Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 May 20;65(Pt 6):o1353. doi: 10.1107/S1600536809017553

2,2-Bis(1H-indol-3-yl)indolin-3-one

Zhao-Hao Li a,b, Jing Xu a,b, Wen-Liang Wu a,b, Wei-Ping Su b,*
PMCID: PMC2969773  PMID: 21583204

Abstract

In the title mol­ecule, C24H17N3O, the mean plane of the indolone ring forms dihedral angles of 112.0 (1) and 103.1 (1)° with the planes of the two indole rings. The dihedral angle between the mean planes of the two indole rings is 63.5 (1)°. In the crystal structure, mol­ecules are linked via inter­molecular N—H⋯O hydrogen bonds, forming a two-dimensional network parallel to the ab plane.

Related literature

For the applications of indole derivatives, see: Ramesh et al. (2009). For the isolation of the title compound as a natural product, see: Ganachaud et al. (2008); Stull et al. (1995).graphic file with name e-65-o1353-scheme1.jpg

Experimental

Crystal data

  • C24H17N3O

  • M r = 363.41

  • Monoclinic, Inline graphic

  • a = 10.559 (4) Å

  • b = 8.931 (3) Å

  • c = 19.899 (7) Å

  • β = 98.480 (6)°

  • V = 1856.1 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.40 × 0.35 × 0.15 mm

Data collection

  • Rigaku Mercury CCD diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005) T min = 0.968, T max = 0.988

  • 14004 measured reflections

  • 4245 independent reflections

  • 3606 reflections with I > 2σ(I)

  • R int = 0.024

Refinement

  • R[F 2 > 2σ(F 2)] = 0.048

  • wR(F 2) = 0.118

  • S = 1.06

  • 4245 reflections

  • 253 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.19 e Å−3

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809017553/lh2811sup1.cif

e-65-o1353-sup1.cif (19.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809017553/lh2811Isup2.hkl

e-65-o1353-Isup2.hkl (208KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2B⋯O1i 0.86 2.12 2.9412 (17) 159
N3—H3B⋯O1ii 0.86 2.18 2.9830 (16) 156

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

This work was supported by the Natural Science Foundation of Fujian province (grant No. 2006 J0273) and the ‘One Hundred Talent’ Projects from the Chinese Academy of Sciences.

supplementary crystallographic information

Comment

Indole derivatives are used as bioactive drugs and they exibit anti-allergic, central nervous system depressant and muscle relaxant properties (Ramesh et al., 2009). The title compound is a natural product that has been isolated from bacterial sources (Stull et al.., 1995; Ganachaud et al.., 2008). Recently, we found different indole derivatives could be formed by oxidation solely on the basis of the reaction solvent and temperature. As part of our studies, we report herein the synthesis and crystal structure of the title compound (I) (Fig. 1).

The title compound is a trimeric condensation product of indole through the formation of a quaternary carbon (C8) centre. The indolone ring forms dihedral angle of 112.0 (1)° and 103.1 (1)°, respectively, with the two indole rings (C9/C10/C11/C12/C13/C14/C15/C16/N2) and (C17/C18/C19/C20/C21/C22/C23/C24/N3). The mean planes of the two indole form a dihedral angle of 63.5 (1)°. In the crystal structure, the carbonyl atom O1 acts as a bifurcated acceptor for the N-H groups of atoms N2 and N3 to form a two-dimensional network parallel to the ab plane (Table 1, Fig. 2).

Experimental

The title compound was obtained from a mixture of 1H-indole (78 mg) with tBuCOOH (0.18 ml) and H3PMo12O14 (9 mg) in toluene (1 ml) and CH3COOH (1 ml) under a nitrogen atmosphere at room temperature for 24 h. The crude product was isolated and purified by silica gel columnchromatography. Yellow prism-shaped crystals of (I) suitable for X-ray diffraction were grown by slow evaporation of a dichloromethane solution at room temperature.

Refinement

H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.93 Å; N—H = 0.86 Å and Uiso(H) = 1.2Ueq(C,N).

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I), showing 30% probability displacement ellopsoids. H atoms are shown as small spheres.

Fig. 2.

Fig. 2.

Part of the crystal structure of (I) showing the hydrogen bonded layers parallel to the ab plane. Intermolecular hydrogen bonds are shown as dashed lines and H atoms not involved in H-bonding have been omitted.

Crystal data

C24H17N3O F(000) = 760
Mr = 363.41 Dx = 1.300 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 4234 reflections
a = 10.559 (4) Å θ = 3.0–27.5°
b = 8.931 (3) Å µ = 0.08 mm1
c = 19.899 (7) Å T = 293 K
β = 98.480 (6)° Prism, yellow
V = 1856.1 (11) Å3 0.40 × 0.35 × 0.15 mm
Z = 4

Data collection

Rigaku Mercury CCD diffractometer 4245 independent reflections
Radiation source: fine-focus sealed tube 3606 reflections with I > 2σ(I)
graphite Rint = 0.024
Detector resolution: 14.6306 pixels mm-1 θmax = 27.5°, θmin = 2.1°
CCD_Profile_fitting scans h = −11→13
Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005) k = −11→11
Tmin = 0.968, Tmax = 0.988 l = −22→25
14004 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.118 H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0513P)2 + 0.4603P] where P = (Fo2 + 2Fc2)/3
4245 reflections (Δ/σ)max < 0.001
253 parameters Δρmax = 0.21 e Å3
0 restraints Δρmin = −0.19 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.96565 (9) 0.43252 (10) 0.15911 (5) 0.0369 (2)
N1 0.95403 (12) 0.04726 (13) 0.11858 (6) 0.0406 (3)
H1A 0.9668 −0.0474 0.1239 0.049*
N2 0.75509 (12) 0.05077 (15) 0.28328 (7) 0.0490 (3)
H2B 0.6914 −0.0017 0.2923 0.059*
N3 1.31856 (12) 0.10180 (15) 0.26178 (6) 0.0471 (3)
H3B 1.3724 0.0659 0.2945 0.056*
C1 0.89773 (13) 0.11138 (16) 0.05986 (7) 0.0374 (3)
C2 0.85094 (14) 0.0420 (2) −0.00189 (8) 0.0483 (4)
H2A 0.8532 −0.0615 −0.0065 0.058*
C3 0.80181 (17) 0.1314 (2) −0.05518 (8) 0.0635 (5)
H3A 0.7706 0.0868 −0.0966 0.076*
C4 0.7967 (2) 0.2867 (3) −0.04991 (9) 0.0746 (6)
H4A 0.7630 0.3437 −0.0874 0.090*
C5 0.84151 (19) 0.3558 (2) 0.01064 (8) 0.0604 (5)
H5A 0.8383 0.4595 0.0147 0.072*
C6 0.89185 (13) 0.26719 (17) 0.06585 (7) 0.0392 (3)
C7 0.94976 (12) 0.30732 (14) 0.13383 (6) 0.0315 (3)
C8 0.99057 (13) 0.15946 (14) 0.17220 (6) 0.0321 (3)
C9 0.81798 (14) 0.15783 (17) 0.32497 (7) 0.0417 (3)
C10 0.79721 (18) 0.2065 (2) 0.38885 (8) 0.0557 (4)
H10A 0.7324 0.1655 0.4100 0.067*
C11 0.8753 (2) 0.3166 (2) 0.41938 (8) 0.0616 (5)
H11A 0.8635 0.3509 0.4621 0.074*
C12 0.97253 (17) 0.3786 (2) 0.38756 (8) 0.0550 (4)
H12A 1.0236 0.4541 0.4093 0.066*
C13 0.99417 (15) 0.32982 (17) 0.32449 (7) 0.0424 (3)
H13A 1.0597 0.3712 0.3040 0.051*
C14 0.91605 (13) 0.21709 (15) 0.29179 (7) 0.0351 (3)
C15 0.90865 (13) 0.13904 (15) 0.22798 (7) 0.0342 (3)
C16 0.80919 (14) 0.04053 (17) 0.22537 (8) 0.0432 (3)
H16A 0.7823 −0.0240 0.1894 0.052*
C17 1.34968 (13) 0.18478 (15) 0.20847 (7) 0.0380 (3)
C18 1.46884 (15) 0.23042 (18) 0.19416 (9) 0.0491 (4)
H18A 1.5436 0.2065 0.2230 0.059*
C19 1.47219 (15) 0.31203 (18) 0.13592 (9) 0.0511 (4)
H19A 1.5507 0.3436 0.1251 0.061*
C20 1.36003 (15) 0.34840 (18) 0.09265 (8) 0.0461 (4)
H20A 1.3651 0.4030 0.0533 0.055*
C21 1.24194 (14) 0.30469 (15) 0.10722 (7) 0.0380 (3)
H21A 1.1679 0.3304 0.0782 0.046*
C22 1.23417 (12) 0.22113 (14) 0.16619 (6) 0.0322 (3)
C23 1.13200 (12) 0.15690 (14) 0.19763 (6) 0.0326 (3)
C24 1.18882 (14) 0.08515 (16) 0.25473 (7) 0.0412 (3)
H24A 1.1454 0.0325 0.2846 0.049*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0351 (5) 0.0344 (5) 0.0407 (5) 0.0007 (4) 0.0040 (4) −0.0052 (4)
N1 0.0497 (7) 0.0320 (6) 0.0391 (6) −0.0014 (5) 0.0029 (5) −0.0058 (5)
N2 0.0361 (7) 0.0527 (8) 0.0603 (8) −0.0086 (6) 0.0138 (6) 0.0105 (6)
N3 0.0361 (7) 0.0560 (8) 0.0472 (7) 0.0108 (6) −0.0002 (5) 0.0156 (6)
C1 0.0288 (7) 0.0464 (8) 0.0367 (7) −0.0010 (6) 0.0041 (5) −0.0075 (6)
C2 0.0377 (8) 0.0583 (9) 0.0474 (8) −0.0003 (7) 0.0016 (6) −0.0203 (7)
C3 0.0549 (11) 0.0890 (14) 0.0415 (9) 0.0140 (10) −0.0100 (8) −0.0235 (9)
C4 0.0916 (16) 0.0844 (14) 0.0395 (9) 0.0287 (12) −0.0181 (9) −0.0053 (9)
C5 0.0750 (12) 0.0580 (10) 0.0423 (8) 0.0195 (9) −0.0110 (8) −0.0010 (7)
C6 0.0353 (7) 0.0455 (8) 0.0347 (7) 0.0055 (6) −0.0015 (6) −0.0053 (6)
C7 0.0252 (6) 0.0364 (7) 0.0330 (6) 0.0018 (5) 0.0048 (5) −0.0025 (5)
C8 0.0327 (7) 0.0322 (6) 0.0311 (6) −0.0015 (5) 0.0034 (5) −0.0032 (5)
C9 0.0367 (8) 0.0463 (8) 0.0437 (8) 0.0066 (6) 0.0114 (6) 0.0125 (6)
C10 0.0577 (10) 0.0660 (11) 0.0486 (9) 0.0120 (9) 0.0249 (8) 0.0170 (8)
C11 0.0735 (13) 0.0775 (13) 0.0365 (8) 0.0178 (10) 0.0174 (8) 0.0021 (8)
C12 0.0601 (11) 0.0623 (10) 0.0419 (8) 0.0047 (8) 0.0051 (7) −0.0090 (7)
C13 0.0425 (8) 0.0485 (8) 0.0366 (7) −0.0009 (6) 0.0067 (6) −0.0014 (6)
C14 0.0327 (7) 0.0391 (7) 0.0338 (6) 0.0038 (5) 0.0058 (5) 0.0054 (5)
C15 0.0309 (7) 0.0353 (7) 0.0359 (7) −0.0004 (5) 0.0039 (5) 0.0026 (5)
C16 0.0367 (8) 0.0436 (8) 0.0486 (8) −0.0051 (6) 0.0044 (6) 0.0023 (6)
C17 0.0338 (7) 0.0366 (7) 0.0430 (7) 0.0063 (5) 0.0037 (6) 0.0013 (6)
C18 0.0297 (7) 0.0524 (9) 0.0640 (10) 0.0058 (6) 0.0030 (7) 0.0001 (8)
C19 0.0359 (8) 0.0515 (9) 0.0686 (11) −0.0027 (7) 0.0172 (7) −0.0014 (8)
C20 0.0472 (9) 0.0473 (8) 0.0463 (8) −0.0034 (7) 0.0154 (7) 0.0031 (7)
C21 0.0371 (7) 0.0407 (7) 0.0359 (7) 0.0006 (6) 0.0049 (6) 0.0006 (6)
C22 0.0313 (7) 0.0308 (6) 0.0346 (6) 0.0036 (5) 0.0051 (5) −0.0022 (5)
C23 0.0319 (7) 0.0327 (6) 0.0334 (6) 0.0029 (5) 0.0056 (5) 0.0001 (5)
C24 0.0376 (8) 0.0436 (8) 0.0428 (8) 0.0054 (6) 0.0070 (6) 0.0096 (6)

Geometric parameters (Å, °)

O1—C7 1.2274 (16) C9—C14 1.411 (2)
N1—C1 1.3571 (18) C10—C11 1.367 (3)
N1—C8 1.4731 (16) C10—H10A 0.9300
N1—H1A 0.8600 C11—C12 1.398 (3)
N2—C16 1.363 (2) C11—H11A 0.9300
N2—C9 1.371 (2) C12—C13 1.379 (2)
N2—H2B 0.8600 C12—H12A 0.9300
N3—C24 1.3645 (19) C13—C14 1.400 (2)
N3—C17 1.3731 (19) C13—H13A 0.9300
N3—H3B 0.8600 C14—C15 1.4405 (19)
C1—C6 1.399 (2) C15—C16 1.3652 (19)
C1—C2 1.3997 (19) C16—H16A 0.9300
C2—C3 1.367 (3) C17—C18 1.391 (2)
C2—H2A 0.9300 C17—C22 1.4136 (19)
C3—C4 1.392 (3) C18—C19 1.374 (2)
C3—H3A 0.9300 C18—H18A 0.9300
C4—C5 1.374 (2) C19—C20 1.396 (2)
C4—H4A 0.9300 C19—H19A 0.9300
C5—C6 1.394 (2) C20—C21 1.378 (2)
C5—H5A 0.9300 C20—H20A 0.9300
C6—C7 1.4451 (18) C21—C22 1.4031 (19)
C7—C8 1.5542 (18) C21—H21A 0.9300
C8—C23 1.5046 (19) C22—C23 1.4434 (18)
C8—C15 1.5155 (19) C23—C24 1.3640 (19)
C9—C10 1.391 (2) C24—H24A 0.9300
C1—N1—C8 111.79 (11) C10—C11—C12 121.26 (16)
C1—N1—H1A 124.1 C10—C11—H11A 119.4
C8—N1—H1A 124.1 C12—C11—H11A 119.4
C16—N2—C9 109.42 (12) C13—C12—C11 121.24 (17)
C16—N2—H2B 125.3 C13—C12—H12A 119.4
C9—N2—H2B 125.3 C11—C12—H12A 119.4
C24—N3—C17 109.29 (12) C12—C13—C14 119.00 (15)
C24—N3—H3B 125.4 C12—C13—H13A 120.5
C17—N3—H3B 125.4 C14—C13—H13A 120.5
N1—C1—C6 111.45 (12) C13—C14—C9 118.37 (13)
N1—C1—C2 128.48 (14) C13—C14—C15 135.19 (13)
C6—C1—C2 120.06 (14) C9—C14—C15 106.43 (13)
C3—C2—C1 117.83 (16) C16—C15—C14 106.67 (12)
C3—C2—H2A 121.1 C16—C15—C8 124.66 (13)
C1—C2—H2A 121.1 C14—C15—C8 128.66 (12)
C2—C3—C4 122.53 (15) N2—C16—C15 109.91 (14)
C2—C3—H3A 118.7 N2—C16—H16A 125.0
C4—C3—H3A 118.7 C15—C16—H16A 125.0
C5—C4—C3 120.11 (17) N3—C17—C18 130.01 (13)
C5—C4—H4A 119.9 N3—C17—C22 107.46 (12)
C3—C4—H4A 119.9 C18—C17—C22 122.53 (14)
C4—C5—C6 118.52 (17) C19—C18—C17 117.69 (14)
C4—C5—H5A 120.7 C19—C18—H18A 121.2
C6—C5—H5A 120.7 C17—C18—H18A 121.2
C5—C6—C1 120.95 (14) C18—C19—C20 121.24 (14)
C5—C6—C7 131.01 (14) C18—C19—H19A 119.4
C1—C6—C7 107.97 (12) C20—C19—H19A 119.4
O1—C7—C6 128.53 (13) C21—C20—C19 121.07 (14)
O1—C7—C8 124.16 (12) C21—C20—H20A 119.5
C6—C7—C8 107.31 (11) C19—C20—H20A 119.5
N1—C8—C23 111.98 (11) C20—C21—C22 119.54 (13)
N1—C8—C15 109.37 (11) C20—C21—H21A 120.2
C23—C8—C15 113.41 (11) C22—C21—H21A 120.2
N1—C8—C7 101.43 (10) C21—C22—C17 117.92 (12)
C23—C8—C7 111.57 (10) C21—C22—C23 135.52 (12)
C15—C8—C7 108.37 (11) C17—C22—C23 106.56 (12)
N2—C9—C10 130.02 (15) C24—C23—C22 106.43 (12)
N2—C9—C14 107.57 (13) C24—C23—C8 125.45 (12)
C10—C9—C14 122.41 (15) C22—C23—C8 128.05 (11)
C11—C10—C9 117.71 (15) C23—C24—N3 110.25 (13)
C11—C10—H10A 121.1 C23—C24—H24A 124.9
C9—C10—H10A 121.1 N3—C24—H24A 124.9

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N2—H2B···O1i 0.86 2.12 2.9412 (17) 159
N3—H3B···O1ii 0.86 2.18 2.9830 (16) 156

Symmetry codes: (i) −x+3/2, y−1/2, −z+1/2; (ii) −x+5/2, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2811).

References

  1. Brandenburg, K. (1999). DIAMOND Crystal Impact GbR, Bonn, Germany.
  2. Ganachaud, C., Garfagnoli, V., Tron, T. & Iacazio, G. (2008). Tetrahedron Lett.49, 2476–2478.
  3. Ramesh, P., Sundaresan, S. S., Lakshmi, N. V., Perumal, P. T. & Ponnuswamy, M. N. (2009). Acta Cryst. E65, o994. [DOI] [PMC free article] [PubMed]
  4. Rigaku/MSC (2005). CrystalClear Rigaku/MSC, The Woodlands, Texas, USA.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Stull, T. L., Hyun, L., Sharetzsky, C., Wooten, J., McCauley, J. P. & Smith, A. B. III (1995). J. Biol. Chem.270, 5–8. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809017553/lh2811sup1.cif

e-65-o1353-sup1.cif (19.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809017553/lh2811Isup2.hkl

e-65-o1353-Isup2.hkl (208KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES