Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 May 20;65(Pt 6):m667. doi: 10.1107/S1600536809017966

Dichloridobis(pyridine-2-carboxyl­ato-κ2 N,O)platinum(IV) acetonitrile solvate

Nam-Ho Kim a, In-Chul Hwang b, Kwang Ha a,*
PMCID: PMC2969797  PMID: 21583028

Abstract

The asymmetric unit of the title compound, [PtCl2(C6H4NO2)2]·CH3CN, contains a neutral PtIV complex and an acetonitrile solvent mol­ecule. In the complex, the Pt4+ atom is six-coordinated in a distorted octa­hedral environment by two N atoms and two O atoms from two pyridine­carboxyl­ate (pic) ligands and two Cl atoms. The Cl atoms are cis with respect to each other. The compound displays inter- and intra­molecular C—H⋯O and C—H⋯Cl hydrogen bonding.

Related literature

For the synthesis and structure of the Pt(IV)-pic complex, [PtCl4(pic)], see: Griffith et al. (2005). For a related Pt(II)-dipicolinate complex, see: Goodgame et al. (1995).graphic file with name e-65-0m667-scheme1.jpg

Experimental

Crystal data

  • [PtCl2(C6H4NO2)2]·C2H3N

  • M r = 551.25

  • Monoclinic, Inline graphic

  • a = 6.103 (3) Å

  • b = 27.988 (12) Å

  • c = 9.823 (4) Å

  • β = 91.076 (7)°

  • V = 1677.7 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 8.71 mm−1

  • T = 293 K

  • 0.20 × 0.15 × 0.15 mm

Data collection

  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000) T min = 0.203, T max = 0.271

  • 9732 measured reflections

  • 3437 independent reflections

  • 3051 reflections with I > 2σ(I)

  • R int = 0.025

Refinement

  • R[F 2 > 2σ(F 2)] = 0.023

  • wR(F 2) = 0.052

  • S = 1.11

  • 3437 reflections

  • 218 parameters

  • H-atom parameters constrained

  • Δρmax = 1.04 e Å−3

  • Δρmin = −0.58 e Å−3

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809017966/bt2950sup1.cif

e-65-0m667-sup1.cif (19.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809017966/bt2950Isup2.hkl

e-65-0m667-Isup2.hkl (168.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

Pt1—O1 1.999 (3)
Pt1—N2 2.013 (3)
Pt1—O3 2.022 (3)
Pt1—N1 2.025 (4)
Pt1—Cl2 2.2910 (14)
Pt1—Cl1 2.3003 (13)

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O2i 0.93 2.45 3.207 (7) 139
C7—H7⋯Cl1ii 0.93 2.75 3.583 (5) 150
C7—H7⋯Cl2 0.93 2.76 3.334 (5) 121
C10—H10⋯O4iii 0.93 2.42 3.223 (6) 145
C13—H13A⋯O2iv 0.96 2.43 3.256 (8) 144
C13—H13B⋯Cl1v 0.96 2.84 3.625 (7) 140

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic.

Acknowledgments

This work was supported by a Korea Research Foundation grant funded by the Korean Government (MOEHRD) (KRF-2007–412-J02001).

supplementary crystallographic information

Comment

The asymmetric unit of the title compound, [PtCl2(C6H4NO2)2].CH3CN, contains a neutral PtIV complex and a CH3CN solvent molecule (Fig. 1). In the complex, the Pt4+ ion is six-coordinated in a distorted octahedral environment by two N atoms and two O atoms from two pyridinecarboxylate (pic) anion ligands and two Cl atoms. The Cl atoms are disposed in the cis position. The main contributions to the distortion are the tight O—Pt—N chelate angles (82.32 (14)° and 82.16 (13)°), which result in non-linear trans axes (<Cl1—Pt1—N1 = 175.68 (10)°, <Cl2—Pt1—O3 = 178.67 (10)° and <O1—Pt1—N2 = 173.39 (14)°). The different trans effects of the Cl, O and N atoms are not distinct, because the Pt1—Cl, Pt1—O and Pt1—N bond lengths are almost equal (Pt1—Cl: 2.3003 (13) and 2.2910 (14) Å; Pt1—O 1.999 (3) and 2.022 (3) Å; Pt1—N 2.025 (4) and 2.013 (3) Å), respectively (Table 1). The compound displays inter- and intramolecular C—H···O and C—H···Cl hydrogen bonding (Table 2 and Fig. 2). There may also be weak intermolecular π-π interactions between adjacent pyridine rings, with a shortest centroid-centroid distance of 5.223 (4) Å.

Experimental

A suspension of K2PtCl6 (0.2148 g, 0.442 mmol) and pyridine-2-carboxylic acid (0.2000 g, 1.459 mmol) in H2O (10 ml) was refluxed for 5 h. The formed precipitate was separated by filtration and washed with water (20 ml) and dried under vacuum, to give a pale green powder (0.2304 g). Colorless crystals suitable for X-ray analysis were obtained by slow evaporation from a CH3CN solution.

Refinement

H atoms were positioned geometrically and allowed to ride on their respective parent atoms [C—H = 0.93 (aromatic) or 0.96 Å (CH3) and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C)].

Figures

Fig. 1.

Fig. 1.

The structure of the title compound, with displacement ellipsoids drawn at the 30% probability level for non-H atoms.

Fig. 2.

Fig. 2.

View of the unit-cell contents of the title compound. Hydrogen-bond interactions are drawn with dashed lines.

Crystal data

[PtCl2(C6H4NO2)2]·C2H3N F(000) = 1040
Mr = 551.25 Dx = 2.182 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 979 reflections
a = 6.103 (3) Å θ = 2.5–25.9°
b = 27.988 (12) Å µ = 8.71 mm1
c = 9.823 (4) Å T = 293 K
β = 91.076 (7)° Stick, colorless
V = 1677.7 (12) Å3 0.20 × 0.15 × 0.15 mm
Z = 4

Data collection

Bruker SMART 1000 CCD diffractometer 3437 independent reflections
Radiation source: fine-focus sealed tube 3051 reflections with I > 2σ(I)
graphite Rint = 0.025
φ and ω scans θmax = 26.4°, θmin = 1.5°
Absorption correction: multi-scan (SADABS; Bruker, 2000) h = −6→7
Tmin = 0.203, Tmax = 0.271 k = −35→33
9732 measured reflections l = −12→12

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.052 H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0126P)2 + 3.1343P] where P = (Fo2 + 2Fc2)/3
3437 reflections (Δ/σ)max = 0.001
218 parameters Δρmax = 1.04 e Å3
0 restraints Δρmin = −0.58 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Pt1 0.67421 (3) 0.119200 (6) 0.082756 (17) 0.03061 (6)
Cl1 0.47415 (19) 0.06563 (4) −0.04645 (12) 0.0421 (3)
Cl2 0.9275 (2) 0.12741 (4) −0.08481 (13) 0.0454 (3)
O1 0.5138 (5) 0.17577 (11) 0.0066 (3) 0.0444 (8)
O2 0.4983 (9) 0.25418 (14) 0.0228 (6) 0.0971 (19)
O3 0.4557 (5) 0.11261 (11) 0.2338 (3) 0.0389 (7)
O4 0.3574 (6) 0.06264 (14) 0.3949 (4) 0.0533 (10)
N1 0.8376 (6) 0.17036 (13) 0.1894 (4) 0.0336 (8)
N2 0.8101 (6) 0.06220 (12) 0.1765 (4) 0.0297 (8)
C1 1.0064 (8) 0.16447 (16) 0.2751 (5) 0.0410 (11)
H1 1.0535 0.1337 0.2961 0.049*
C2 1.1128 (9) 0.20275 (18) 0.3335 (5) 0.0504 (14)
H2 1.2320 0.1980 0.3923 0.060*
C3 1.0415 (10) 0.2478 (2) 0.3040 (6) 0.0610 (16)
H3 1.1108 0.2743 0.3428 0.073*
C4 0.8651 (11) 0.25356 (19) 0.2158 (7) 0.0680 (19)
H4 0.8137 0.2841 0.1957 0.082*
C5 0.7654 (9) 0.21476 (17) 0.1578 (5) 0.0452 (12)
C6 0.5793 (10) 0.21694 (19) 0.0564 (6) 0.0550 (15)
C7 0.9907 (8) 0.03922 (17) 0.1407 (5) 0.0380 (11)
H7 1.0735 0.0509 0.0695 0.046*
C8 1.0567 (9) −0.00183 (17) 0.2081 (5) 0.0451 (12)
H8 1.1841 −0.0176 0.1832 0.054*
C9 0.9325 (10) −0.01915 (18) 0.3122 (6) 0.0520 (14)
H9 0.9745 −0.0468 0.3581 0.062*
C10 0.7448 (9) 0.00483 (18) 0.3481 (5) 0.0476 (13)
H10 0.6595 −0.0064 0.4187 0.057*
C11 0.6848 (7) 0.04566 (16) 0.2781 (4) 0.0341 (10)
C12 0.4840 (8) 0.07409 (17) 0.3081 (5) 0.0386 (11)
N3 0.7810 (12) 0.1214 (2) 0.5485 (7) 0.091 (2)
C13 0.4113 (12) 0.1411 (2) 0.6554 (7) 0.0761 (19)
H13A 0.3723 0.1734 0.6331 0.114*
H13B 0.4226 0.1376 0.7525 0.114*
H13C 0.3007 0.1198 0.6201 0.114*
C14 0.6175 (14) 0.1297 (2) 0.5963 (7) 0.0677 (18)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Pt1 0.02912 (10) 0.02809 (10) 0.03449 (10) 0.00214 (7) −0.00261 (7) 0.00113 (7)
Cl1 0.0381 (6) 0.0414 (6) 0.0465 (7) −0.0055 (5) −0.0040 (5) −0.0048 (5)
Cl2 0.0479 (7) 0.0448 (7) 0.0439 (7) −0.0037 (5) 0.0083 (5) 0.0066 (5)
O1 0.044 (2) 0.0332 (18) 0.055 (2) 0.0085 (15) −0.0173 (17) 0.0024 (15)
O2 0.122 (4) 0.035 (2) 0.131 (4) 0.026 (2) −0.079 (4) −0.002 (2)
O3 0.0307 (17) 0.0435 (18) 0.0428 (19) 0.0064 (14) 0.0072 (14) −0.0001 (15)
O4 0.048 (2) 0.063 (2) 0.049 (2) −0.0049 (18) 0.0169 (18) −0.0001 (18)
N1 0.033 (2) 0.030 (2) 0.037 (2) 0.0027 (16) −0.0055 (17) −0.0021 (16)
N2 0.031 (2) 0.0259 (18) 0.0325 (19) 0.0037 (15) −0.0014 (16) −0.0002 (15)
C1 0.040 (3) 0.031 (2) 0.052 (3) 0.002 (2) −0.009 (2) 0.001 (2)
C2 0.051 (3) 0.044 (3) 0.055 (3) −0.002 (2) −0.019 (3) −0.006 (2)
C3 0.069 (4) 0.039 (3) 0.074 (4) −0.005 (3) −0.023 (3) −0.010 (3)
C4 0.084 (5) 0.027 (3) 0.092 (5) 0.009 (3) −0.031 (4) −0.009 (3)
C5 0.052 (3) 0.030 (3) 0.053 (3) 0.010 (2) −0.013 (3) 0.000 (2)
C6 0.064 (4) 0.036 (3) 0.064 (4) 0.013 (3) −0.024 (3) 0.001 (3)
C7 0.036 (3) 0.038 (3) 0.040 (3) 0.003 (2) 0.003 (2) −0.002 (2)
C8 0.044 (3) 0.037 (3) 0.055 (3) 0.010 (2) −0.007 (2) −0.004 (2)
C9 0.065 (4) 0.034 (3) 0.057 (3) 0.004 (3) −0.011 (3) 0.006 (2)
C10 0.060 (4) 0.042 (3) 0.041 (3) −0.002 (3) 0.002 (3) 0.012 (2)
C11 0.036 (3) 0.035 (2) 0.032 (2) −0.005 (2) −0.001 (2) 0.0020 (19)
C12 0.038 (3) 0.043 (3) 0.035 (3) −0.003 (2) 0.002 (2) −0.009 (2)
N3 0.097 (5) 0.099 (5) 0.078 (4) 0.003 (4) −0.014 (4) −0.009 (4)
C13 0.097 (6) 0.065 (4) 0.067 (4) −0.004 (4) 0.001 (4) 0.012 (3)
C14 0.092 (6) 0.057 (4) 0.053 (4) −0.002 (4) −0.017 (4) −0.002 (3)

Geometric parameters (Å, °)

Pt1—O1 1.999 (3) C3—H3 0.9300
Pt1—N2 2.013 (3) C4—C5 1.364 (7)
Pt1—O3 2.022 (3) C4—H4 0.9300
Pt1—N1 2.025 (4) C5—C6 1.498 (7)
Pt1—Cl2 2.2910 (14) C7—C8 1.382 (6)
Pt1—Cl1 2.3003 (13) C7—H7 0.9300
O1—C6 1.311 (6) C8—C9 1.373 (7)
O2—C6 1.197 (6) C8—H8 0.9300
O3—C12 1.312 (6) C9—C10 1.379 (7)
O4—C12 1.205 (6) C9—H9 0.9300
N1—C1 1.328 (6) C10—C11 1.379 (6)
N1—C5 1.352 (6) C10—H10 0.9300
N2—C7 1.329 (6) C11—C12 1.495 (6)
N2—C11 1.350 (5) N3—C14 1.134 (10)
C1—C2 1.373 (6) C13—C14 1.432 (10)
C1—H1 0.9300 C13—H13A 0.9600
C2—C3 1.364 (7) C13—H13B 0.9600
C2—H2 0.9300 C13—H13C 0.9600
C3—C4 1.379 (8)
O1—Pt1—N2 173.39 (14) C5—C4—H4 119.8
O1—Pt1—O3 91.24 (14) C3—C4—H4 119.8
N2—Pt1—O3 82.16 (13) N1—C5—C4 119.7 (5)
O1—Pt1—N1 82.32 (14) N1—C5—C6 115.4 (4)
N2—Pt1—N1 97.41 (15) C4—C5—C6 124.9 (5)
O3—Pt1—N1 90.57 (14) O2—C6—O1 122.7 (5)
O1—Pt1—Cl2 89.09 (11) O2—C6—C5 121.5 (5)
N2—Pt1—Cl2 97.51 (11) O1—C6—C5 115.7 (4)
O3—Pt1—Cl2 178.67 (10) N2—C7—C8 120.7 (5)
N1—Pt1—Cl2 88.19 (11) N2—C7—H7 119.6
O1—Pt1—Cl1 93.37 (10) C8—C7—H7 119.6
N2—Pt1—Cl1 86.89 (11) C9—C8—C7 119.4 (5)
O3—Pt1—Cl1 89.70 (10) C9—C8—H8 120.3
N1—Pt1—Cl1 175.68 (10) C7—C8—H8 120.3
Cl2—Pt1—Cl1 91.57 (5) C8—C9—C10 119.4 (5)
C6—O1—Pt1 114.4 (3) C8—C9—H9 120.3
C12—O3—Pt1 113.7 (3) C10—C9—H9 120.3
C1—N1—C5 120.3 (4) C9—C10—C11 119.3 (5)
C1—N1—Pt1 127.5 (3) C9—C10—H10 120.3
C5—N1—Pt1 112.1 (3) C11—C10—H10 120.3
C7—N2—C11 120.9 (4) N2—C11—C10 120.2 (4)
C7—N2—Pt1 126.8 (3) N2—C11—C12 116.2 (4)
C11—N2—Pt1 112.1 (3) C10—C11—C12 123.6 (4)
N1—C1—C2 121.5 (4) O4—C12—O3 122.2 (5)
N1—C1—H1 119.2 O4—C12—C11 122.5 (5)
C2—C1—H1 119.2 O3—C12—C11 115.3 (4)
C3—C2—C1 119.2 (5) C14—C13—H13A 109.5
C3—C2—H2 120.4 C14—C13—H13B 109.5
C1—C2—H2 120.4 H13A—C13—H13B 109.5
C2—C3—C4 118.9 (5) C14—C13—H13C 109.5
C2—C3—H3 120.6 H13A—C13—H13C 109.5
C4—C3—H3 120.6 H13B—C13—H13C 109.5
C5—C4—C3 120.5 (5) N3—C14—C13 178.8 (8)
O3—Pt1—O1—C6 89.9 (4) C1—N1—C5—C4 −0.8 (8)
N1—Pt1—O1—C6 −0.5 (4) Pt1—N1—C5—C4 −176.9 (5)
Cl2—Pt1—O1—C6 −88.8 (4) C1—N1—C5—C6 177.9 (5)
Cl1—Pt1—O1—C6 179.7 (4) Pt1—N1—C5—C6 1.8 (6)
O1—Pt1—O3—C12 173.1 (3) C3—C4—C5—N1 1.3 (10)
N2—Pt1—O3—C12 −7.2 (3) C3—C4—C5—C6 −177.3 (6)
N1—Pt1—O3—C12 −104.6 (3) Pt1—O1—C6—O2 −179.1 (6)
Cl1—Pt1—O3—C12 79.7 (3) Pt1—O1—C6—C5 1.6 (7)
O1—Pt1—N1—C1 −176.5 (4) N1—C5—C6—O2 178.3 (6)
N2—Pt1—N1—C1 10.1 (4) C4—C5—C6—O2 −3.0 (11)
O3—Pt1—N1—C1 92.3 (4) N1—C5—C6—O1 −2.4 (8)
Cl2—Pt1—N1—C1 −87.2 (4) C4—C5—C6—O1 176.3 (6)
O1—Pt1—N1—C5 −0.8 (3) C11—N2—C7—C8 −1.0 (7)
N2—Pt1—N1—C5 −174.1 (3) Pt1—N2—C7—C8 −174.9 (3)
O3—Pt1—N1—C5 −92.0 (4) N2—C7—C8—C9 0.7 (7)
Cl2—Pt1—N1—C5 88.5 (3) C7—C8—C9—C10 −0.3 (8)
O3—Pt1—N2—C7 −179.5 (4) C8—C9—C10—C11 0.3 (8)
N1—Pt1—N2—C7 −89.9 (4) C7—N2—C11—C10 1.0 (7)
Cl2—Pt1—N2—C7 −0.8 (4) Pt1—N2—C11—C10 175.7 (4)
Cl1—Pt1—N2—C7 90.4 (4) C7—N2—C11—C12 −179.2 (4)
O3—Pt1—N2—C11 6.2 (3) Pt1—N2—C11—C12 −4.5 (5)
N1—Pt1—N2—C11 95.7 (3) C9—C10—C11—N2 −0.7 (7)
Cl2—Pt1—N2—C11 −175.1 (3) C9—C10—C11—C12 179.6 (5)
Cl1—Pt1—N2—C11 −84.0 (3) Pt1—O3—C12—O4 −173.6 (4)
C5—N1—C1—C2 −0.3 (8) Pt1—O3—C12—C11 6.7 (5)
Pt1—N1—C1—C2 175.1 (4) N2—C11—C12—O4 178.8 (4)
N1—C1—C2—C3 0.9 (8) C10—C11—C12—O4 −1.4 (7)
C1—C2—C3—C4 −0.3 (9) N2—C11—C12—O3 −1.5 (6)
C2—C3—C4—C5 −0.8 (10) C10—C11—C12—O3 178.3 (4)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C2—H2···O2i 0.93 2.45 3.207 (7) 139
C7—H7···Cl1ii 0.93 2.75 3.583 (5) 150
C7—H7···Cl2 0.93 2.76 3.334 (5) 121
C10—H10···O4iii 0.93 2.42 3.223 (6) 145
C13—H13A···O2iv 0.96 2.43 3.256 (8) 144
C13—H13B···Cl1v 0.96 2.84 3.625 (7) 140

Symmetry codes: (i) x+1, −y+1/2, z+1/2; (ii) x+1, y, z; (iii) −x+1, −y, −z+1; (iv) x, −y+1/2, z+1/2; (v) x, y, z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2950).

References

  1. Bruker (2000). SADABS, SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  3. Goodgame, D. M. L., Müller, T. E. & Williams, D. J. (1995). Polyhedron, 14, 2557–2559.
  4. Griffith, D., Lyssenko, K., Jensen, P., Kruger, P. E. & Marmion, C. J. (2005). Dalton Trans. pp. 956–961. [DOI] [PubMed]
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809017966/bt2950sup1.cif

e-65-0m667-sup1.cif (19.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809017966/bt2950Isup2.hkl

e-65-0m667-Isup2.hkl (168.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES