Abstract
In the title compound, C32H28N2·CH2Cl2, the complete Schiff base and solvent molecules are both generated by crystallographic twofold axes, with the two C atoms of the former and the C atom of the latter lying on the rotation axis. The central benzene ring is substituted with two chiral groups including imine functionalities, with the common E configuration. The dihedral angle between the central benzene ring and the terminal naphthalene ring is 45.42 (9)° and that between the two naphthalene rings is 89.16 (8)°. The conformation of the Schiff base allows solvent molecules to fill the voids in the crystal, affording a stable 1:1 solvate, but the solvent interacts poorly with the Schiff base, as reflected by its rather high displacement parameters.
Related literature
For solvent-free synthesis in organic chemistry, see: Jeon et al. (2005 ▶); Noyori (2005 ▶); Tanaka & Toda (2000 ▶). For related chiral Schiff bases synthesized using similar routes, see: Tovar et al. (2007 ▶).
Experimental
Crystal data
C32H28N2·CH2Cl2
M r = 525.49
Orthorhombic,
a = 8.550 (2) Å
b = 20.706 (6) Å
c = 7.972 (3) Å
V = 1411.3 (7) Å3
Z = 2
Mo Kα radiation
μ = 0.25 mm−1
T = 298 K
0.40 × 0.24 × 0.20 mm
Data collection
Siemens P4 diffractometer
Absorption correction: gaussian (XSCANS; Siemens, 1996 ▶) T min = 0.933, T max = 0.954
6308 measured reflections
2497 independent reflections
1428 reflections with I > 2σ(I)
R int = 0.060
3 standard reflections every 97 reflections intensity decay: 2.3%
Refinement
R[F 2 > 2σ(F 2)] = 0.060
wR(F 2) = 0.186
S = 1.06
2497 reflections
172 parameters
H-atom parameters constrained
Δρmax = 0.19 e Å−3
Δρmin = −0.16 e Å−3
Absolute structure: Flack (1983 ▶), 1028 Friedel pairs
Flack parameter: 0.0 (2)
Data collection: XSCANS (Siemens, 1996 ▶); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 ▶); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 ▶); molecular graphics: Mercury (Macrae et al., 2006 ▶); software used to prepare material for publication: SHELXL97.
Supplementary Material
Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809017528/fj2198sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536809017528/fj2198Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
Acknowledgments
Partial support from VIEP-UAP (GUPJ-NAT08-G) is acknowledged.
supplementary crystallographic information
Comment
During the last few decades, a central objective in synthetic organic chemistry has been to develop greener and more economically competitive processes for the efficient synthesis of compounds with potential applications in diverse fields. In this context, the solvent-free approach is simple with amazing versatility because it reduces the use of organic solvents and minimizes the formation of other waste. Likewise, the reactions occur under mild conditions and usually require easier workup procedures and simpler equipment. Moreover, it may allow access to compounds that require harsh reaction conditions under traditional approaches or when the yields are too low to be of practical convenience (Jeon et al., 2005; Noyori, 2005; Tanaka & Toda, 2000).
On the other hand, bisimines have lately attracted much attention, mostly due to their versatile coordination behavior and the interesting properties of their metal complexes. These compounds are particularly interesting since they can potentially act in a variety of coordination modes.
Continuing our work on the synthesis of chiral imines (Tovar et al., 2007), we synthesized the title Schiff base under solvent-free conditions and report here its X-ray structure. The asymmetric unit contains one half-molecule and one half dichloromethane molecule, both placed on binary axis (Fig. 1). This arrangement is probably favored by the presence of a chiral center, C6, allowing to orient the substituents of the imine functionality towards the opposite faces of the central benzene core. The crystal is further stabilized by the inclusion of lattice solvent, resulting in a 1:1 solvate. Indeed, the shape of the Schiff base is suitable for the formation of a guest-host complex (Fig. 2). However, as no efficient hydrogen bonds are formed, the solvent molecule presents high displacement parameters, compared to the host (See Fig. 1).
Experimental
Under solvent-free conditions, a mixture of benzene-1,3-dicarboxaldehyde (0.12 g, 0.9 mmol) and (S)-(-)-1-naphthylethylamine (0.32 g, 1.8 mmol) were mixed at 298 K, giving a white solid. The crude material was recrystallized from CH2Cl2, affording colorless crystals of the title solvate (Yield: 98%; m.p. 343–345 K. [α]25D=+253.7 (c=1, CHCl3). IR and NMR data are consistent with the X-ray structure (see archived CIF).
Refinement
All H atoms were placed in idealized positions and refined as riding to their carrier C atoms, with bond lengths fixed to 0.93 (aromatic CH), 0.96 (methyl CH3), 0.97 (methylene CH2) and 0.98 Å (methine CH). isotropic displacement parameters were calculated as Uiso(H) = 1.5Ueq(carrier atom) for the methyl group and Uiso(H) = 1.2Ueq(carrier atom) otherwise.
Figures
Fig. 1.
Molecular structure of the title compound, with 30% probability level displacement ellipsoids for non-H atoms. Non-labeled atoms are generated through the symmetry operation 2 - x, 1 - y, z.
Fig. 2.
A part of the crystal structure of the title compound along [100], showing the lattice solvent molecules with a space-filling representation.
Crystal data
| C32H28N2·CH2Cl2 | Dx = 1.237 Mg m−3 |
| Mr = 525.49 | Melting point: 343 K |
| Orthorhombic, P21212 | Mo Kα radiation, λ = 0.71073 Å |
| Hall symbol: P 2 2ab | Cell parameters from 51 reflections |
| a = 8.550 (2) Å | θ = 4.0–11.9° |
| b = 20.706 (6) Å | µ = 0.25 mm−1 |
| c = 7.972 (3) Å | T = 298 K |
| V = 1411.3 (7) Å3 | Prism, yellow |
| Z = 2 | 0.40 × 0.24 × 0.20 mm |
| F(000) = 552 |
Data collection
| Siemens P4 diffractometer | 1428 reflections with I > 2σ(I) |
| Radiation source: fine-focus sealed tube | Rint = 0.060 |
| graphite | θmax = 25.0°, θmin = 2.0° |
| 2θ/ω scans | h = −10→10 |
| Absorption correction: gaussian (XSCANS; Siemens, 1996) | k = −24→24 |
| Tmin = 0.933, Tmax = 0.954 | l = −9→9 |
| 6308 measured reflections | 3 standard reflections every 97 reflections |
| 2497 independent reflections | intensity decay: 2.3% |
Refinement
| Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
| Least-squares matrix: full | H-atom parameters constrained |
| R[F2 > 2σ(F2)] = 0.060 | w = 1/[σ2(Fo2) + (0.0833P)2 + 0.2257P] where P = (Fo2 + 2Fc2)/3 |
| wR(F2) = 0.186 | (Δ/σ)max < 0.001 |
| S = 1.06 | Δρmax = 0.19 e Å−3 |
| 2497 reflections | Δρmin = −0.16 e Å−3 |
| 172 parameters | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
| 0 restraints | Extinction coefficient: 0.036 (6) |
| 0 constraints | Absolute structure: Flack (1983), 1028 Friedel pairs |
| Primary atom site location: structure-invariant direct methods | Flack parameter: 0.0 (2) |
| Secondary atom site location: difference Fourier map |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| N1 | 0.8943 (5) | 0.38124 (15) | 1.0214 (4) | 0.0789 (10) | |
| C1 | 1.0000 | 0.5000 | 1.5231 (7) | 0.0904 (19) | |
| H1A | 1.0000 | 0.5000 | 1.6398 | 0.108* | |
| C2 | 0.9506 (5) | 0.4463 (2) | 1.4376 (5) | 0.0800 (12) | |
| H2A | 0.9166 | 0.4102 | 1.4968 | 0.096* | |
| C3 | 0.9508 (4) | 0.44531 (18) | 1.2633 (5) | 0.0660 (10) | |
| C4 | 1.0000 | 0.5000 | 1.1777 (7) | 0.0682 (14) | |
| H4A | 1.0000 | 0.5000 | 1.0611 | 0.082* | |
| C5 | 0.9004 (5) | 0.38667 (18) | 1.1771 (5) | 0.0711 (10) | |
| H5A | 0.8711 | 0.3514 | 1.2420 | 0.085* | |
| C6 | 0.8370 (5) | 0.32020 (18) | 0.9537 (5) | 0.0747 (11) | |
| H6A | 0.8222 | 0.2897 | 1.0464 | 0.090* | |
| C7 | 0.6791 (5) | 0.3332 (2) | 0.8717 (6) | 0.0947 (14) | |
| H7A | 0.6077 | 0.3499 | 0.9539 | 0.142* | |
| H7B | 0.6383 | 0.2937 | 0.8262 | 0.142* | |
| H7C | 0.6918 | 0.3642 | 0.7832 | 0.142* | |
| C8 | 0.9507 (5) | 0.29178 (16) | 0.8309 (5) | 0.0646 (9) | |
| C9 | 1.0643 (5) | 0.32880 (18) | 0.7563 (5) | 0.0760 (11) | |
| H9A | 1.0740 | 0.3720 | 0.7868 | 0.091* | |
| C10 | 1.1656 (6) | 0.3034 (2) | 0.6361 (6) | 0.0924 (14) | |
| H10A | 1.2430 | 0.3295 | 0.5899 | 0.111* | |
| C11 | 1.1527 (6) | 0.2419 (2) | 0.5865 (5) | 0.0851 (12) | |
| H11A | 1.2184 | 0.2263 | 0.5028 | 0.102* | |
| C12 | 1.0413 (5) | 0.20049 (19) | 0.6592 (5) | 0.0751 (11) | |
| C13 | 1.0297 (6) | 0.1351 (2) | 0.6116 (6) | 0.0911 (13) | |
| H13A | 1.0960 | 0.1188 | 0.5293 | 0.109* | |
| C14 | 0.9225 (6) | 0.0957 (2) | 0.6848 (7) | 0.0973 (15) | |
| H14A | 0.9158 | 0.0527 | 0.6524 | 0.117* | |
| C15 | 0.8233 (5) | 0.1194 (2) | 0.8073 (7) | 0.0909 (14) | |
| H15A | 0.7514 | 0.0919 | 0.8578 | 0.109* | |
| C16 | 0.8295 (5) | 0.18255 (17) | 0.8549 (6) | 0.0749 (11) | |
| H16A | 0.7615 | 0.1975 | 0.9371 | 0.090* | |
| C17 | 0.9380 (4) | 0.22579 (17) | 0.7812 (5) | 0.0652 (9) | |
| C18 | 0.5000 | 0.5000 | 0.8916 (9) | 0.123 (3) | |
| H18A | 0.4641 | 0.5349 | 0.9629 | 0.148* | |
| Cl1 | 0.6505 (3) | 0.52641 (11) | 0.7706 (3) | 0.1852 (10) |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| N1 | 0.102 (3) | 0.0685 (19) | 0.067 (2) | −0.0018 (18) | 0.003 (2) | 0.0003 (16) |
| C1 | 0.099 (5) | 0.115 (5) | 0.057 (3) | 0.000 (4) | 0.000 | 0.000 |
| C2 | 0.084 (3) | 0.090 (3) | 0.066 (2) | 0.004 (3) | 0.008 (2) | 0.008 (2) |
| C3 | 0.062 (2) | 0.076 (2) | 0.060 (2) | 0.0110 (19) | 0.0047 (19) | 0.0017 (19) |
| C4 | 0.073 (3) | 0.075 (3) | 0.056 (3) | 0.015 (3) | 0.000 | 0.000 |
| C5 | 0.073 (2) | 0.070 (2) | 0.070 (3) | 0.008 (2) | 0.007 (2) | 0.008 (2) |
| C6 | 0.085 (3) | 0.070 (2) | 0.069 (2) | −0.001 (2) | 0.003 (2) | 0.0066 (19) |
| C7 | 0.080 (3) | 0.099 (3) | 0.105 (3) | 0.016 (3) | 0.008 (3) | 0.000 (3) |
| C8 | 0.069 (2) | 0.064 (2) | 0.060 (2) | 0.0002 (18) | 0.003 (2) | 0.0087 (17) |
| C9 | 0.085 (3) | 0.072 (2) | 0.071 (2) | −0.006 (2) | 0.005 (2) | 0.009 (2) |
| C10 | 0.091 (3) | 0.100 (3) | 0.086 (3) | −0.005 (3) | 0.026 (3) | 0.022 (3) |
| C11 | 0.082 (3) | 0.102 (3) | 0.072 (3) | 0.013 (3) | 0.011 (2) | 0.003 (2) |
| C12 | 0.071 (2) | 0.081 (2) | 0.073 (2) | 0.010 (2) | −0.014 (2) | −0.004 (2) |
| C13 | 0.089 (3) | 0.090 (3) | 0.095 (3) | 0.020 (3) | −0.019 (3) | −0.019 (3) |
| C14 | 0.097 (3) | 0.076 (3) | 0.120 (4) | 0.012 (3) | −0.030 (4) | −0.010 (3) |
| C15 | 0.078 (3) | 0.075 (3) | 0.120 (4) | −0.005 (2) | −0.024 (3) | 0.007 (3) |
| C16 | 0.066 (2) | 0.072 (2) | 0.087 (3) | −0.004 (2) | −0.004 (2) | 0.002 (2) |
| C17 | 0.059 (2) | 0.069 (2) | 0.068 (2) | 0.0022 (18) | −0.007 (2) | 0.0072 (18) |
| C18 | 0.192 (10) | 0.094 (5) | 0.084 (4) | −0.003 (5) | 0.000 | 0.000 |
| Cl1 | 0.1454 (16) | 0.208 (2) | 0.202 (2) | −0.0442 (14) | 0.0100 (17) | 0.0547 (16) |
Geometric parameters (Å, °)
| N1—C5 | 1.248 (5) | C9—C10 | 1.395 (6) |
| N1—C6 | 1.459 (5) | C9—H9A | 0.9300 |
| C1—C2 | 1.371 (5) | C10—C11 | 1.338 (6) |
| C1—C2i | 1.371 (5) | C10—H10A | 0.9300 |
| C1—H1A | 0.9300 | C11—C12 | 1.407 (6) |
| C2—C3 | 1.390 (5) | C11—H11A | 0.9300 |
| C2—H2A | 0.9300 | C12—C13 | 1.410 (6) |
| C3—C4 | 1.387 (4) | C12—C17 | 1.414 (5) |
| C3—C5 | 1.460 (5) | C13—C14 | 1.359 (7) |
| C4—C3i | 1.387 (4) | C13—H13A | 0.9300 |
| C4—H4A | 0.9300 | C14—C15 | 1.384 (7) |
| C5—H5A | 0.9300 | C14—H14A | 0.9300 |
| C6—C8 | 1.500 (5) | C15—C16 | 1.363 (5) |
| C6—C7 | 1.524 (6) | C15—H15A | 0.9300 |
| C6—H6A | 0.9800 | C16—C17 | 1.416 (5) |
| C7—H7A | 0.9600 | C16—H16A | 0.9300 |
| C7—H7B | 0.9600 | C18—Cl1ii | 1.699 (5) |
| C7—H7C | 0.9600 | C18—Cl1 | 1.699 (5) |
| C8—C9 | 1.373 (5) | C18—H18A | 0.9698 |
| C8—C17 | 1.427 (5) | ||
| C5—N1—C6 | 117.4 (3) | C8—C9—C10 | 121.8 (4) |
| C2—C1—C2i | 120.4 (6) | C8—C9—H9A | 119.1 |
| C2—C1—H1A | 119.8 | C10—C9—H9A | 119.1 |
| C2i—C1—H1A | 119.8 | C11—C10—C9 | 120.7 (4) |
| C1—C2—C3 | 120.6 (4) | C11—C10—H10A | 119.7 |
| C1—C2—H2A | 119.7 | C9—C10—H10A | 119.7 |
| C3—C2—H2A | 119.7 | C10—C11—C12 | 121.0 (4) |
| C4—C3—C2 | 118.7 (4) | C10—C11—H11A | 119.5 |
| C4—C3—C5 | 122.5 (4) | C12—C11—H11A | 119.5 |
| C2—C3—C5 | 118.8 (4) | C11—C12—C13 | 121.5 (4) |
| C3—C4—C3i | 121.1 (5) | C11—C12—C17 | 118.7 (4) |
| C3—C4—H4A | 119.4 | C13—C12—C17 | 119.8 (4) |
| C3i—C4—H4A | 119.4 | C14—C13—C12 | 120.5 (5) |
| N1—C5—C3 | 123.7 (4) | C14—C13—H13A | 119.7 |
| N1—C5—H5A | 118.1 | C12—C13—H13A | 119.7 |
| C3—C5—H5A | 118.1 | C13—C14—C15 | 120.3 (4) |
| N1—C6—C8 | 111.3 (3) | C13—C14—H14A | 119.9 |
| N1—C6—C7 | 107.6 (3) | C15—C14—H14A | 119.9 |
| C8—C6—C7 | 111.3 (3) | C16—C15—C14 | 120.8 (5) |
| N1—C6—H6A | 108.8 | C16—C15—H15A | 119.6 |
| C8—C6—H6A | 108.8 | C14—C15—H15A | 119.6 |
| C7—C6—H6A | 108.8 | C15—C16—C17 | 121.1 (4) |
| C6—C7—H7A | 109.5 | C15—C16—H16A | 119.4 |
| C6—C7—H7B | 109.5 | C17—C16—H16A | 119.4 |
| H7A—C7—H7B | 109.5 | C12—C17—C16 | 117.4 (4) |
| C6—C7—H7C | 109.5 | C12—C17—C8 | 119.9 (3) |
| H7A—C7—H7C | 109.5 | C16—C17—C8 | 122.7 (4) |
| H7B—C7—H7C | 109.5 | Cl1ii—C18—Cl1 | 110.8 (4) |
| C9—C8—C17 | 117.9 (4) | Cl1ii—C18—H18A | 109.4 |
| C9—C8—C6 | 121.5 (3) | Cl1—C18—H18A | 109.4 |
| C17—C8—C6 | 120.5 (3) | ||
| C2i—C1—C2—C3 | 0.4 (3) | C10—C11—C12—C13 | −178.1 (4) |
| C1—C2—C3—C4 | −0.9 (6) | C10—C11—C12—C17 | 2.7 (6) |
| C1—C2—C3—C5 | 178.7 (3) | C11—C12—C13—C14 | 179.2 (4) |
| C2—C3—C4—C3i | 0.4 (3) | C17—C12—C13—C14 | −1.6 (6) |
| C5—C3—C4—C3i | −179.1 (4) | C12—C13—C14—C15 | 0.0 (7) |
| C6—N1—C5—C3 | −178.2 (4) | C13—C14—C15—C16 | 1.0 (7) |
| C4—C3—C5—N1 | −1.5 (6) | C14—C15—C16—C17 | −0.3 (6) |
| C2—C3—C5—N1 | 179.0 (4) | C11—C12—C17—C16 | −178.6 (4) |
| C5—N1—C6—C8 | −126.4 (4) | C13—C12—C17—C16 | 2.2 (5) |
| C5—N1—C6—C7 | 111.4 (4) | C11—C12—C17—C8 | −1.5 (5) |
| N1—C6—C8—C9 | −19.0 (5) | C13—C12—C17—C8 | 179.3 (4) |
| C7—C6—C8—C9 | 101.1 (4) | C15—C16—C17—C12 | −1.3 (6) |
| N1—C6—C8—C17 | 164.5 (3) | C15—C16—C17—C8 | −178.3 (4) |
| C7—C6—C8—C17 | −75.4 (4) | C9—C8—C17—C12 | 0.3 (5) |
| C17—C8—C9—C10 | −0.3 (6) | C6—C8—C17—C12 | 177.0 (3) |
| C6—C8—C9—C10 | −176.9 (4) | C9—C8—C17—C16 | 177.2 (3) |
| C8—C9—C10—C11 | 1.5 (7) | C6—C8—C17—C16 | −6.1 (5) |
| C9—C10—C11—C12 | −2.7 (7) |
Symmetry codes: (i) −x+2, −y+1, z; (ii) −x+1, −y+1, z.
Footnotes
Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2198).
References
- Flack, H. D. (1983). Acta Cryst. A39, 876–881.
- Jeon, S.-J., Li, H. & Walsh, P. J. (2005). J. Am. Chem. Soc 127, 16416–16425. [DOI] [PubMed]
- Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst.39, 453–457.
- Noyori, R. (2005). Chem. Commun pp. 1807–1811. [DOI] [PubMed]
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
- Siemens (1996). XSCANS Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Tanaka, K. & Toda, F. (2000). Chem. Rev 100, 1025–1074. [DOI] [PubMed]
- Tovar, A., Peña, U., Hernández, G., Portillo, R. & Gutiérrez, R. (2007). Synthesis, pp. 22–24.
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809017528/fj2198sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536809017528/fj2198Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report


