Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 May 7;65(Pt 6):o1218. doi: 10.1107/S1600536809016456

2-Acetyl­pyridinium bromanilate

Lynne H Thomas a,*, Bryan Boyle a, Lesley A Clive b, Anna Collins a, Lynsey D Currie a, Malgorzata Gogol b, Claire Hastings b, Andrew O F Jones a, Jennifer L Kennedy b, Graham B Kerr b, Alastair Kidd b, Lorreta M Lawton a, Susan J Macintyre b, Niall M MacLean b, Alan R G Martin b, Kate McGonagle b, Samantha Melrose a, Gaius A Rew b, Colin W Robinson a, Marc Schmidtmann a, Felicity B Turnbull b, Lewis G Williams a, Alan Y Wiseman b, Malgorzata H Wocial b, Chick C Wilson a
PMCID: PMC2969770  PMID: 21583087

Abstract

In the crystal of the title mol­ecular salt (systematic name: 2-acetyl­pyridinium 2,5-dibromo-4-hydr­oxy-3,6-dioxocyclo­hexa-1,4-dienolate), C7H8NO+·C6HBr2O4 , centrosymmetric rings consisting of two cations and two anions are formed, with the components linked by alternating O—H⋯O and N—H⋯O hydrogen bonds. Short O⋯Br contacts [3.243 (2) and 3.359 (2) Å] may help to consolidate the packing.

Related literature

For the structure of bromanilic acid, see: Robl (1987). For related structures, see: Tomura & Yamashita (2000); Zaman et al. (2001, 2004); Horiuchi et al. (2005).graphic file with name e-65-o1218-scheme1.jpg

Experimental

Crystal data

  • C7H8NO+·C6HBr2O4

  • M r = 419.03

  • Monoclinic, Inline graphic

  • a = 9.1323 (5) Å

  • b = 13.3821 (7) Å

  • c = 12.2287 (7) Å

  • β = 112.396 (2)°

  • V = 1381.74 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 5.89 mm−1

  • T = 100 K

  • 0.25 × 0.2 × 0.1 mm

Data collection

  • Rigaku R-AXIS RAPID IP diffractometer

  • Absorption correction: empirical (using intensity measurements) (CrystalClear; Rigaku/MSC, 2008) T min = 0.561, T max = 1.000 (expected range = 0.311–0.555)

  • 17193 measured reflections

  • 3156 independent reflections

  • 2793 reflections with I > 2σ(I)

  • R int = 0.036

Refinement

  • R[F 2 > 2σ(F 2)] = 0.022

  • wR(F 2) = 0.050

  • S = 1.04

  • 3156 reflections

  • 219 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.31 e Å−3

Data collection: CrystalClear (Rigaku/MSC, 2008); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809016456/hb2948sup1.cif

e-65-o1218-sup1.cif (18KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809016456/hb2948Isup2.hkl

e-65-o1218-Isup2.hkl (151.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H1⋯O5 0.78 (3) 2.20 (3) 2.798 (2) 134 (3)
N1—H6⋯O2i 0.91 (3) 1.83 (3) 2.673 (2) 154 (3)

Symmetry code: (i) Inline graphic.

supplementary crystallographic information

Comment

The stucture of the molecular proton-transfer salt of bromanilic acid with 2-acetylpyridine at 100 K is reported (Fig. 1). A proton is transferred from the bromanilic acid molecule to the N atom on the acetylpyridine (Fig. 1). All previously reported structures containing bromanilic acid have shown the tendency for extended chains of molecules to form. In this case, hydrogen-bonded rings are formed between alternating cations and anions (Fig. 2) and these rings are held together to form a three-dimensional structure by one Br···O close contact of 3.243 (2)Å (cf the sum of the van der Waals radii for Br and O of 3.37Å) and one on the limit of the sum of the van der Waals radii of of 3.359 (2)Å (Fig. 3). The deprotonated hydroxyl group on the bromanilic acid molecule is stabilized by forming a moderate hydrogen bond [2.673 (2)Å] with the N atom on the 2-acetylpyridine molecule to which the proton has been transferred, and a short O···Br contact with another bromanilic acid molecule. The C—O bond length to the deprotonated oxygen is notably shortened compared to that to the protonated hydroxyl group [1.253 (2)Å versus 1.322 (2)Å]. The longer of the two O···Br close contacts is to the C═O group on the bromanilic acid [C═O bond length 1.221 (2)Å].

Experimental

Red blocks of (I) were grown by slow evaporation of solvent from a 1:1 solution of bromanilic acid and 2-acetylpyridine in methanol.

Refinement

The H atoms were identified in the difference map, and their positions were freely refined. The O- and N-bonded species were allowed to refine isotropically and the C-bonded H atoms were constrained, with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I) with displacement ellipsoids drawn at the 50% probability level.

Fig. 2.

Fig. 2.

The hydrogen bonded ring between alternating bromanilic acid and acetylpyridine molecules. The hydrogen bonds are indicated by dashed lines. The * indicates the atoms are related by the symmetry code 2 - x, 1 - y, 1 - z.

Fig. 3.

Fig. 3.

The short bromine-oxygen close contacts connecting the hydrogen bonded rings. The short contacts and hydrogen bonds are indicated by dashed lines.

Crystal data

C7H8NO+·C6HBr2O4 F(000) = 816
Mr = 419.03 Dx = 2.014 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 13698 reflections
a = 9.1323 (5) Å θ = 6.1–55.2°
b = 13.3821 (7) Å µ = 5.89 mm1
c = 12.2287 (7) Å T = 100 K
β = 112.396 (2)° Block, red
V = 1381.74 (13) Å3 0.25 × 0.2 × 0.1 mm
Z = 4

Data collection

Rigaku R-AXIS RAPID IP diffractometer 2793 reflections with I > 2σ(I)
graphite Rint = 0.036
ω scans θmax = 27.5°, θmin = 3.0°
Absorption correction: empirical (using intensity measurements) (CrystalClear; Rigaku/MSC, 2008) h = −11→11
Tmin = 0.561, Tmax = 1.000 k = −17→17
17193 measured reflections l = −15→15
3156 independent reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.022 Hydrogen site location: difference Fourier map
wR(F2) = 0.050 H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0229P)2 + 0.7894P] where P = (Fo2 + 2Fc2)/3
3156 reflections (Δ/σ)max = 0.001
219 parameters Δρmax = 0.43 e Å3
0 restraints Δρmin = −0.31 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. The isotropic displacement parameters for the hydrogen atoms involved in hydrogenbonds are refined freely. All other hydrogen atoms are refined against the atoms to which they are bonded.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
H6 0.611 (3) 0.307 (2) 0.195 (3) 0.041 (8)*
O5 0.50649 (17) 0.44777 (11) 0.25644 (13) 0.0201 (3)
N1 0.5396 (2) 0.29814 (12) 0.11977 (16) 0.0152 (3)
C12 0.4282 (2) 0.45501 (15) 0.15172 (18) 0.0160 (4)
C11 0.5549 (2) 0.22016 (16) 0.05849 (19) 0.0200 (4)
H5 0.637 (3) 0.1735 (18) 0.102 (2) 0.024*
C8 0.3294 (2) 0.36207 (16) −0.04572 (18) 0.0173 (4)
H2 0.263 (3) 0.4122 (18) −0.076 (2) 0.021*
C10 0.4555 (3) 0.20854 (17) −0.0595 (2) 0.0223 (5)
H4 0.468 (3) 0.156 (2) −0.099 (2) 0.027*
C7 0.4298 (2) 0.37017 (14) 0.07151 (17) 0.0145 (4)
C9 0.3417 (3) 0.28035 (17) −0.11190 (19) 0.0217 (4)
H3 0.274 (3) 0.2759 (19) −0.195 (2) 0.026*
C13 0.3272 (3) 0.54328 (17) 0.0970 (2) 0.0232 (5)
H9 0.351 (3) 0.595 (2) 0.152 (2) 0.028*
H7 0.340 (3) 0.5618 (19) 0.027 (2) 0.028*
H8 0.222 (3) 0.5245 (19) 0.076 (2) 0.028*
H1 0.663 (4) 0.511 (2) 0.426 (3) 0.050 (10)*
Br1 0.92699 (2) 0.416206 (15) 0.738904 (17) 0.01764 (6)
Br2 0.98903 (2) 0.811177 (15) 0.427719 (17) 0.01869 (6)
O1 1.19471 (16) 0.56928 (11) 0.79086 (12) 0.0180 (3)
O2 1.22536 (16) 0.73058 (10) 0.67034 (12) 0.0186 (3)
O3 0.73311 (16) 0.64428 (11) 0.37219 (12) 0.0198 (3)
C5 0.9790 (2) 0.69726 (14) 0.51628 (17) 0.0150 (4)
O4 0.70848 (17) 0.48853 (11) 0.48976 (14) 0.0197 (3)
C1 0.8359 (2) 0.54445 (15) 0.54043 (18) 0.0152 (4)
C6 0.8462 (2) 0.63450 (15) 0.46801 (17) 0.0149 (4)
C4 1.1029 (2) 0.67882 (14) 0.62391 (18) 0.0139 (4)
C3 1.0879 (2) 0.58650 (14) 0.69581 (17) 0.0143 (4)
C2 0.9474 (2) 0.52459 (14) 0.64757 (17) 0.0145 (4)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O5 0.0225 (8) 0.0205 (7) 0.0161 (7) −0.0024 (6) 0.0059 (6) −0.0021 (6)
N1 0.0126 (8) 0.0165 (8) 0.0135 (8) 0.0001 (6) 0.0014 (7) 0.0008 (7)
C12 0.0157 (10) 0.0161 (10) 0.0184 (10) −0.0023 (7) 0.0088 (8) 0.0005 (8)
C11 0.0178 (10) 0.0179 (10) 0.0219 (11) 0.0044 (8) 0.0048 (9) 0.0002 (8)
C8 0.0129 (10) 0.0206 (10) 0.0158 (10) 0.0007 (8) 0.0024 (8) 0.0035 (8)
C10 0.0277 (12) 0.0212 (11) 0.0185 (11) 0.0005 (9) 0.0093 (9) −0.0056 (9)
C7 0.0138 (9) 0.0143 (9) 0.0158 (10) −0.0004 (7) 0.0062 (8) 0.0011 (8)
C9 0.0242 (11) 0.0246 (11) 0.0137 (10) −0.0027 (9) 0.0045 (9) −0.0002 (8)
C13 0.0271 (12) 0.0209 (11) 0.0249 (12) 0.0057 (9) 0.0135 (10) 0.0023 (9)
Br1 0.01649 (11) 0.01824 (11) 0.01617 (11) −0.00241 (7) 0.00395 (8) 0.00493 (7)
Br2 0.02145 (12) 0.01616 (11) 0.01540 (11) −0.00364 (7) 0.00360 (9) 0.00339 (7)
O1 0.0164 (7) 0.0188 (7) 0.0144 (7) −0.0007 (5) 0.0011 (6) 0.0018 (6)
O2 0.0172 (7) 0.0158 (7) 0.0185 (7) −0.0026 (5) 0.0020 (6) 0.0016 (6)
O3 0.0182 (7) 0.0229 (8) 0.0137 (7) −0.0020 (6) 0.0008 (6) 0.0032 (6)
C5 0.0184 (10) 0.0128 (9) 0.0129 (9) −0.0001 (7) 0.0051 (8) 0.0021 (7)
O4 0.0168 (8) 0.0208 (8) 0.0154 (7) −0.0058 (6) −0.0008 (6) 0.0026 (6)
C1 0.0155 (10) 0.0153 (9) 0.0154 (10) −0.0005 (7) 0.0065 (8) −0.0014 (8)
C6 0.0156 (10) 0.0165 (10) 0.0127 (9) 0.0016 (7) 0.0057 (8) 0.0005 (8)
C4 0.0147 (10) 0.0122 (9) 0.0152 (10) 0.0003 (7) 0.0061 (8) −0.0013 (7)
C3 0.0164 (10) 0.0136 (9) 0.0145 (10) 0.0013 (7) 0.0077 (8) −0.0015 (7)
C2 0.0167 (10) 0.0130 (9) 0.0151 (9) −0.0001 (7) 0.0075 (8) 0.0012 (7)

Geometric parameters (Å, °)

O5—C12 1.209 (2) C13—H7 0.94 (3)
N1—C11 1.323 (3) C13—H8 0.93 (3)
N1—C7 1.353 (2) Br1—C2 1.8826 (19)
N1—H6 0.91 (3) Br2—C5 1.8922 (19)
C12—C13 1.491 (3) O1—C3 1.221 (2)
C12—C7 1.504 (3) O2—C4 1.253 (2)
C11—C10 1.390 (3) O3—C6 1.239 (2)
C11—H5 0.96 (3) C5—C4 1.392 (3)
C8—C7 1.381 (3) C5—C6 1.407 (3)
C8—C9 1.390 (3) O4—C1 1.322 (2)
C8—H2 0.89 (2) O4—H1 0.79 (3)
C10—C9 1.381 (3) C1—C2 1.344 (3)
C10—H4 0.88 (3) C1—C6 1.520 (3)
C9—H3 0.97 (3) C4—C3 1.552 (3)
C13—H9 0.93 (3) C3—C2 1.451 (3)
C11—N1—C7 122.38 (18) H9—C13—H7 112 (2)
C11—N1—H6 119.2 (18) C12—C13—H8 107.8 (16)
C7—N1—H6 118.2 (18) H9—C13—H8 110 (2)
O5—C12—C13 123.61 (19) H7—C13—H8 107 (2)
O5—C12—C7 118.77 (18) C4—C5—C6 123.42 (18)
C13—C12—C7 117.62 (18) C4—C5—Br2 119.00 (14)
N1—C11—C10 120.53 (19) C6—C5—Br2 117.57 (14)
N1—C11—H5 115.3 (15) C1—O4—H1 107 (2)
C10—C11—H5 124.2 (15) O4—C1—C2 123.31 (19)
C7—C8—C9 119.83 (19) O4—C1—C6 114.51 (17)
C7—C8—H2 117.2 (16) C2—C1—C6 122.18 (17)
C9—C8—H2 122.9 (16) O3—C6—C5 127.49 (19)
C9—C10—C11 118.8 (2) O3—C6—C1 114.86 (17)
C9—C10—H4 122.0 (16) C5—C6—C1 117.65 (17)
C11—C10—H4 119.1 (16) O2—C4—C5 126.44 (18)
N1—C7—C8 119.03 (18) O2—C4—C3 116.07 (17)
N1—C7—C12 116.30 (17) C5—C4—C3 117.48 (17)
C8—C7—C12 124.67 (18) O1—C3—C2 122.78 (18)
C10—C9—C8 119.39 (19) O1—C3—C4 118.58 (17)
C10—C9—H3 120.6 (15) C2—C3—C4 118.64 (17)
C8—C9—H3 119.9 (15) C1—C2—C3 120.51 (18)
C12—C13—H9 109.4 (16) C1—C2—Br1 121.41 (15)
C12—C13—H7 110.4 (16) C3—C2—Br1 118.08 (14)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O4—H1···O5 0.78 (3) 2.20 (3) 2.798 (2) 134 (3)
N1—H6···O2i 0.91 (3) 1.83 (3) 2.673 (2) 154 (3)

Symmetry codes: (i) −x+2, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2948).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1995). International Tables for Crystallography, Vol. C, edited by A. J. C. Wilson, pp. 685–706. Dordrecht: Kluwer Academic Publishers.
  2. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  3. Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  4. Horiuchi, S., Kumai, R. & Tokura, Y. (2005). J. Am. Chem. Soc.127, 5010–5011. [DOI] [PubMed]
  5. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst.39, 453–457.
  6. Rigaku/MSC (2008). CrystalClear Rigaku/MSC, The Woodlands, Texas, USA.
  7. Robl, C. (1987). Z. Kristallogr.180, 249–253.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Tomura, M. & Yamashita, Y. (2000). CrystEngComm, 2, 92–95.
  10. Zaman, Md. B., Tomura, M. & Yamashita, Y. (2001). J. Org. Chem.66, 5987–5995. [DOI] [PubMed]
  11. Zaman, Md. B., Udachin, K. A. & Ripmeester, J. A. (2004). Cryst. Growth Des.4, 585–589.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809016456/hb2948sup1.cif

e-65-o1218-sup1.cif (18KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809016456/hb2948Isup2.hkl

e-65-o1218-Isup2.hkl (151.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES