Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 May 29;65(Pt 6):o1414. doi: 10.1107/S1600536809018054

N-Benzyl­pyridine-2-sulfonamide

Xiao-Ping Chen a, Shou-Fa Han a,*
PMCID: PMC2969775  PMID: 21583257

Abstract

The title compound, C12H12N2O2S, was obtained by the reaction of 2-mercaptopyridine and benzyl­amine. The dihedral angle between the benzene and pyridine rings is 75.75 (9)°. In the crystal, mol­ecules are linked into chains along the c axis by N—H⋯O and N—H⋯N hydrogen bonds; the chains are cross-linked into a two-dimensional network parallel to the bc plane via C—H⋯O hydrogen bonds.

Related literature

For the synthesis, see: Wright et al. (2006). For applications of sulfonamides, see: Connor (1998). For the structure of N-benzyl­quinoline-8-sulfonamide, see: Andrighetti-Fröhner et al. (2006).graphic file with name e-65-o1414-scheme1.jpg

Experimental

Crystal data

  • C12H12N2O2S

  • M r = 248.30

  • Monoclinic, Inline graphic

  • a = 11.099 (2) Å

  • b = 10.709 (2) Å

  • c = 9.513 (2) Å

  • β = 91.893 (4)°

  • V = 1130.1 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.28 mm−1

  • T = 173 K

  • 0.50 × 0.20 × 0.18 mm

Data collection

  • Bruker SMART APEX area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001) T min = 0.823, T max = 1.00 (expected range = 0.783–0.951)

  • 5922 measured reflections

  • 2195 independent reflections

  • 2078 reflections with I > 2σ(I)

  • R int = 0.021

Refinement

  • R[F 2 > 2σ(F 2)] = 0.038

  • wR(F 2) = 0.101

  • S = 1.00

  • 2195 reflections

  • 157 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.40 e Å−3

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809018054/ci2800sup1.cif

e-65-o1414-sup1.cif (16.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809018054/ci2800Isup2.hkl

e-65-o1414-Isup2.hkl (108KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯N2i 0.82 (2) 2.49 (2) 3.264 (2) 157 (2)
N1—H1⋯O1i 0.82 (2) 2.50 (2) 3.111 (2) 132 (2)
C4—H4⋯O1ii 0.95 2.52 3.406 (2) 154
C5—H5⋯O2iii 0.95 2.51 3.121 (2) 122

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

The authors thank the National Science Foundation of China (grant No. 20802060) for supporting this work.

supplementary crystallographic information

Comment

Sulfonamides are an important category of pharmaceutical compounds with a broad spectrum of biological activities, as good antibacterials, diuretics, anticonvulsants, and HIV protease inhibitors (Connor, 1998).

The molecular structure of the title compound is shown in Fig. 1. Bond lengths and angles are comparable to those observed for N-benzylquinoline-8-sulfonamide (Andrighetti-Fröhner et al., 2006). The C1—S1—N1—C6 torsion angle is -71.85 (15)°. The dihedral angle between the benzene and pyridine rings is 75.75 (9)°.

Hydrogen bonding plays a significant role in stabilizing the crystal structure; see Table 1 for geometric parameters and symmetry operations. The molecules are linked into a chain along the c axis by N—H···O and N—H···N hydrogen bonds. The chains are cross-linked via C—H···O hydrogen bonds to form a two-dimensional network parallel to the bc plane.

Experimental

The title compound was synthesized using a similar synthetic method for the preparation of heteroaryl sulfonamides (Wright et al., 2006). 2-Mercaptopyridine (0.56 g, 5 mmol) was stirred in a mixture of 25 mL of dichloromethane and 25 mL of 1 M HCl in a 125 ml flask for 8 min at 263 to 268 K. Cold sodium hypochlorite (6% solution, 0.68 M, 26 ml, 18 mmol, 3.3 equiv) was then added dropwise with very rapid stirring, maintaining the internal temperature at 263 to 268 K. The mixture was stirred for 30 min at 263 to 268 K after the addition was completed, the mixture was transferred to a separatory funnel (pre-cooled with ice water) and the dichloromethane layer was rapidly separated and collected in a clean 125 ml flask cooled in a ice-salt bath. Benzylamine (1.1 ml, 10 mmol) was added with stirring, when the dichloromethane layer became a white suspension, the flask was removed to an ice-water bath and the suspension was stirred for 30 min at 273 K. The suspension was then washed with 1 M HCl, then with water and brine. Drying (MgSO4) and concentration afforded the title compound as a white solid with 81% yield. Single crystals of the title compound were grown in a petroleum ether-ethyl acetate solution (3:1 v/v) by slow evaporation.

Refinement

Atom H1 was located in a difference map and its positional parameters were refined. The remaining H atoms were positioned geometrically [C-H = 0.95 Å (aromatic) and 0.99 Å (methylene)] and were included in the refinement in the riding-model approximation. The isotropic displacement parameters were set at 1.2 times Ueq of the parent atoms.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the compound, with 50% probability displacement ellipsoids (arbitrary spheres for H atoms).

Crystal data

C12H12N2O2S F(000) = 520
Mr = 248.30 Dx = 1.459 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 4484 reflections
a = 11.099 (2) Å θ = 2.6–28.2°
b = 10.709 (2) Å µ = 0.28 mm1
c = 9.513 (2) Å T = 173 K
β = 91.893 (4)° Needle, colourless
V = 1130.1 (4) Å3 0.50 × 0.20 × 0.18 mm
Z = 4

Data collection

Bruker SMART APEX area-detector diffractometer 2195 independent reflections
Radiation source: fine-focus sealed tube 2078 reflections with I > 2σ(I)
graphite Rint = 0.021
φ and ω scans θmax = 26.0°, θmin = 1.8°
Absorption correction: multi-scan (SADABS; Bruker, 2001) h = −12→13
Tmin = 0.823, Tmax = 1.00 k = −11→13
5922 measured reflections l = −11→11

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.101 H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0567P)2 + 0.7208P] where P = (Fo2 + 2Fc2)/3
2195 reflections (Δ/σ)max = 0.001
157 parameters Δρmax = 0.32 e Å3
0 restraints Δρmin = −0.40 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.29480 (4) 0.35956 (4) −0.07138 (4) 0.02300 (15)
O1 0.23235 (11) 0.37287 (12) −0.20382 (13) 0.0297 (3)
O2 0.35175 (11) 0.46543 (11) −0.00687 (13) 0.0303 (3)
N1 0.20157 (13) 0.30466 (14) 0.03864 (16) 0.0247 (3)
H1 0.2331 (19) 0.299 (2) 0.118 (2) 0.030*
N2 0.37751 (14) 0.15428 (14) −0.18353 (16) 0.0288 (3)
C1 0.40853 (15) 0.24506 (16) −0.09461 (17) 0.0242 (4)
C2 0.51786 (16) 0.25414 (18) −0.02210 (19) 0.0296 (4)
H2 0.5353 0.3219 0.0397 0.036*
C3 0.60085 (17) 0.16046 (19) −0.0433 (2) 0.0336 (4)
H3 0.6775 0.1622 0.0041 0.040*
C4 0.57087 (17) 0.06477 (18) −0.13383 (19) 0.0332 (4)
H4 0.6264 −0.0009 −0.1497 0.040*
C5 0.45909 (17) 0.06519 (18) −0.20149 (19) 0.0329 (4)
H5 0.4393 −0.0014 −0.2640 0.039*
C6 0.11909 (16) 0.20325 (17) −0.00404 (19) 0.0297 (4)
H6A 0.1627 0.1226 0.0006 0.036*
H6B 0.0903 0.2166 −0.1025 0.036*
C7 0.01310 (15) 0.19830 (16) 0.09002 (17) 0.0240 (4)
C8 −0.01617 (16) 0.08823 (16) 0.15529 (19) 0.0274 (4)
H8 0.0322 0.0162 0.1424 0.033*
C9 −0.11535 (16) 0.08132 (18) 0.23949 (19) 0.0321 (4)
H9 −0.1354 0.0046 0.2830 0.039*
C10 −0.18463 (17) 0.18527 (19) 0.2601 (2) 0.0345 (4)
H10 −0.2523 0.1809 0.3185 0.041*
C11 −0.15598 (17) 0.29609 (18) 0.1958 (2) 0.0353 (4)
H11 −0.2037 0.3683 0.2104 0.042*
C12 −0.05840 (17) 0.30255 (17) 0.1105 (2) 0.0301 (4)
H12 −0.0399 0.3790 0.0653 0.036*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0240 (2) 0.0224 (2) 0.0226 (2) −0.00314 (15) 0.00148 (16) 0.00164 (15)
O1 0.0300 (6) 0.0336 (7) 0.0254 (7) −0.0023 (5) −0.0006 (5) 0.0055 (5)
O2 0.0312 (6) 0.0233 (6) 0.0364 (7) −0.0054 (5) −0.0001 (5) 0.0000 (5)
N1 0.0253 (7) 0.0274 (8) 0.0215 (7) −0.0047 (6) 0.0020 (6) −0.0024 (6)
N2 0.0323 (8) 0.0296 (8) 0.0245 (8) −0.0012 (6) 0.0005 (6) −0.0012 (6)
C1 0.0248 (8) 0.0264 (8) 0.0215 (8) −0.0040 (7) 0.0046 (6) 0.0024 (6)
C2 0.0260 (9) 0.0326 (9) 0.0303 (9) −0.0045 (7) 0.0012 (7) 0.0000 (7)
C3 0.0259 (9) 0.0405 (10) 0.0346 (10) −0.0009 (8) 0.0040 (7) 0.0058 (8)
C4 0.0355 (10) 0.0352 (10) 0.0295 (9) 0.0068 (8) 0.0098 (7) 0.0040 (8)
C5 0.0415 (10) 0.0307 (9) 0.0266 (9) 0.0020 (8) 0.0039 (8) −0.0030 (7)
C6 0.0315 (9) 0.0287 (9) 0.0293 (9) −0.0085 (7) 0.0084 (7) −0.0066 (7)
C7 0.0233 (8) 0.0270 (8) 0.0217 (8) −0.0053 (7) 0.0000 (6) −0.0029 (6)
C8 0.0276 (8) 0.0240 (8) 0.0306 (9) −0.0019 (7) 0.0003 (7) −0.0022 (7)
C9 0.0340 (9) 0.0310 (9) 0.0315 (9) −0.0079 (8) 0.0042 (7) 0.0035 (8)
C10 0.0275 (9) 0.0421 (11) 0.0343 (10) −0.0065 (8) 0.0088 (7) −0.0059 (8)
C11 0.0292 (9) 0.0331 (10) 0.0438 (11) 0.0038 (8) 0.0020 (8) −0.0049 (8)
C12 0.0329 (9) 0.0251 (9) 0.0323 (9) −0.0015 (7) −0.0008 (7) 0.0022 (7)

Geometric parameters (Å, °)

S1—O1 1.4249 (13) C5—H5 0.95
S1—O2 1.4268 (13) C6—C7 1.502 (2)
S1—N1 1.6073 (15) C6—H6A 0.99
S1—C1 1.7787 (18) C6—H6B 0.99
N1—C6 1.469 (2) C7—C8 1.376 (2)
N1—H1 0.82 (2) C7—C12 1.387 (3)
N2—C1 1.327 (2) C8—C9 1.385 (3)
N2—C5 1.330 (2) C8—H8 0.95
C1—C2 1.379 (2) C9—C10 1.371 (3)
C2—C3 1.381 (3) C9—H9 0.95
C2—H2 0.95 C10—C11 1.377 (3)
C3—C4 1.373 (3) C10—H10 0.95
C3—H3 0.95 C11—C12 1.376 (3)
C4—C5 1.379 (3) C11—H11 0.95
C4—H4 0.95 C12—H12 0.95
O1—S1—O2 119.76 (8) N1—C6—C7 110.77 (14)
O1—S1—N1 107.91 (8) N1—C6—H6A 109.5
O2—S1—N1 107.23 (8) C7—C6—H6A 109.5
O1—S1—C1 106.59 (8) N1—C6—H6B 109.5
O2—S1—C1 107.16 (8) C7—C6—H6B 109.5
N1—S1—C1 107.67 (8) H6A—C6—H6B 108.1
C6—N1—S1 119.95 (12) C8—C7—C12 118.78 (16)
C6—N1—H1 116.0 (15) C8—C7—C6 120.01 (16)
S1—N1—H1 111.2 (15) C12—C7—C6 121.20 (16)
C1—N2—C5 116.37 (15) C7—C8—C9 120.72 (17)
N2—C1—C2 125.17 (17) C7—C8—H8 119.6
N2—C1—S1 114.46 (13) C9—C8—H8 119.6
C2—C1—S1 120.36 (14) C10—C9—C8 119.98 (17)
C1—C2—C3 117.12 (17) C10—C9—H9 120.0
C1—C2—H2 121.4 C8—C9—H9 120.0
C3—C2—H2 121.4 C9—C10—C11 119.85 (18)
C4—C3—C2 119.00 (18) C9—C10—H10 120.1
C4—C3—H3 120.5 C11—C10—H10 120.1
C2—C3—H3 120.5 C12—C11—C10 120.18 (18)
C3—C4—C5 119.10 (18) C12—C11—H11 119.9
C3—C4—H4 120.5 C10—C11—H11 119.9
C5—C4—H4 120.5 C11—C12—C7 120.48 (17)
N2—C5—C4 123.24 (17) C11—C12—H12 119.8
N2—C5—H5 118.4 C7—C12—H12 119.8
C4—C5—H5 118.4
O1—S1—N1—C6 42.85 (16) C2—C3—C4—C5 0.3 (3)
O2—S1—N1—C6 173.12 (13) C1—N2—C5—C4 −0.4 (3)
C1—S1—N1—C6 −71.85 (15) C3—C4—C5—N2 −0.1 (3)
C5—N2—C1—C2 0.8 (3) S1—N1—C6—C7 −159.20 (13)
C5—N2—C1—S1 −178.54 (13) N1—C6—C7—C8 −126.83 (17)
O1—S1—C1—N2 −34.71 (14) N1—C6—C7—C12 54.6 (2)
O2—S1—C1—N2 −164.06 (12) C12—C7—C8—C9 0.2 (3)
N1—S1—C1—N2 80.87 (14) C6—C7—C8—C9 −178.38 (16)
O1—S1—C1—C2 145.94 (14) C7—C8—C9—C10 −0.9 (3)
O2—S1—C1—C2 16.58 (16) C8—C9—C10—C11 0.6 (3)
N1—S1—C1—C2 −98.49 (15) C9—C10—C11—C12 0.3 (3)
N2—C1—C2—C3 −0.6 (3) C10—C11—C12—C7 −1.0 (3)
S1—C1—C2—C3 178.71 (13) C8—C7—C12—C11 0.7 (3)
C1—C2—C3—C4 0.0 (3) C6—C7—C12—C11 179.29 (17)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1···N2i 0.82 (2) 2.49 (2) 3.264 (2) 157 (2)
N1—H1···O1i 0.82 (2) 2.50 (2) 3.111 (2) 132 (2)
C4—H4···O1ii 0.95 2.52 3.406 (2) 154
C5—H5···O2iii 0.95 2.51 3.121 (2) 122

Symmetry codes: (i) x, −y+1/2, z+1/2; (ii) −x+1, y−1/2, −z−1/2; (iii) x, −y+1/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2800).

References

  1. Andrighetti-Fröhner, C. R., da Silva, L. E., Nunes, R. J., Simões, C. M. O. & Foro, S. (2006). Acta Cryst. E62, o3693–o3694.
  2. Bruker (2001). SAINT, SMART and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Connor, E. E. (1998). Prim. Care Update Ob. Gyn.5, 32–35.
  4. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Wright, S. W. & Hallstrom, K. N. (2006). J. Org. Chem.71, 1080–1084. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809018054/ci2800sup1.cif

e-65-o1414-sup1.cif (16.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809018054/ci2800Isup2.hkl

e-65-o1414-Isup2.hkl (108KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES