Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 May 20;65(Pt 6):o1315. doi: 10.1107/S1600536809017747

2-(4-{3-[1-(3-Bromo­prop­yl)-3,3-dimethyl-2,3-dihydro-1H-indol-2-yl­idene]prop-1-en­yl}-3-cyano-5,5-dimethyl-2,5-dihydro­furan-2-yl­idene)malononitrile

Graeme J Gainsford a,*, M Delower H Bhuiyan a, Andrew J Kay a
PMCID: PMC2969784  PMID: 21583172

Abstract

The backbone of the title mol­ecule, C26H25BrN4O, is approximately planar: the dihedral angle between the planes of the indoline ring system and the furan ring is 7.68 (14)°. In the crystal, layers lying parallel to (10Inline graphic) occur, with the mol­ecules inter­acting via weak C—H⋯N(cyano) and C—H⋯Br bonds and short N(cyano)⋯Br contacts [3.345 (4) Å].

Related literature

For general background to zwitterionic dyes and their applications, see: Dalton (2002); Gainsford et al. (2007, 2008); Kay et al. (2004). For related structures, see: Li et al. (2005); Marder et al. (1993); Mushkalo & Sogulayaev (1986); Wang et al. (2007). For a description of the Cambridge Stuctural Database, see: Allen (2002).graphic file with name e-65-o1315-scheme1.jpg

Experimental

Crystal data

  • C26H25BrN4O

  • M r = 489.41

  • Monoclinic, Inline graphic

  • a = 10.2349 (4) Å

  • b = 9.4017 (4) Å

  • c = 24.4524 (10) Å

  • β = 96.175 (2)°

  • V = 2339.29 (17) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.78 mm−1

  • T = 122 K

  • 0.85 × 0.36 × 0.10 mm

Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (Blessing, 1995) T min = 0.549, T max = 0.746 (expected range = 0.616–0.837)

  • 56895 measured reflections

  • 6791 independent reflections

  • 5482 reflections with I > 2σ(I)

  • R int = 0.044

Refinement

  • R[F 2 > 2σ(F 2)] = 0.059

  • wR(F 2) = 0.156

  • S = 1.19

  • 6791 reflections

  • 293 parameters

  • H-atom parameters constrained

  • Δρmax = 3.08 e Å−3

  • Δρmin = −0.60 e Å−3

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT and SADABS (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997), PLATON (Spek, 2009) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 and PLATON.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809017747/hb2973sup1.cif

e-65-o1315-sup1.cif (23.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809017747/hb2973Isup2.hkl

e-65-o1315-Isup2.hkl (325.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9B⋯N1i 0.98 2.59 3.449 (5) 147
C23—H23B⋯Br1ii 0.98 2.99 3.962 (4) 171
C26—H26B⋯Br1iii 0.99 2.95 3.815 (4) 147

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

We thank Drs J. Wikaira and C. Fitchett of the University of Canterbury, New Zealand, for their assistance with the data collection.

supplementary crystallographic information

Comment

The X-ray crystallographic and structural properties of zwitterionic dyes and their precursors have been a subject of some interest to us (Gainsford et al., 2007, 2008) due to their potential application in a number of photonic and optoelectronic devices (Dalton, 2002; Kay et al., 2004). The title compound was unintentionally synthesized en route to 2-{3-Cyano-4-[2-(10,10-dimethyl-6,7,8,10-tetrahydro-pyrido[1,2-a] indol-9-yl)-vinyl]-5,5-dimethyl-5H-furan-2-ylidene}-malononitrile. Compound REFCODES are from the C.S.D. (Version 5.30, with February 2009 updates; Allen, 2002)

The asymmetric unit contents are shown in Figure 1. The 5-membered ring plane of atoms O1,C4—C7 (hereafter "CDFP", [3-Cyano-5,5-Dimethyl-2,5-dihydrofuran-2-ylidene]propanedinitrile) can also be regarded as planar in this case (r.m.s. deviations 0.024 (3) Å). The dicyano group (N1,C1,C2,C3,N2) is planar (r.m.s.d. 0.008 (3) Å) but twisted by 6.6 (2)° with respect to the "CDFP" group; this is similar to the twist in related compound NOJKUT (Gainsford et al., 2008) of 5.69 (17)°. The fused indolylidene system (atoms N4, C14 to C21) is also essentially planar (r.m.s.d. 0.017 (3) Å) and makes a dihedral angle with the "CDFP" ring of 7.68 (14)°. This reflects a twist in the C11–C14 polyene chain beginning at C11: the plane through C11–C14 subtends 5.4 (3)° with the "CDFP" plane. There is considerable delocalization of charge along the polyene /"CDFP" chain with a bond length alternation (BLA) value (Marder et al., 1993) of 0.012Å compared with the free "CDFP" value of 0.108Å (Li et al., 2005) and 0.060Å in GIMQAV (Gainsford et al., 2007).

The almost planar molecules are arranged into nearly coplanar layers parallel to the (1,0,-2) plane with only CH···N(cyano), C–H···Br and N(cyano)···Br contacts. The (methyl)CH···N(cyano) contact (Table 1) is similar to that observed in several structures (Allen, 2002), where the methyl group is constrained by other interactions e.g. in JETGEV (Wang et al. 2007; N···H 2.57 Å, C–H···N 157°) the cyano nitrogen involved is bifurcated by a polyene C–H···N interation (H···N 2.72 Å, C–H···N 157°). Here the distance to the equivalent polyene H (H11) is 2.75 Å, with C–H···N 161°. In NOJKUT, a similar interaction is observed: H···N 2.45 Å, C–H···N 156°. The bromine atoms provide weak linking interactions: N2···Br1 3.345 (4)Å (Br1 at x - 1,1/2 - y,z - 1/2) and two C–H···Br interactions (Table 1). A final interaction is noted for completeness that would complete a weak interacting chain (N2···H23C(C23)H23B···Br1···N2) with H23C···N2 (N2 at 1 - x, y - 1/2,1/2 - z) and provide a weak interplanar link (see also Figure 2).

Experimental

A mixture of 1 g (2.77 mmol) of 1-(3-bromopropyl)-2,3,3-trimethyl-3H-indolium bromide (Mushkalo & Sogulayaev, 1986), 883 mg (2.21 mmol) of {4-(2-acetanilidoethenyl)-3-cyano-5,5-dimethyl-2(5H)-furanylidene} propanedinitrile (compound 11a; Kay et al., 2004) and triethylamine as a catalyst in 30 ml me thanol was refluxed for 3 h. After cooling to room temperature, the precipitate was filtered and washed with copious quantities of hot water, followed by small portions of cold methanol to afford the target molecule as a red-purple powder (720 mg, 67%). Platy crystals, of limited quality, were grown from a 2:1 dichloromethane/hexanes mixture. Mp: 264–266 °C; 1H NMR (500 MHz, CDCl3) δ 1.61 (6 H, s, 2 x CH3), 1.72 (6 H, s, 2 x CH3), 2.34 (2 H, qn, CH2), 3.50 (2 H, t, J 5.7 Hz, CH2), 4.06 (2 H, t, J 7.2 Hz, CH2), 5.78 (1 H, d, J 12.9 Hz, CH), 5.85 (1 H, d, J 12.9 Hz, CH), 7.04 (1 H, d, J 7.8 Hz, ArH), 7.16–7.21 (1 H, m, ArH), 7.31–7.37 (2 H, m, ArH), 8.78 (1H, br s, ArH); 13C NMR (125 MHz, CDCl3) δ 26.4, 27.7, 29.8, 29.9, 41.8, 48.9, 95.7, 99.9, 107.3, 109.3, 112.9, 113.8, 122.4, 124.6, 128.6, 140.4, 142.0, 147.3, 172.7, 177.4.

Refinement

The final residual map peak is 1.19Å from Br1. On the basis of average I/σ(I) analysis, data was excluded for θ > 30°. Four reflections affected by the backstop and 19 others which were clearly outlier data presumably affected by residual material (with Fo >>Fc and Δ(Fo2)/σ(Fo2) > 4.9) were omitted from the refinements (using OMIT). All methyl and tertiary H atoms were refined with Uiso 1.5 & 1.2 times respectively that of the Ueq of their parent atom. All H atoms bound to carbon were constrained to their expected geometries (C—H 0.95, 0.98 & 1.00 Å).

Figures

Fig. 1.

Fig. 1.

Molecular structure of the asymmetric unit (Farrugia, 1997); displacement ellipsoids are shown at the 30% probability level.

Fig. 2.

Fig. 2.

Packing diagram of the unit cell. Contact atoms are shown as balls; not all interactions and labels are shown for clarity (see text). Symmetry (i) x - 1,1/2 - y, z - 1/2 (ii) x, 1 + y, z (iii) 1 - x, y - 1/2,1/2 - z.

Crystal data

C26H25BrN4O F(000) = 1008
Mr = 489.41 Dx = 1.390 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 9973 reflections
a = 10.2349 (4) Å θ = 2.3–29.3°
b = 9.4017 (4) Å µ = 1.78 mm1
c = 24.4524 (10) Å T = 122 K
β = 96.175 (2)° Block, red
V = 2339.29 (17) Å3 0.85 × 0.36 × 0.10 mm
Z = 4

Data collection

Bruker APEXII CCD diffractometer 6791 independent reflections
Radiation source: fine-focus sealed tube 5482 reflections with I > 2σ(I)
graphite Rint = 0.044
Detector resolution: 8.333 pixels mm-1 θmax = 30.0°, θmin = 2.5°
φ and ω scans h = −14→14
Absorption correction: multi-scan (Blessing, 1995) k = −13→13
Tmin = 0.549, Tmax = 0.746 l = −34→34
56895 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.156 H-atom parameters constrained
S = 1.19 w = 1/[σ2(Fo2) + (0.0596P)2 + 4.5665P] where P = (Fo2 + 2Fc2)/3
6791 reflections (Δ/σ)max = 0.001
293 parameters Δρmax = 3.08 e Å3
0 restraints Δρmin = −0.60 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 1.04264 (4) −0.19667 (4) 0.464951 (13) 0.03123 (11)
O1 0.4789 (2) 0.4651 (2) 0.11618 (9) 0.0259 (5)
N1 0.5733 (4) 0.9332 (3) 0.18253 (17) 0.0487 (9)
N2 0.3317 (4) 0.7471 (5) 0.04014 (15) 0.0487 (9)
N3 0.7924 (3) 0.6919 (3) 0.24466 (12) 0.0302 (6)
N4 1.0399 (2) 0.1410 (3) 0.36430 (10) 0.0183 (4)
C1 0.5374 (4) 0.8345 (4) 0.15816 (16) 0.0330 (7)
C2 0.4909 (3) 0.7121 (3) 0.12784 (14) 0.0258 (6)
C3 0.4020 (3) 0.7300 (4) 0.07938 (15) 0.0317 (7)
C4 0.6310 (3) 0.3831 (3) 0.18773 (11) 0.0186 (5)
C5 0.5308 (3) 0.3319 (3) 0.14217 (12) 0.0210 (6)
C6 0.5325 (3) 0.5769 (3) 0.14380 (12) 0.0210 (5)
C7 0.6286 (3) 0.5313 (3) 0.18679 (12) 0.0195 (5)
C8 0.5913 (3) 0.2449 (4) 0.09903 (13) 0.0263 (6)
H8A 0.5238 0.2225 0.0688 0.040*
H8B 0.6274 0.1564 0.1156 0.040*
H8C 0.6619 0.2997 0.0849 0.040*
C9 0.4168 (3) 0.2573 (4) 0.16424 (16) 0.0308 (7)
H9A 0.3757 0.3215 0.1890 0.046*
H9B 0.4486 0.1720 0.1845 0.046*
H9C 0.3520 0.2300 0.1336 0.046*
C10 0.7165 (3) 0.6235 (3) 0.21904 (12) 0.0213 (5)
C11 0.7057 (3) 0.2857 (3) 0.22079 (12) 0.0208 (5)
H11 0.6935 0.1877 0.2123 0.025*
C12 0.7964 (3) 0.3200 (3) 0.26505 (12) 0.0213 (6)
H12 0.8067 0.4170 0.2755 0.026*
C13 0.8724 (3) 0.2188 (3) 0.29458 (12) 0.0209 (5)
H13 0.8588 0.1224 0.2838 0.025*
C14 0.9674 (3) 0.2454 (3) 0.33870 (11) 0.0182 (5)
C15 1.1325 (3) 0.1961 (3) 0.40603 (11) 0.0201 (5)
C16 1.2270 (3) 0.1236 (3) 0.43992 (12) 0.0214 (5)
H16 1.2363 0.0233 0.4377 0.026*
C17 1.3078 (3) 0.2043 (4) 0.47734 (13) 0.0280 (6)
H17 1.3740 0.1583 0.5012 0.034*
C18 1.2933 (3) 0.3511 (4) 0.48045 (14) 0.0293 (7)
H18 1.3500 0.4040 0.5063 0.035*
C19 1.1968 (3) 0.4214 (4) 0.44613 (13) 0.0267 (6)
H19 1.1860 0.5215 0.4485 0.032*
C20 1.1171 (3) 0.3418 (3) 0.40854 (12) 0.0203 (5)
C21 1.0071 (3) 0.3868 (3) 0.36571 (11) 0.0193 (5)
C22 1.0602 (3) 0.4925 (3) 0.32554 (14) 0.0272 (6)
H22A 1.1278 0.4459 0.3064 0.041*
H22B 1.0984 0.5748 0.3460 0.041*
H22C 0.9882 0.5241 0.2986 0.041*
C23 0.8931 (3) 0.4525 (4) 0.39357 (13) 0.0263 (6)
H23A 0.8224 0.4806 0.3654 0.039*
H23B 0.9248 0.5363 0.4148 0.039*
H23C 0.8596 0.3823 0.4182 0.039*
C24 1.0321 (3) −0.0092 (3) 0.34754 (12) 0.0206 (5)
H24A 1.1117 −0.0592 0.3643 0.025*
H24B 1.0317 −0.0147 0.3071 0.025*
C25 0.9108 (3) −0.0860 (3) 0.36403 (12) 0.0237 (6)
H25A 0.8316 −0.0389 0.3455 0.028*
H25B 0.9116 −0.1849 0.3502 0.028*
C26 0.8990 (3) −0.0903 (4) 0.42482 (13) 0.0281 (6)
H26A 0.8143 −0.1349 0.4311 0.034*
H26B 0.8990 0.0082 0.4392 0.034*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.0428 (2) 0.02650 (17) 0.02325 (16) −0.00417 (14) −0.00169 (12) 0.00277 (13)
O1 0.0256 (10) 0.0217 (10) 0.0283 (11) 0.0037 (8) −0.0076 (8) 0.0013 (9)
N1 0.061 (2) 0.0208 (15) 0.061 (2) 0.0085 (15) −0.0063 (18) −0.0004 (15)
N2 0.0389 (18) 0.065 (2) 0.0400 (19) 0.0197 (17) −0.0053 (15) 0.0059 (17)
N3 0.0309 (14) 0.0266 (14) 0.0326 (14) 0.0013 (11) 0.0015 (11) −0.0061 (12)
N4 0.0171 (10) 0.0198 (11) 0.0173 (11) −0.0004 (9) −0.0010 (8) 0.0007 (9)
C1 0.0345 (17) 0.0250 (16) 0.0390 (19) 0.0095 (13) 0.0019 (14) 0.0068 (14)
C2 0.0247 (14) 0.0243 (15) 0.0280 (15) 0.0087 (12) 0.0012 (11) 0.0049 (12)
C3 0.0285 (16) 0.0319 (18) 0.0348 (18) 0.0122 (13) 0.0032 (13) 0.0056 (14)
C4 0.0176 (12) 0.0212 (13) 0.0169 (12) 0.0015 (10) 0.0013 (9) −0.0016 (10)
C5 0.0188 (12) 0.0187 (13) 0.0242 (14) 0.0030 (10) −0.0044 (10) 0.0021 (10)
C6 0.0196 (12) 0.0221 (14) 0.0210 (13) 0.0046 (10) 0.0017 (10) 0.0015 (11)
C7 0.0198 (12) 0.0193 (13) 0.0193 (13) 0.0032 (10) 0.0012 (10) −0.0007 (10)
C8 0.0299 (16) 0.0261 (15) 0.0221 (14) 0.0014 (12) −0.0016 (12) −0.0022 (12)
C9 0.0172 (13) 0.0291 (16) 0.046 (2) 0.0003 (12) 0.0014 (13) 0.0062 (14)
C10 0.0228 (13) 0.0179 (13) 0.0232 (14) 0.0042 (10) 0.0034 (10) −0.0013 (11)
C11 0.0215 (13) 0.0190 (13) 0.0212 (13) 0.0018 (10) −0.0016 (10) 0.0005 (10)
C12 0.0209 (13) 0.0216 (14) 0.0210 (13) 0.0000 (10) 0.0004 (10) −0.0001 (10)
C13 0.0226 (13) 0.0192 (13) 0.0200 (13) −0.0012 (10) −0.0021 (10) 0.0001 (10)
C14 0.0178 (12) 0.0204 (13) 0.0165 (12) 0.0000 (10) 0.0018 (10) 0.0025 (10)
C15 0.0159 (11) 0.0288 (14) 0.0155 (12) −0.0019 (11) 0.0017 (9) 0.0028 (11)
C16 0.0188 (12) 0.0238 (14) 0.0212 (13) −0.0010 (10) 0.0002 (10) 0.0026 (11)
C17 0.0198 (13) 0.0391 (18) 0.0237 (14) −0.0021 (13) −0.0043 (11) 0.0043 (13)
C18 0.0241 (14) 0.0344 (17) 0.0271 (15) −0.0080 (13) −0.0074 (12) −0.0015 (13)
C19 0.0272 (14) 0.0232 (15) 0.0283 (15) −0.0074 (12) −0.0040 (12) 0.0001 (12)
C20 0.0194 (12) 0.0221 (13) 0.0188 (13) −0.0042 (10) −0.0008 (10) 0.0024 (10)
C21 0.0201 (12) 0.0191 (13) 0.0179 (12) −0.0038 (10) −0.0011 (10) 0.0024 (10)
C22 0.0296 (15) 0.0215 (14) 0.0296 (15) −0.0067 (12) −0.0014 (12) 0.0065 (12)
C23 0.0253 (14) 0.0252 (15) 0.0278 (15) −0.0004 (12) 0.0009 (11) −0.0057 (12)
C24 0.0237 (13) 0.0194 (13) 0.0184 (13) 0.0011 (10) 0.0012 (10) −0.0014 (10)
C25 0.0253 (14) 0.0222 (14) 0.0227 (14) −0.0060 (11) −0.0021 (11) −0.0002 (11)
C26 0.0278 (15) 0.0312 (17) 0.0261 (15) −0.0029 (13) 0.0061 (12) 0.0006 (13)

Geometric parameters (Å, °)

Br1—C26 1.953 (3) C13—H13 0.9500
O1—C6 1.336 (4) C14—C21 1.520 (4)
O1—C5 1.476 (3) C15—C20 1.382 (4)
N1—C1 1.142 (5) C15—C16 1.383 (4)
N2—C3 1.147 (5) C16—C17 1.390 (4)
N3—C10 1.142 (4) C16—H16 0.9500
N4—C14 1.344 (4) C17—C18 1.392 (5)
N4—C15 1.414 (4) C17—H17 0.9500
N4—C24 1.470 (4) C18—C19 1.393 (4)
C1—C2 1.423 (5) C18—H18 0.9500
C2—C6 1.383 (4) C19—C20 1.382 (4)
C2—C3 1.424 (5) C19—H19 0.9500
C4—C7 1.394 (4) C20—C21 1.513 (4)
C4—C11 1.395 (4) C21—C22 1.537 (4)
C4—C5 1.510 (4) C21—C23 1.542 (4)
C5—C9 1.510 (4) C22—H22A 0.9800
C5—C8 1.519 (4) C22—H22B 0.9800
C6—C7 1.426 (4) C22—H22C 0.9800
C7—C10 1.424 (4) C23—H23A 0.9800
C8—H8A 0.9800 C23—H23B 0.9800
C8—H8B 0.9800 C23—H23C 0.9800
C8—H8C 0.9800 C24—C25 1.528 (4)
C9—H9A 0.9800 C24—H24A 0.9900
C9—H9B 0.9800 C24—H24B 0.9900
C9—H9C 0.9800 C25—C26 1.505 (4)
C11—C12 1.386 (4) C25—H25A 0.9900
C11—H11 0.9500 C25—H25B 0.9900
C12—C13 1.383 (4) C26—H26A 0.9900
C12—H12 0.9500 C26—H26B 0.9900
C13—C14 1.395 (4)
C6—O1—C5 109.9 (2) C15—C16—C17 117.0 (3)
C14—N4—C15 111.2 (2) C15—C16—H16 121.5
C14—N4—C24 124.2 (2) C17—C16—H16 121.5
C15—N4—C24 124.4 (2) C16—C17—C18 121.2 (3)
N1—C1—C2 179.2 (4) C16—C17—H17 119.4
C6—C2—C1 121.4 (3) C18—C17—H17 119.4
C6—C2—C3 119.5 (3) C17—C18—C19 120.7 (3)
C1—C2—C3 119.1 (3) C17—C18—H18 119.7
N2—C3—C2 178.6 (4) C19—C18—H18 119.7
C7—C4—C11 132.4 (3) C20—C19—C18 118.3 (3)
C7—C4—C5 107.3 (2) C20—C19—H19 120.9
C11—C4—C5 120.3 (3) C18—C19—H19 120.9
O1—C5—C4 103.4 (2) C15—C20—C19 120.3 (3)
O1—C5—C9 107.0 (2) C15—C20—C21 109.1 (2)
C4—C5—C9 112.0 (3) C19—C20—C21 130.6 (3)
O1—C5—C8 108.2 (2) C20—C21—C14 101.6 (2)
C4—C5—C8 112.9 (2) C20—C21—C22 109.6 (2)
C9—C5—C8 112.7 (3) C14—C21—C22 112.6 (2)
O1—C6—C2 118.9 (3) C20—C21—C23 110.4 (2)
O1—C6—C7 110.4 (2) C14—C21—C23 111.2 (2)
C2—C6—C7 130.6 (3) C22—C21—C23 111.1 (3)
C4—C7—C10 126.2 (3) C21—C22—H22A 109.5
C4—C7—C6 108.8 (3) C21—C22—H22B 109.5
C10—C7—C6 124.7 (3) H22A—C22—H22B 109.5
C5—C8—H8A 109.5 C21—C22—H22C 109.5
C5—C8—H8B 109.5 H22A—C22—H22C 109.5
H8A—C8—H8B 109.5 H22B—C22—H22C 109.5
C5—C8—H8C 109.5 C21—C23—H23A 109.5
H8A—C8—H8C 109.5 C21—C23—H23B 109.5
H8B—C8—H8C 109.5 H23A—C23—H23B 109.5
C5—C9—H9A 109.5 C21—C23—H23C 109.5
C5—C9—H9B 109.5 H23A—C23—H23C 109.5
H9A—C9—H9B 109.5 H23B—C23—H23C 109.5
C5—C9—H9C 109.5 N4—C24—C25 113.6 (2)
H9A—C9—H9C 109.5 N4—C24—H24A 108.8
H9B—C9—H9C 109.5 C25—C24—H24A 108.8
N3—C10—C7 176.1 (3) N4—C24—H24B 108.8
C12—C11—C4 125.4 (3) C25—C24—H24B 108.8
C12—C11—H11 117.3 H24A—C24—H24B 107.7
C4—C11—H11 117.3 C26—C25—C24 115.3 (2)
C13—C12—C11 122.7 (3) C26—C25—H25A 108.5
C13—C12—H12 118.7 C24—C25—H25A 108.5
C11—C12—H12 118.7 C26—C25—H25B 108.5
C12—C13—C14 125.9 (3) C24—C25—H25B 108.5
C12—C13—H13 117.0 H25A—C25—H25B 107.5
C14—C13—H13 117.0 C25—C26—Br1 112.0 (2)
N4—C14—C13 122.2 (3) C25—C26—H26A 109.2
N4—C14—C21 109.2 (2) Br1—C26—H26A 109.2
C13—C14—C21 128.6 (3) C25—C26—H26B 109.2
C20—C15—C16 122.5 (3) Br1—C26—H26B 109.2
C20—C15—N4 108.9 (2) H26A—C26—H26B 107.9
C16—C15—N4 128.5 (3)
C6—O1—C5—C4 −3.6 (3) C12—C13—C14—C21 2.0 (5)
C6—O1—C5—C9 114.8 (3) C14—N4—C15—C20 1.6 (3)
C6—O1—C5—C8 −123.5 (3) C24—N4—C15—C20 176.2 (2)
C7—C4—C5—O1 1.8 (3) C14—N4—C15—C16 −177.6 (3)
C11—C4—C5—O1 −177.6 (3) C24—N4—C15—C16 −3.0 (4)
C7—C4—C5—C9 −113.0 (3) C20—C15—C16—C17 −0.1 (4)
C11—C4—C5—C9 67.6 (3) N4—C15—C16—C17 179.0 (3)
C7—C4—C5—C8 118.5 (3) C15—C16—C17—C18 0.2 (5)
C11—C4—C5—C8 −60.9 (4) C16—C17—C18—C19 0.3 (5)
C5—O1—C6—C2 −176.3 (3) C17—C18—C19—C20 −0.8 (5)
C5—O1—C6—C7 4.1 (3) C16—C15—C20—C19 −0.5 (4)
C1—C2—C6—O1 175.3 (3) N4—C15—C20—C19 −179.7 (3)
C3—C2—C6—O1 −6.1 (5) C16—C15—C20—C21 179.2 (3)
C1—C2—C6—C7 −5.1 (5) N4—C15—C20—C21 0.0 (3)
C3—C2—C6—C7 173.4 (3) C18—C19—C20—C15 0.9 (5)
C11—C4—C7—C10 6.0 (5) C18—C19—C20—C21 −178.7 (3)
C5—C4—C7—C10 −173.3 (3) C15—C20—C21—C14 −1.4 (3)
C11—C4—C7—C6 179.7 (3) C19—C20—C21—C14 178.3 (3)
C5—C4—C7—C6 0.5 (3) C15—C20—C21—C22 −120.6 (3)
O1—C6—C7—C4 −2.9 (3) C19—C20—C21—C22 59.1 (4)
C2—C6—C7—C4 177.6 (3) C15—C20—C21—C23 116.7 (3)
O1—C6—C7—C10 171.0 (3) C19—C20—C21—C23 −63.6 (4)
C2—C6—C7—C10 −8.6 (5) N4—C14—C21—C20 2.3 (3)
C7—C4—C11—C12 3.6 (5) C13—C14—C21—C20 −177.8 (3)
C5—C4—C11—C12 −177.2 (3) N4—C14—C21—C22 119.4 (3)
C4—C11—C12—C13 −176.6 (3) C13—C14—C21—C22 −60.7 (4)
C11—C12—C13—C14 178.5 (3) N4—C14—C21—C23 −115.1 (3)
C15—N4—C14—C13 177.6 (3) C13—C14—C21—C23 64.8 (4)
C24—N4—C14—C13 2.9 (4) C14—N4—C24—C25 −76.2 (3)
C15—N4—C14—C21 −2.5 (3) C15—N4—C24—C25 109.9 (3)
C24—N4—C14—C21 −177.1 (2) N4—C24—C25—C26 −60.1 (4)
C12—C13—C14—N4 −178.1 (3) C24—C25—C26—Br1 −63.5 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C9—H9B···N1i 0.98 2.59 3.449 (5) 147
C23—H23B···Br1ii 0.98 2.99 3.962 (4) 171
C26—H26B···Br1iii 0.99 2.95 3.815 (4) 147

Symmetry codes: (i) x, y−1, z; (ii) x, y+1, z; (iii) −x+2, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2973).

References

  1. Allen, F. H. (2002). Acta Cryst. B58, 380–388. [DOI] [PubMed]
  2. Blessing, R. H. (1995). Acta Cryst. A51, 33–38. [DOI] [PubMed]
  3. Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Dalton, L. (2002). Polymers for Photonics Applications 1, Advances in Polymer Science, edited by K. S. Lee, pp. 1–86, Berlin/Heidelberg: Springer-Verlag.
  5. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  6. Gainsford, G. J., Bhuiyan, M. D. H. & Kay, A. J. (2007). Acta Cryst. C63, o633–o637. [DOI] [PubMed]
  7. Gainsford, G. J., Bhuiyan, M. D. H. & Kay, A. J. (2008). Acta Cryst. C64, o616–o619. [DOI] [PubMed]
  8. Kay, A. J., Woolhouse, A. D., Zhao, Y. & Clays, K. (2004). J. Mater Chem.14, 1321–1330.
  9. Li, S.-Y., Song, Y.-Y., You, Z.-L., Wen, Y.-W. & Qin, J.-G. (2005). Acta Cryst. E61, o2093–o2095.
  10. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst.39, 453–457.
  11. Marder, S. R., Perry, J. W., Tiemann, B. G., Gorman, C. B., Gilmour, S., Biddle, S. L. & Bourhill, G. (1993). J. Am. Chem. Soc.115, 2524–2526.
  12. Mushkalo, I. L. & Sogulayaev, Yu. A. (1986). Sov. Progr. Chem.52, 509–513.
  13. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  14. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  15. Wang, H., Lu, Z., Lord, S. J., Willets, K. A., Bertke, J. A., Bunge, S. F., Moerner, W. E. & Twieg, R. J. (2007). Tetrahedron, 63, 103–114.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809017747/hb2973sup1.cif

e-65-o1315-sup1.cif (23.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809017747/hb2973Isup2.hkl

e-65-o1315-Isup2.hkl (325.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES