Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 May 29;65(Pt 6):o1425. doi: 10.1107/S1600536809019333

5-(3-Fluoro­phen­yl)-1,3,4-thia­diazol-2-amine

Yao Wang a, Rong Wan a,*, Feng Han a, Peng Wang a
PMCID: PMC2969772  PMID: 21583266

Abstract

The title compound, C8H6FN3S, was synthesized by the reaction of 3-fluoro­benzoic acid and thio­semicarbazide. The dihedral angle between the planes of the thia­diazole and benzene rings is 37.3 (2)°. In the structure, two crystallographically independent mol­ecules form a centrosymmetric dimer, in which two inter­molecular N—H⋯N hydrogen bonds generate an R 2 2(8) motif.

Related literature

For the biological activity of 1,3,4-thiadiazole derivatives, see: Nakagawa et al. (1996); Wang et al. (1999). For a similar structure, see: Wan et al. (2006). For bond-length data, see: Allen et al. (1987).graphic file with name e-65-o1425-scheme1.jpg

Experimental

Crystal data

  • C8H6FN3S

  • M r = 195.23

  • Monoclinic, Inline graphic

  • a = 11.345 (2) Å

  • b = 7.3130 (15) Å

  • c = 11.269 (2) Å

  • β = 111.64 (3)°

  • V = 869.0 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.34 mm−1

  • T = 293 K

  • 0.20 × 0.10 × 0.10 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968) T min = 0.935, T max = 0.967

  • 1667 measured reflections

  • 1584 independent reflections

  • 1177 reflections with I > 2σ(I)

  • R int = 0.021

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.047

  • wR(F 2) = 0.124

  • S = 1.01

  • 1584 reflections

  • 118 parameters

  • 13 restraints

  • H-atom parameters constrained

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.25 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809019333/at2787sup1.cif

e-65-o1425-sup1.cif (15KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809019333/at2787Isup2.hkl

e-65-o1425-Isup2.hkl (78.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯N2i 0.86 2.14 2.981 (5) 165

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors gratefully acknowledge Professor Hua-Qin Wang of the Analysis Center, Nanjing University, for providing the Enraf–Nonius CAD-4 diffractometer for this research project.

supplementary crystallographic information

Comment

1,3,4-Thiadiazole derivatives represent an interesting class of compounds possessing broad spectrum biological activities (Nakagawa et al., 1996). These compounds are known to exhibit diverse biological effects, such as insecticidal, fungicidal activities (Wang et al., 1999). We are focusing our synthetic and structural studies on thiadiazole derivatives and have published the structure of 5-(4-fluoro-phenyl)-[1,3,4]thiadiazol-2-ylamine (Wan et al., 2006). Here we report the crystal structure, (I).

In the title molecule (I), (Fig. 1), the dihedral angle between the thiadiazole and benzene ring is 37.3 (2)°, which is bigger than the angle in the structure of 5-(4-fluoro-phenyl)-[1,3,4]thiadiazol-2-ylamine (Wan et al., 2006), which is 30.1 (2)°. In the structure, two crystallographically independent molecules form a dimer structure, in which two intermolecular N—H···N hydrogen bonds generate a motif R22(8) (Fig. 2).

Experimental

3-Fluoro-benzoic acid (2 mmol) and thiosemicarbazide (5 mmol) were mixed in a 25 ml flask, and kept in the oil bath at 363 K for 6 h. After cooling, the crude product (I) precipitated and was filted. Pure compound (I) was obtained by crystallization from ethanol (20 ml). Crystals of (I) suitable for X-ray diffraction were obtained by slow evaporation of an acetone solution.

Refinement

All H atoms were placed geometrically with C—H = 0.93 Å and N—H = 0.86 Å, and included in the refinement in riding motion approximation with Uiso(H) = 1.2Ueq of the carrier atom.

Figures

Fig. 1.

Fig. 1.

A view of the molecular structure of (I). Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

A view of a dimer structure, in which two intermolecular N—H···N hydrogen bonds generate a motif R22(8).

Crystal data

C8H6FN3S F(000) = 400
Mr = 195.23 Dx = 1.492 Mg m3
Monoclinic, P21/c Melting point: 515 K
Hall symbol: -P 2ybc Mo Kα radiation, λ = 0.71073 Å
a = 11.345 (2) Å Cell parameters from 25 reflections
b = 7.3130 (15) Å θ = 10–13°
c = 11.269 (2) Å µ = 0.34 mm1
β = 111.64 (3)° T = 293 K
V = 869.0 (3) Å3 Block, colourless
Z = 4 0.20 × 0.10 × 0.10 mm

Data collection

Enraf–Nonius CAD-4 diffractometer 1177 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.021
graphite θmax = 25.3°, θmin = 1.9°
ω/2θ scans h = −13→0
Absorption correction: ψ scan (North et al., 1968) k = 0→8
Tmin = 0.935, Tmax = 0.967 l = −12→13
1667 measured reflections 3 standard reflections every 200 reflections
1584 independent reflections intensity decay: 1%

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.124 H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.06P)2] where P = (Fo2 + 2Fc2)/3
1584 reflections (Δ/σ)max < 0.001
118 parameters Δρmax = 0.37 e Å3
13 restraints Δρmin = −0.25 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S 0.82144 (7) 0.08639 (11) 0.55908 (6) 0.0548 (3)
F 0.5162 (3) −0.2428 (3) 0.0198 (2) 0.1125 (9)
N1 0.8658 (2) 0.1443 (3) 0.3566 (2) 0.0523 (6)
C1 0.7322 (3) −0.2918 (5) 0.3984 (3) 0.0713 (9)
H1B 0.7804 −0.3036 0.4850 0.086*
N2 0.9262 (2) 0.2841 (3) 0.4381 (2) 0.0551 (6)
C2 0.6592 (4) −0.4354 (5) 0.3322 (4) 0.0817 (11)
H2B 0.6585 −0.5443 0.3746 0.098*
N3 0.9606 (3) 0.3931 (4) 0.6429 (2) 0.0733 (9)
H3A 1.0043 0.4846 0.6340 0.088*
H3B 0.9481 0.3787 0.7131 0.088*
C3 0.5871 (4) −0.4202 (5) 0.2040 (4) 0.0822 (12)
H3C 0.5378 −0.5175 0.1592 0.099*
C4 0.5898 (3) −0.2597 (6) 0.1447 (3) 0.0741 (10)
C5 0.6637 (3) −0.1132 (4) 0.2071 (3) 0.0639 (9)
H5A 0.6658 −0.0066 0.1628 0.077*
C6 0.7338 (3) −0.1272 (4) 0.3350 (3) 0.0516 (7)
C7 0.8082 (3) 0.0307 (4) 0.4039 (2) 0.0475 (7)
C8 0.9121 (3) 0.2733 (4) 0.5476 (2) 0.0499 (7)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S 0.0686 (5) 0.0626 (5) 0.0402 (4) −0.0130 (4) 0.0282 (3) 0.0002 (3)
F 0.1200 (19) 0.122 (2) 0.0888 (16) −0.0253 (16) 0.0307 (14) −0.0193 (15)
N1 0.0646 (15) 0.0583 (14) 0.0421 (12) −0.0113 (12) 0.0293 (11) −0.0079 (11)
C1 0.070 (2) 0.068 (2) 0.073 (2) −0.0121 (18) 0.0235 (17) 0.0023 (18)
N2 0.0753 (16) 0.0580 (15) 0.0433 (12) −0.0172 (13) 0.0353 (12) −0.0097 (11)
C2 0.074 (2) 0.060 (2) 0.112 (3) −0.0081 (19) 0.035 (2) 0.001 (2)
N3 0.110 (2) 0.0800 (19) 0.0452 (14) −0.0379 (17) 0.0462 (15) −0.0191 (13)
C3 0.074 (2) 0.079 (3) 0.104 (3) −0.020 (2) 0.045 (2) −0.040 (2)
C4 0.075 (2) 0.091 (3) 0.062 (2) −0.024 (2) 0.0319 (18) −0.0344 (19)
C5 0.075 (2) 0.068 (2) 0.0514 (17) −0.0144 (17) 0.0271 (16) −0.0140 (16)
C6 0.0557 (17) 0.0533 (17) 0.0519 (16) 0.0000 (13) 0.0270 (14) −0.0051 (13)
C7 0.0541 (16) 0.0513 (16) 0.0421 (14) 0.0000 (13) 0.0236 (13) −0.0013 (12)
C8 0.0634 (18) 0.0556 (17) 0.0374 (13) −0.0068 (14) 0.0265 (13) −0.0025 (13)

Geometric parameters (Å, °)

S—C8 1.744 (3) C2—H2B 0.9300
S—C7 1.747 (3) N3—C8 1.338 (3)
F—C4 1.351 (4) N3—H3A 0.8600
N1—C7 1.288 (3) N3—H3B 0.8600
N1—N2 1.377 (3) C3—C4 1.357 (5)
C1—C2 1.375 (5) C3—H3C 0.9300
C1—C6 1.403 (4) C4—C5 1.382 (4)
C1—H1B 0.9300 C5—C6 1.369 (4)
N2—C8 1.303 (3) C5—H5A 0.9300
C2—C3 1.378 (5) C6—C7 1.472 (4)
C8—S—C7 86.76 (13) F—C4—C3 118.3 (3)
C7—N1—N2 114.0 (2) F—C4—C5 119.0 (4)
C2—C1—C6 119.8 (3) C3—C4—C5 122.7 (3)
C2—C1—H1B 120.1 C6—C5—C4 119.0 (3)
C6—C1—H1B 120.1 C6—C5—H5A 120.5
C8—N2—N1 112.5 (2) C4—C5—H5A 120.5
C1—C2—C3 120.9 (4) C5—C6—C1 119.3 (3)
C1—C2—H2B 119.6 C5—C6—C7 119.6 (3)
C3—C2—H2B 119.6 C1—C6—C7 121.1 (3)
C8—N3—H3A 120.0 N1—C7—C6 124.6 (2)
C8—N3—H3B 120.0 N1—C7—S 113.2 (2)
H3A—N3—H3B 120.0 C6—C7—S 122.1 (2)
C4—C3—C2 118.3 (3) N2—C8—N3 124.3 (3)
C4—C3—H3C 120.9 N2—C8—S 113.5 (2)
C2—C3—H3C 120.9 N3—C8—S 122.19 (19)
C7—N1—N2—C8 −0.2 (4) N2—N1—C7—S 0.5 (3)
C6—C1—C2—C3 −0.1 (5) C5—C6—C7—N1 −36.0 (4)
C1—C2—C3—C4 −0.1 (6) C1—C6—C7—N1 144.6 (3)
C2—C3—C4—F −178.1 (3) C5—C6—C7—S 141.4 (3)
C2—C3—C4—C5 1.3 (6) C1—C6—C7—S −37.9 (4)
F—C4—C5—C6 177.0 (3) C8—S—C7—N1 −0.4 (2)
C3—C4—C5—C6 −2.4 (5) C8—S—C7—C6 −178.2 (2)
C4—C5—C6—C1 2.2 (5) N1—N2—C8—N3 −179.5 (3)
C4—C5—C6—C7 −177.2 (3) N1—N2—C8—S −0.1 (3)
C2—C1—C6—C5 −1.0 (5) C7—S—C8—N2 0.3 (2)
C2—C1—C6—C7 178.4 (3) C7—S—C8—N3 179.7 (3)
N2—N1—C7—C6 178.1 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N3—H3A···N2i 0.86 2.14 2.981 (5) 165

Symmetry codes: (i) −x+2, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2787).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Enraf–Nonius (1989). CAD-4 Software Enraf–Nonius, Delft, The Netherlands.
  3. Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  4. Nakagawa, Y., Nishimura, K., Izumi, K., Kinoshita, K., Kimura, T. & Kurihara, N. (1996). J. Pestic. Sci.21, 195–201.
  5. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Wan, R., Han, F., Wu, F., Zhang, J.-J. & Wang, J.-T. (2006). Acta Cryst. E62, o5547–o5548.
  8. Wang, Y. G., Cao, L., Yan, J., Ye, W. F., Zhou, Q. C. & Lu, B. X. (1999). Chem. J. Chin. Univ.20, 1903–1905.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809019333/at2787sup1.cif

e-65-o1425-sup1.cif (15KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809019333/at2787Isup2.hkl

e-65-o1425-Isup2.hkl (78.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES