Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 May 29;65(Pt 6):m689. doi: 10.1107/S1600536809019345

Dimorpholinium penta­chloridoanti­monate(III)

Li Zhuang Chen a,*
PMCID: PMC2969790  PMID: 21583046

Abstract

The asymmetric unit of the title compound, (C4H10NO)2[SbCl5], consists of two morpholinium cations in chair conformations, and a penta­chloridoanti­monate dianion with the SbIII ion in a slightly distorted square-pyramidal coordination environment. The morpholinium cations are connected to each other by N—H⋯O hydrogen bonds, and they link the chloride anions and the anti­monate SbCl3 group via N—H⋯Cl contacts.

Related literature

For a phase transition in bis­(ethyl­dimethyl­ammonium) penta­chlorido­anti­monate(III), see: Bujak & Zaleski (1999); for the structure of N-methyl­piperazinediium penta­chlorido­­anti­monate(III), see: Shen-Tu et al. (2008); for the low-temperature phase of morpholinium tetra­fluorido­borate, see: Owczarek et al. (2008).graphic file with name e-65-0m689-scheme1.jpg

Experimental

Crystal data

  • (C4H10NO)2[SbCl5]

  • M r = 475.26

  • Orthorhombic, Inline graphic

  • a = 9.0562 (18) Å

  • b = 10.273 (2) Å

  • c = 18.032 (4) Å

  • V = 1677.6 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.44 mm−1

  • T = 298 K

  • 0.25 × 0.20 × 0.20 mm

Data collection

  • Rigaku Mercury2 (2× 2 bin mode) diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) T min = 0.567, T max = 0.616

  • 17552 measured reflections

  • 3845 independent reflections

  • 3759 reflections with I > 2σ(I)

  • R int = 0.026

Refinement

  • R[F 2 > 2σ(F 2)] = 0.021

  • wR(F 2) = 0.046

  • S = 1.24

  • 3845 reflections

  • 163 parameters

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.66 e Å−3

  • Absolute structure: Flack (1983)

  • Flack parameter: −0.005 (15)

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809019345/si2174sup1.cif

e-65-0m689-sup1.cif (16.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809019345/si2174Isup2.hkl

e-65-0m689-Isup2.hkl (188.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1D⋯Cl5i 0.90 2.35 3.180 (2) 154
C1—H1B⋯Cl3ii 0.97 2.82 3.548 (3) 132
N2—H2D⋯Cl5iii 0.90 2.73 3.394 (2) 131
N2—H2C⋯Cl1iv 0.90 2.45 3.306 (3) 159
N2—H2D⋯O1v 0.90 2.44 2.848 (3) 108
N1—H1C⋯Cl3 0.90 2.75 3.463 (3) 137
N1—H1C⋯Cl5 0.90 2.72 3.448 (3) 138

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic.

supplementary crystallographic information

Comment

Structural investigation of crystalline solids undergoing phase transformation has been one of the classical areas of research among both chemists and physicists. The morpholinium tetrafluoroborate undergoes two reversible phase transitions (Owczarek et al. 2008). In our laboratory, a compound containing two morpholinium cations and a pentachloridoantimonate dianion in the asymmetric unit has been synthesized (Fig. 1), with the SbIII ion in a slightly distorted square-pyramidal coordination environment.

The Sb atom is coordinated by five Cl atoms, with Sb—Cl distances ranging from 2.4045 (8) to 2.9230 (9) Å. The Sb—Cl distances are similar to the values of 2.4110 (10) to 2.9112 (11) Å reported by Shen-Tu et al. (2008) and slightly different to the values of 2.499 (4)–2.768 (4) Å reported by Bujak & Zaleski (1999). In the title compound the difference between the longest bond (Sb1—Cl5) and shortest bond (Sb1—Cl4) is ca 0.50 Å. The six-membered ring morpholinium cations have chair conformation. The morpholinium cations are connected to each other by N—H···O hydrogen bonds, and they link the Cl- anions and the antimonate group SbCl3via N–H···Cl contacts (Table 1, Fig. 2).

Experimental

SbCl3, morpholine and 20% aqueous HCl in a molar ratio of 1:1:1 were mixed and dissolved in sufficient ethanol by heating to 353 K forming a clear solution. The reaction mixture was cooled slowly to room temperature, crystals of the title compound were formed, collected and washed with dilute aqueous HCl.

Refinement

H atoms were included in calculated positions with N—H = 0.90 and C—H = 0.97 Å and included in the riding-model approximation with Uiso(H) = 1.2Ueq(C, N).

Figures

Fig. 1.

Fig. 1.

A view of the title compound with the atomic numbering scheme. Displacement ellipsoids were drawn at the 30% probability level.

Fig. 2.

Fig. 2.

The packing viewed approximately along the b axis. Hydrogen bonds are drawn as dashed lines.

Crystal data

(C4H10NO)2[SbCl5] F(000) = 936
Mr = 475.26 Dx = 1.882 Mg m3
Orthorhombic, P212121 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2ab Cell parameters from 3845 reflections
a = 9.0562 (18) Å θ = 3–27.5°
b = 10.273 (2) Å µ = 2.44 mm1
c = 18.032 (4) Å T = 298 K
V = 1677.6 (6) Å3 Block, colourless
Z = 4 0.25 × 0.20 × 0.20 mm

Data collection

Rigaku Mercury2 (2× 2 bin mode) diffractometer 3845 independent reflections
Radiation source: fine-focus sealed tube 3759 reflections with I > 2σ(I)
graphite Rint = 0.026
Detector resolution: 13.6612 pixels mm-1 θmax = 27.5°, θmin = 3.0°
ω scans h = −11→11
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) k = −13→13
Tmin = 0.567, Tmax = 0.616 l = −23→23
17552 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.021 H-atom parameters constrained
wR(F2) = 0.046 w = 1/[σ2(Fo2) + (0.0201P)2] where P = (Fo2 + 2Fc2)/3
S = 1.24 (Δ/σ)max = 0.003
3845 reflections Δρmax = 0.32 e Å3
163 parameters Δρmin = −0.66 e Å3
0 restraints Absolute structure: Flack (1983)
Primary atom site location: structure-invariant direct methods Flack parameter: −0.005 (15)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.7135 (3) 0.5818 (4) 0.95313 (17) 0.0425 (8)
H1A 0.7413 0.6730 0.9546 0.051*
H1B 0.7866 0.5329 0.9808 0.051*
C2 0.5653 (4) 0.5651 (3) 0.98887 (17) 0.0431 (7)
H2A 0.5395 0.4735 0.9906 0.052*
H2B 0.5680 0.5980 1.0393 0.052*
C3 0.4560 (3) 0.5973 (4) 0.86593 (18) 0.0459 (8)
H3A 0.3890 0.6514 0.8374 0.055*
H3B 0.4236 0.5076 0.8616 0.055*
C4 0.6092 (3) 0.6104 (3) 0.83609 (17) 0.0440 (8)
H4A 0.6114 0.5797 0.7852 0.053*
H4B 0.6372 0.7016 0.8361 0.053*
C5 0.8890 (4) 0.6967 (3) 0.68509 (19) 0.0461 (8)
H5A 0.7903 0.6605 0.6819 0.055*
H5B 0.9521 0.6478 0.6516 0.055*
C6 0.8854 (3) 0.8366 (3) 0.66122 (19) 0.0442 (8)
H6A 0.8495 0.8431 0.6107 0.053*
H6B 0.8196 0.8858 0.6931 0.053*
C7 1.0960 (3) 0.8730 (3) 0.74228 (15) 0.0376 (6)
H7A 1.0382 0.9243 0.7769 0.045*
H7B 1.1976 0.9028 0.7446 0.045*
C8 1.0880 (4) 0.7312 (3) 0.76295 (16) 0.0411 (7)
H8A 1.1510 0.6814 0.7299 0.049*
H8B 1.1247 0.7199 0.8131 0.049*
Cl1 0.82449 (9) 1.24256 (9) 0.98134 (4) 0.0472 (2)
Cl2 0.55039 (9) 1.24280 (7) 0.82480 (4) 0.04292 (19)
Cl3 0.39146 (8) 0.94495 (7) 0.87224 (4) 0.03967 (18)
Cl4 0.76734 (9) 0.96688 (8) 0.86621 (5) 0.04330 (19)
Cl5 0.60479 (7) 0.89292 (7) 1.04341 (4) 0.03298 (15)
N1 0.4534 (2) 0.6378 (2) 0.94513 (14) 0.0407 (6)
H1C 0.4718 0.7238 0.9483 0.049*
H1D 0.3631 0.6231 0.9641 0.049*
N2 1.0376 (3) 0.8903 (2) 0.66613 (14) 0.0365 (6)
H2C 1.0966 0.8490 0.6336 0.044*
H2D 1.0366 0.9754 0.6544 0.044*
O1 0.7123 (2) 0.5387 (2) 0.87871 (12) 0.0377 (5)
O2 0.9422 (2) 0.6830 (2) 0.75855 (11) 0.0430 (5)
Sb1 0.580748 (19) 1.092473 (15) 0.928491 (9) 0.02418 (5)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0334 (15) 0.054 (2) 0.0404 (17) 0.0040 (17) −0.0037 (13) −0.0141 (16)
C2 0.0470 (18) 0.0450 (18) 0.0374 (16) −0.0036 (16) 0.0051 (15) −0.0036 (13)
C3 0.0338 (16) 0.053 (2) 0.0507 (19) 0.0112 (17) −0.0098 (13) −0.0112 (17)
C4 0.0459 (18) 0.0497 (19) 0.0364 (16) 0.0138 (17) 0.0012 (13) 0.0029 (14)
C5 0.0397 (18) 0.0457 (18) 0.0531 (19) −0.0173 (15) −0.0041 (15) 0.0022 (15)
C6 0.0322 (16) 0.0501 (19) 0.0502 (19) −0.0012 (15) −0.0070 (14) 0.0157 (15)
C7 0.0376 (15) 0.0393 (15) 0.0360 (15) −0.0078 (14) 0.0006 (13) −0.0015 (12)
C8 0.0445 (17) 0.0466 (17) 0.0322 (15) 0.0030 (17) −0.0056 (15) 0.0060 (12)
Cl1 0.0464 (4) 0.0481 (5) 0.0472 (5) −0.0051 (4) 0.0000 (4) −0.0024 (4)
Cl2 0.0547 (5) 0.0364 (4) 0.0377 (4) −0.0036 (4) −0.0052 (3) 0.0098 (3)
Cl3 0.0387 (4) 0.0398 (4) 0.0405 (4) −0.0074 (3) −0.0098 (3) 0.0001 (3)
Cl4 0.0394 (4) 0.0377 (4) 0.0529 (5) 0.0030 (4) 0.0191 (4) −0.0080 (3)
Cl5 0.0284 (3) 0.0367 (4) 0.0338 (3) 0.0025 (3) 0.0000 (3) 0.0024 (3)
N1 0.0215 (11) 0.0392 (14) 0.0613 (18) −0.0020 (10) 0.0108 (11) −0.0130 (12)
N2 0.0381 (13) 0.0300 (13) 0.0413 (14) −0.0037 (11) 0.0054 (10) 0.0085 (11)
O1 0.0298 (11) 0.0443 (13) 0.0389 (12) 0.0123 (9) 0.0013 (9) −0.0074 (10)
O2 0.0443 (12) 0.0420 (11) 0.0427 (12) −0.0127 (11) 0.0039 (10) 0.0146 (9)
Sb1 0.02303 (8) 0.02452 (8) 0.02498 (8) −0.00036 (8) 0.00101 (7) −0.00180 (7)

Geometric parameters (Å, °)

C1—O1 1.413 (4) C6—N2 1.487 (4)
C1—C2 1.499 (4) C6—H6A 0.9700
C1—H1A 0.9700 C6—H6B 0.9700
C1—H1B 0.9700 C7—N2 1.482 (4)
C2—N1 1.485 (4) C7—C8 1.506 (4)
C2—H2A 0.9700 C7—H7A 0.9700
C2—H2B 0.9700 C7—H7B 0.9700
C3—N1 1.488 (4) C8—O2 1.412 (4)
C3—C4 1.494 (4) C8—H8A 0.9700
C3—H3A 0.9700 C8—H8B 0.9700
C3—H3B 0.9700 Cl1—Sb1 2.8562 (9)
C4—O1 1.416 (4) Cl2—Sb1 2.4405 (8)
C4—H4A 0.9700 Cl3—Sb1 2.5028 (8)
C4—H4B 0.9700 Cl4—Sb1 2.4045 (8)
C5—O2 1.417 (4) N1—H1C 0.9000
C5—C6 1.501 (4) N1—H1D 0.9000
C5—H5A 0.9700 N2—H2C 0.9000
C5—H5B 0.9700 N2—H2D 0.9000
O1—C1—C2 111.4 (2) C5—C6—H6B 110.0
O1—C1—H1A 109.3 H6A—C6—H6B 108.4
C2—C1—H1A 109.3 N2—C7—C8 109.1 (2)
O1—C1—H1B 109.3 N2—C7—H7A 109.9
C2—C1—H1B 109.3 C8—C7—H7A 109.9
H1A—C1—H1B 108.0 N2—C7—H7B 109.9
N1—C2—C1 109.0 (3) C8—C7—H7B 109.9
N1—C2—H2A 109.9 H7A—C7—H7B 108.3
C1—C2—H2A 109.9 O2—C8—C7 111.7 (3)
N1—C2—H2B 109.9 O2—C8—H8A 109.3
C1—C2—H2B 109.9 C7—C8—H8A 109.3
H2A—C2—H2B 108.3 O2—C8—H8B 109.3
N1—C3—C4 109.6 (2) C7—C8—H8B 109.3
N1—C3—H3A 109.8 H8A—C8—H8B 107.9
C4—C3—H3A 109.8 C2—N1—C3 111.0 (2)
N1—C3—H3B 109.8 C2—N1—H1C 109.4
C4—C3—H3B 109.8 C3—N1—H1C 109.4
H3A—C3—H3B 108.2 C2—N1—H1D 109.4
O1—C4—C3 111.7 (3) C3—N1—H1D 109.4
O1—C4—H4A 109.3 H1C—N1—H1D 108.0
C3—C4—H4A 109.3 C7—N2—C6 110.0 (2)
O1—C4—H4B 109.3 C7—N2—H2C 109.7
C3—C4—H4B 109.3 C6—N2—H2C 109.7
H4A—C4—H4B 107.9 C7—N2—H2D 109.7
O2—C5—C6 111.7 (3) C6—N2—H2D 109.7
O2—C5—H5A 109.3 H2C—N2—H2D 108.2
C6—C5—H5A 109.3 C1—O1—C4 111.0 (2)
O2—C5—H5B 109.3 C8—O2—C5 109.6 (2)
C6—C5—H5B 109.3 Cl4—Sb1—Cl2 93.49 (3)
H5A—C5—H5B 107.9 Cl4—Sb1—Cl3 88.12 (3)
N2—C6—C5 108.5 (2) Cl2—Sb1—Cl3 89.74 (3)
N2—C6—H6A 110.0 Cl4—Sb1—Cl1 84.40 (3)
C5—C6—H6A 110.0 Cl2—Sb1—Cl1 90.06 (3)
N2—C6—H6B 110.0 Cl3—Sb1—Cl1 172.49 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1D···Cl5i 0.90 2.35 3.180 (2) 154
C1—H1B···Cl3ii 0.97 2.82 3.548 (3) 132
N2—H2D···Cl5iii 0.90 2.73 3.394 (2) 131
N2—H2C···Cl1iv 0.90 2.45 3.306 (3) 159
N2—H2D···O1v 0.90 2.44 2.848 (3) 108
N1—H1C···Cl3 0.90 2.75 3.463 (3) 137
N1—H1C···Cl5 0.90 2.72 3.448 (3) 138

Symmetry codes: (i) x−1/2, −y+3/2, −z+2; (ii) x+1/2, −y+3/2, −z+2; (iii) −x+3/2, −y+2, z−1/2; (iv) −x+2, y−1/2, −z+3/2; (v) −x+2, y+1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SI2174).

References

  1. Bujak, M. & Zaleski, J. (1999). Acta Cryst. C55, 1775–1778.
  2. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  3. Owczarek, M., Szklarz, P., Jakubas, R. & Lis, T. (2008). Acta Cryst. E64, o667. [DOI] [PMC free article] [PubMed]
  4. Rigaku (2005). CrystalClear Rigaku Corporation, Tokyo, Japan.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Shen-Tu, C., Li, H. Y., Ma, X. J., Huang, W. & Jin, Z. M. (2008). Acta Cryst. E64, m146. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809019345/si2174sup1.cif

e-65-0m689-sup1.cif (16.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809019345/si2174Isup2.hkl

e-65-0m689-Isup2.hkl (188.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES