Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 May 20;65(Pt 6):o1314. doi: 10.1107/S1600536809018042

N-(3,4-Diethoxy­phen­yl)acetamide

Pei-Hua Ma a, Kai-Zhi Zhou a, Mei-Lian Sun a, Xiu-Mei Zhao a, Xin Xiao a,*
PMCID: PMC2969794  PMID: 21583171

Abstract

In the title compound, C12H17NO3, the conformations of the N—H and C=O bonds are anti to each other. In the crystal structure, N—H⋯O hydrogen-bond inter­actions help to establish the packing.

Related literature

For the use of acetamides in the synthesis of biologically active compounds, see: Koike et al. (1999). The benzanilide core is present in compounds with a wide range of biological activity and benzanilides and benzamides are also used extensively in organic synthesis (Saeed et al., 2008). Various N-substituted benzamides exhibit potent anti­emetic activity, see: Vega-Noverola et al. (1989).graphic file with name e-65-o1314-scheme1.jpg

Experimental

Crystal data

  • C12H17NO3

  • M r = 223.27

  • Monoclinic, Inline graphic

  • a = 15.563 (8) Å

  • b = 8.661 (6) Å

  • c = 9.305 (7) Å

  • β = 101.773 (14)°

  • V = 1227.8 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.24 × 0.21 × 0.20 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.971, T max = 0.975

  • 6295 measured reflections

  • 2155 independent reflections

  • 1570 reflections with I > 2σ(I)

  • R int = 0.034

Refinement

  • R[F 2 > 2σ(F 2)] = 0.044

  • wR(F 2) = 0.119

  • S = 1.08

  • 2155 reflections

  • 145 parameters

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.25 e Å−3

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809018042/at2786sup1.cif

e-65-o1314-sup1.cif (17.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809018042/at2786Isup2.hkl

e-65-o1314-Isup2.hkl (103.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O3i 0.86 2.08 2.915 (2) 164

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors gratefully acknowledge the Natural Science Foundation of China (No. 20767001), the International Collaborative Project of Guizhou Province andthe Governor Foundation of Guizhou Province for financial support.

supplementary crystallographic information

Comment

Acetamide is an important class of medical intermidate. Many biologically active compounds are synthesized by using acetamide (Koike et al., 1999). The benzanilide core is present in compounds with a wide range of biological activity and benzanilides and benzamides are also used extensively in organic synthesis (Saeed et al., 2008). Various N-substituted benzamides exhibit potent antiemetic activity (Vega-Noverola et al., 1989). The crystal structure determination of the title compound (I) has been carried out in order to elucidate the molecular conformation.

The molecule of the title compound, (Fig. 1), consists of a phenylacetamide group and two ethoxyl groups. The conformations of the N—H and C=O bonds are anti to each other. The C10—C9—O2—C4 and C8—C7—O1—C3 torsion angles are -173.61 (15)° and 178.46 (15)°, respectively. The title compound forms intermolecular H bonds whereas the N1 act as hydrogen-bond donor and the O3 act as hydrogen-bond acceptor, the distance of the N1—H1···O3 hydrogen bond is 2.915 (2) Å (Table 1). In the crystal structure, N—H···O hydrogen bonds interactions may help to establish the packing.

Experimental

Ferrous powder (2.20 g, 0.039 mol), water (15 ml) and acetic acid (3 ml) were reflux for 4 h, the reaction mixture was cooled to room temperature. Then a solution of 1,2-diethoxy-4-nitrobenzene (2.10 g, 0.01 mol) in acetic acid (50 ml) was added to the mixture, the solution was reflux for 6 h. the mixture was filtered, and the resulting solution was added to water (150 ml), much white precipitate was appeared, the mixture was filtered again, the solid product was dissolved in 80 ml ethanol. and then set aside for five days to obtain colourless crystals [yield: 53%].

Refinement

All other H atoms were placed in calculated positions and refined as riding, with C—H = 0.93–0.97 Å, N—H = 0.86 Å, and Uiso(H) = 1.2–1.5 Ueq(C,N).

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.

Crystal data

C12H17NO3 F(000) = 480
Mr = 223.27 Dx = 1.208 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 2155 reflections
a = 15.563 (8) Å θ = 1.3–25.0°
b = 8.661 (6) Å µ = 0.09 mm1
c = 9.305 (7) Å T = 293 K
β = 101.773 (14)° Block, colourless
V = 1227.8 (14) Å3 0.24 × 0.21 × 0.20 mm
Z = 4

Data collection

Bruker SMART CCD area-detector diffractometer 2155 independent reflections
Radiation source: fine-focus sealed tube 1570 reflections with I > 2σ(I)
graphite Rint = 0.034
φ and ω scans θmax = 25.0°, θmin = 1.3°
Absorption correction: multi-scan (SADABS; Bruker, 2005) h = −18→16
Tmin = 0.971, Tmax = 0.975 k = −10→10
6295 measured reflections l = −10→11

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119 H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0639P)2] where P = (Fo2 + 2Fc2)/3
2155 reflections (Δ/σ)max < 0.001
145 parameters Δρmax = 0.16 e Å3
0 restraints Δρmin = −0.25 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.36147 (10) 0.08455 (17) 0.48242 (16) 0.0426 (4)
C2 0.32424 (10) 0.07894 (18) 0.60656 (15) 0.0451 (4)
H2 0.3519 0.1289 0.6920 0.054*
C3 0.24680 (10) 0.00019 (18) 0.60451 (16) 0.0445 (4)
C4 0.20432 (11) −0.07482 (19) 0.47506 (17) 0.0479 (4)
C5 0.24235 (11) −0.0712 (2) 0.35439 (18) 0.0542 (5)
H5 0.2153 −0.1223 0.2693 0.065*
C6 0.32090 (11) 0.00790 (19) 0.35673 (17) 0.0513 (4)
H6 0.3458 0.0089 0.2739 0.062*
C7 0.24108 (11) 0.0806 (2) 0.84850 (17) 0.0554 (5)
H7A 0.2403 0.1891 0.8225 0.067*
H7B 0.3013 0.0508 0.8887 0.067*
C8 0.18566 (14) 0.0537 (3) 0.9582 (2) 0.0759 (6)
H8A 0.2081 0.1128 1.0451 0.114*
H8B 0.1866 −0.0541 0.9827 0.114*
H8C 0.1265 0.0850 0.9179 0.114*
C9 0.06962 (12) −0.1888 (2) 0.3449 (2) 0.0656 (5)
H9A 0.0967 −0.2673 0.2944 0.079*
H9B 0.0573 −0.0991 0.2817 0.079*
C10 −0.01353 (12) −0.2493 (3) 0.3827 (3) 0.0869 (7)
H10A −0.0539 −0.2776 0.2942 0.130*
H10B −0.0394 −0.1707 0.4330 0.130*
H10C −0.0004 −0.3382 0.4449 0.130*
C11 0.48850 (10) 0.20423 (18) 0.39666 (17) 0.0446 (4)
C12 0.56454 (11) 0.3114 (2) 0.44698 (19) 0.0569 (5)
H12A 0.5671 0.3393 0.5476 0.085*
H12B 0.5570 0.4026 0.3872 0.085*
H12C 0.6181 0.2606 0.4383 0.085*
N1 0.43955 (8) 0.17335 (14) 0.49706 (14) 0.0459 (4)
H1 0.4583 0.2131 0.5824 0.055*
O1 0.20629 (7) −0.01068 (13) 0.72098 (11) 0.0559 (4)
O2 0.12688 (7) −0.14790 (14) 0.48136 (13) 0.0626 (4)
O3 0.47167 (8) 0.15207 (13) 0.27060 (12) 0.0587 (4)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0448 (9) 0.0439 (9) 0.0407 (8) 0.0034 (7) 0.0126 (7) 0.0045 (7)
C2 0.0490 (10) 0.0488 (9) 0.0385 (9) −0.0023 (7) 0.0114 (7) −0.0007 (7)
C3 0.0481 (10) 0.0458 (9) 0.0427 (9) −0.0007 (7) 0.0162 (7) 0.0006 (7)
C4 0.0476 (10) 0.0486 (10) 0.0475 (9) −0.0042 (8) 0.0103 (7) −0.0004 (7)
C5 0.0615 (11) 0.0593 (11) 0.0419 (9) −0.0073 (9) 0.0105 (8) −0.0074 (8)
C6 0.0602 (11) 0.0569 (10) 0.0398 (9) −0.0008 (8) 0.0174 (8) −0.0008 (8)
C7 0.0614 (11) 0.0640 (11) 0.0437 (9) −0.0105 (9) 0.0172 (8) −0.0088 (8)
C8 0.0879 (15) 0.0933 (15) 0.0524 (11) −0.0225 (12) 0.0279 (10) −0.0150 (10)
C9 0.0592 (12) 0.0656 (12) 0.0658 (12) −0.0083 (9) −0.0018 (9) −0.0002 (9)
C10 0.0583 (13) 0.0939 (17) 0.1049 (17) −0.0174 (12) 0.0083 (12) −0.0065 (13)
C11 0.0517 (10) 0.0432 (9) 0.0422 (9) 0.0096 (7) 0.0169 (7) 0.0094 (7)
C12 0.0590 (11) 0.0557 (10) 0.0611 (11) −0.0030 (8) 0.0239 (9) 0.0089 (8)
N1 0.0501 (8) 0.0527 (8) 0.0375 (7) −0.0036 (6) 0.0151 (6) 0.0004 (6)
O1 0.0606 (8) 0.0681 (8) 0.0443 (6) −0.0172 (6) 0.0226 (6) −0.0093 (6)
O2 0.0585 (8) 0.0752 (9) 0.0550 (7) −0.0218 (6) 0.0133 (6) −0.0094 (6)
O3 0.0723 (8) 0.0664 (8) 0.0423 (7) 0.0002 (6) 0.0231 (6) 0.0029 (5)

Geometric parameters (Å, °)

C1—C6 1.380 (2) C8—H8B 0.9600
C1—C2 1.395 (2) C8—H8C 0.9600
C1—N1 1.421 (2) C9—O2 1.439 (2)
C2—C3 1.382 (2) C9—C10 1.503 (3)
C2—H2 0.9300 C9—H9A 0.9700
C3—O1 1.3636 (19) C9—H9B 0.9700
C3—C4 1.409 (2) C10—H10A 0.9600
C4—C5 1.372 (2) C10—H10B 0.9600
C4—O2 1.3732 (19) C10—H10C 0.9600
C5—C6 1.398 (2) C11—O3 1.2342 (19)
C5—H5 0.9300 C11—N1 1.3471 (19)
C6—H6 0.9300 C11—C12 1.502 (2)
C7—O1 1.437 (2) C12—H12A 0.9600
C7—C8 1.483 (2) C12—H12B 0.9600
C7—H7A 0.9700 C12—H12C 0.9600
C7—H7B 0.9700 N1—H1 0.8600
C8—H8A 0.9600
C6—C1—C2 119.30 (15) H8A—C8—H8C 109.5
C6—C1—N1 125.16 (14) H8B—C8—H8C 109.5
C2—C1—N1 115.54 (13) O2—C9—C10 106.70 (16)
C3—C2—C1 120.95 (14) O2—C9—H9A 110.4
C3—C2—H2 119.5 C10—C9—H9A 110.4
C1—C2—H2 119.5 O2—C9—H9B 110.4
O1—C3—C2 124.51 (14) C10—C9—H9B 110.4
O1—C3—C4 115.80 (14) H9A—C9—H9B 108.6
C2—C3—C4 119.69 (14) C9—C10—H10A 109.5
C5—C4—O2 125.06 (15) C9—C10—H10B 109.5
C5—C4—C3 118.91 (15) H10A—C10—H10B 109.5
O2—C4—C3 116.03 (14) C9—C10—H10C 109.5
C4—C5—C6 121.37 (15) H10A—C10—H10C 109.5
C4—C5—H5 119.3 H10B—C10—H10C 109.5
C6—C5—H5 119.3 O3—C11—N1 123.10 (16)
C1—C6—C5 119.75 (15) O3—C11—C12 121.56 (15)
C1—C6—H6 120.1 N1—C11—C12 115.32 (14)
C5—C6—H6 120.1 C11—C12—H12A 109.5
O1—C7—C8 107.94 (14) C11—C12—H12B 109.5
O1—C7—H7A 110.1 H12A—C12—H12B 109.5
C8—C7—H7A 110.1 C11—C12—H12C 109.5
O1—C7—H7B 110.1 H12A—C12—H12C 109.5
C8—C7—H7B 110.1 H12B—C12—H12C 109.5
H7A—C7—H7B 108.4 C11—N1—C1 129.38 (14)
C7—C8—H8A 109.5 C11—N1—H1 115.3
C7—C8—H8B 109.5 C1—N1—H1 115.3
H8A—C8—H8B 109.5 C3—O1—C7 117.45 (13)
C7—C8—H8C 109.5 C4—O2—C9 117.83 (13)
C6—C1—C2—C3 −1.1 (2) C4—C5—C6—C1 −0.2 (3)
N1—C1—C2—C3 178.02 (13) O3—C11—N1—C1 −2.1 (2)
C1—C2—C3—O1 −179.99 (14) C12—C11—N1—C1 176.25 (14)
C1—C2—C3—C4 −0.4 (2) C6—C1—N1—C11 1.4 (2)
O1—C3—C4—C5 −178.74 (14) C2—C1—N1—C11 −177.71 (14)
C2—C3—C4—C5 1.7 (2) C2—C3—O1—C7 7.5 (2)
O1—C3—C4—O2 0.8 (2) C4—C3—O1—C7 −172.04 (14)
C2—C3—C4—O2 −178.79 (14) C8—C7—O1—C3 178.46 (15)
O2—C4—C5—C6 179.12 (15) C5—C4—O2—C9 −17.2 (2)
C3—C4—C5—C6 −1.4 (3) C3—C4—O2—C9 163.33 (15)
C2—C1—C6—C5 1.4 (2) C10—C9—O2—C4 −173.61 (15)
N1—C1—C6—C5 −177.64 (15)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1···O3i 0.86 2.08 2.915 (2) 164

Symmetry codes: (i) x, −y+1/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2786).

References

  1. Bruker (2002). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Bruker (2005). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  4. Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  5. Koike, K., Jia, Z., Nikaido, T., Liu, Y., Zhao, Y. & Guo, D. (1999). Org. Lett.1, 197–198.
  6. Saeed, A., Khera, R. A., Abbas, N., Simpson, J. & Stanley, R. G. (2008). Acta Cryst. E64, o2322–o2323. [DOI] [PMC free article] [PubMed]
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Vega-Noverola, A. P., Soto, J. M., Noguera, F. P., Mauri, J. M. & Spickett, G. W. R. (1989). US Patent No. 4 877 780.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809018042/at2786sup1.cif

e-65-o1314-sup1.cif (17.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809018042/at2786Isup2.hkl

e-65-o1314-Isup2.hkl (103.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES