 118.4 (2) H15A—C15—H15C 109.5
O4—C6—C5 124.5 (3) H15B—C15—H15C 109.5

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1N···O4 0.84 (4) 2.05 (3) 2.699 (3) 133 (2)
C1—H1B···O3i 0.96 2.57 3.480 (4) 158
C9—H9···O5i 0.93 2.59 3.429 (4) 150

Symmetry codes: (i) x, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2521).

References

  1. Cassis, R., Tapia, R. & Valderrama, J. A. (1985). Synth. Commun.15, 125–133.
  2. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  3. Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst.22, 384–387.
  4. Gabe, E. J. & White, P. S. (1993). DIFRAC American Crystallographic Association Meeting, Pittsburgh, Abstract PA 104.
  5. Ruchelman, A. L., Singh, S. K., Ray, A., Wu, X. H., Yang, J. M., Li, T. K., Liu, A., Liu, L. F. & LaVoie, E. J. (2003). Bioorg. Med. Chem.11, 2061–2073. [DOI] [PubMed]
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, New_Global_Publ_Block. DOI: 10.1107/S1600536809017425/xu2521sup1.cif

e-65-o1297-sup1.cif (16.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809017425/xu2521Isup2.hkl

e-65-o1297-Isup2.hkl (128.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES