Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 May 23;65(Pt 6):o1382. doi: 10.1107/S1600536809018625

Ethyl 2-methyl-4-phenyl­quinoline-3-carboxyl­ate

Ayoob Bazgir a,*
PMCID: PMC2969813  PMID: 21583230

Abstract

In the mol­ecule of the title compound, C19H17NO2, the quinoline ring system is planar [maximum deviation 0.021 (3) Å] and oriented with respect to the phenyl ring at a dihedral angle of 80.44 (4)°. Intra­molecular C—H⋯O inter­actions result in the formation of five- and six-membered rings having planar and envelope conformations, respectively. In the crystal structure, inter­molecular C—H⋯O inter­actions link the mol­ecules into centrosymmetric dimers forming R 2 2(12) ring motifs. π–π contacts between the rings of the quinoline system [centroid-to-centroid distance = 3.812 (1) Å] may further stabilize the structure. Two weak C—H⋯π inter­actions are also found.

Related literature

For general background, see: Doube et al. (1998). For ring-motifs, see: Bernstein et al. (1995). For bond-length data, see: Allen et al. (1987).graphic file with name e-65-o1382-scheme1.jpg

Experimental

Crystal data

  • C19H17NO2

  • M r = 291.34

  • Triclinic, Inline graphic

  • a = 9.0282 (10) Å

  • b = 9.362 (1) Å

  • c = 10.7258 (10) Å

  • α = 69.765 (8)°

  • β = 66.733 (8)°

  • γ = 70.605 (8)°

  • V = 761.08 (15) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 120 K

  • 0.35 × 0.32 × 0.25 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: none

  • 8164 measured reflections

  • 3995 independent reflections

  • 3410 reflections with I > 2σ(I)

  • R int = 0.044

Refinement

  • R[F 2 > 2σ(F 2)] = 0.065

  • wR(F 2) = 0.194

  • S = 1.09

  • 3995 reflections

  • 199 parameters

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.35 e Å−3

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809018625/hk2681sup1.cif

e-65-o1382-sup1.cif (17.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809018625/hk2681Isup2.hkl

e-65-o1382-Isup2.hkl (191.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C16—H16A⋯O1 0.97 2.32 2.711 (3) 103
C19—H19B⋯O2i 0.96 2.52 3.374 (3) 147
C19—H19C⋯O2 0.96 2.59 3.212 (3) 122
C12—H12⋯Cg2ii 0.93 2.95 3.750 (3) 145
C17—H17CCg3iii 0.96 2.97 3.883 (3) 160

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic. Cg2 and Cg3 are the centroids of rings C1–C6 and C8–C13, respectively.

Acknowledgments

The author is grateful to the Islamic Azad University, Dorood Branch, for financial support.

supplementary crystallographic information

Comment

The quinoline moiety is probably the most well known heterocycle, a common and important feature of a variety of natural products and medicinal agents. They have emerged as antimalarial, antiasthmatic, anti-inflamatory, antibacterial, antihypertensive and tyrosine kinase PDGF-RTK inhibiting agents (Doube et al., 1998). Moreover, polyquinolines are found to undergo hierarchical self-assembly into a variety of nano and meso structures with enhanced electronic and photonic functions. We report herein the synthesis and crystal structure of the title compound.

In the molecule of the title compound (Fig. 1), the bond lengths (Allen et al., 1987) and angles are within normal ranges. The quinoline ring system A (N1/C1–C7/C14/C18) is planar with a maximum deviaton of -0.021 (3) Å for atom C18, and oriented with respect to the phenyl ring B (C8–C13) at a dihedral angle of A/B = 80.44 (4)°. Intramolecular C—H···O interactions result in the formations of five- and six-membered rings C (O1/O2/C15/C16/H16A) and D (O2/C14/C15/C18/C19/H19C). Ring C is planar, while ring D adopts envelope conformation, with atom O2 displaced by -1.166 (4) Å from the plane of the other ring atoms.

In the crystal structure, intermolecular C—H···O interactions (Table 1) link the molecules into centrosymmetric dimers forming R22(12) ring motifs (Fig. 2) (Bernstein et al., 1995), in which they may be effective in the stabilization of the structure. The π–π contact between the rings of the quinoline ring system, Cg1···Cg2i [symmetry code: (i) 1 - x, -1 - y, 1 - z, where Cg1 and Cg2 are centroids of the rings (N1/C1/C6/C7/C14/C18) and (C1–C6), respectively] may further stabilize the structure, with centroid-centroid distance of 3.812 (1) Å. There also exist two weak C—H···π interactions (Table 1).

Experimental

For the preparation of the title compound, a mixture of ethyl acetoacetate (0.13 g, 1 mmol), (2-aminophenyl)(phenyl)methanone (0.20 g, 1 mmol) and p-toluene sulfonic acid (0.1 g, 5.8 mmol) in water (5 ml) was stirred at reflux for 4 h. After completion of reaction (monitored by TLC) the reaction mixture was filtered and the precipitate washed with water (15 ml) and then recrystallized from EtOH/water (1:2) to afford the pure product (yield; 75%, 0.218 g).

Refinement

H atoms were positioned geometrically, with C—H = 0.93, 0.97 and 0.96 Å for aromatic, methylene and methyl H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title molecule, with the atom-numbering scheme. Hydrogen bonds are shown as dotted lines.

Fig. 2.

Fig. 2.

A partial packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.

Crystal data

C19H17NO2 Z = 2
Mr = 291.34 F(000) = 308
Triclinic, P1 Dx = 1.271 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 9.0282 (10) Å Cell parameters from 1548 reflections
b = 9.362 (1) Å θ = 2.4–29.2°
c = 10.7258 (10) Å µ = 0.08 mm1
α = 69.765 (8)° T = 120 K
β = 66.733 (8)° Block, colourless
γ = 70.605 (8)° 0.35 × 0.32 × 0.25 mm
V = 761.08 (15) Å3

Data collection

Bruker SMART CCD area-detector diffractometer Rint = 0.044
φ and ω scans θmax = 29.2°, θmin = 2.4°
8164 measured reflections h = −12→12
3995 independent reflections k = −12→12
3410 reflections with I > 2σ(I) l = −13→14

Refinement

Refinement on F2 0 restraints
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.065 w = 1/[σ2(Fo2) + (0.0955P)2 + 0.1587P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.194 (Δ/σ)max = 0.01
S = 1.09 Δρmax = 0.33 e Å3
3995 reflections Δρmin = −0.35 e Å3
199 parameters

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.6903 (3) −0.70878 (17) 0.11893 (14) 0.0879 (5)
O2 0.6965 (2) −0.95151 (14) 0.24871 (13) 0.0696 (4)
N1 0.44256 (15) −0.71135 (15) 0.57975 (13) 0.0470 (3)
C1 0.56342 (18) −0.68228 (16) 0.60840 (15) 0.0438 (3)
C2 0.5192 (2) −0.6418 (2) 0.73600 (17) 0.0551 (4)
H2 0.4104 −0.6328 0.7953 0.066*
C3 0.6347 (3) −0.6159 (2) 0.77284 (19) 0.0622 (5)
H3 0.6046 −0.5907 0.8575 0.075*
C4 0.7988 (2) −0.6273 (2) 0.6834 (2) 0.0615 (4)
H4 0.8767 −0.6096 0.7094 0.074*
C5 0.8456 (2) −0.66413 (19) 0.55808 (18) 0.0523 (4)
H5 0.9545 −0.6702 0.4994 0.063*
C6 0.72854 (17) −0.69295 (15) 0.51769 (15) 0.0420 (3)
C7 0.76870 (17) −0.73393 (15) 0.38991 (14) 0.0402 (3)
C8 0.94211 (17) −0.75008 (16) 0.29187 (15) 0.0423 (3)
C9 1.0023 (2) −0.61966 (19) 0.20110 (18) 0.0546 (4)
H9 0.9326 −0.5206 0.1985 0.066*
C10 1.1658 (2) −0.6361 (2) 0.11427 (19) 0.0619 (4)
H10 1.2049 −0.5483 0.0535 0.074*
C11 1.2697 (2) −0.7819 (2) 0.11829 (18) 0.0612 (5)
H11 1.3796 −0.7925 0.0614 0.073*
C12 1.2116 (2) −0.9125 (2) 0.20633 (19) 0.0622 (4)
H12 1.2818 −1.0112 0.2081 0.075*
C13 1.0480 (2) −0.89658 (18) 0.29248 (17) 0.0526 (4)
H13 1.009 −0.9851 0.3512 0.063*
C14 0.64476 (17) −0.76184 (16) 0.36344 (14) 0.0410 (3)
C15 0.67936 (18) −0.80112 (17) 0.22859 (15) 0.0451 (3)
C16 0.7336 (3) −1.0130 (2) 0.12943 (19) 0.0640 (5)
H16A 0.7594 −0.9331 0.0428 0.077*
H16B 0.6389 −1.0461 0.1365 0.077*
C17 0.8780 (3) −1.1482 (3) 0.1307 (2) 0.0694 (5)
H17A 0.8511 −1.2265 0.2168 0.083*
H17B 0.9711 −1.114 0.1231 0.083*
H17C 0.905 −1.1913 0.0532 0.083*
C18 0.48148 (18) −0.75086 (17) 0.46289 (15) 0.0441 (3)
C19 0.3470 (2) −0.7867 (2) 0.43737 (19) 0.0577 (4)
H19A 0.2567 −0.6965 0.4356 0.069*
H19B 0.3086 −0.8727 0.511 0.069*
H19C 0.3897 −0.8138 0.3491 0.069*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.1583 (17) 0.0598 (8) 0.0463 (7) −0.0329 (9) −0.0344 (9) −0.0036 (6)
O2 0.1184 (12) 0.0481 (6) 0.0487 (6) −0.0242 (7) −0.0284 (7) −0.0121 (5)
N1 0.0443 (6) 0.0499 (7) 0.0454 (6) −0.0124 (5) −0.0135 (5) −0.0091 (5)
C1 0.0471 (7) 0.0398 (6) 0.0437 (7) −0.0072 (5) −0.0161 (6) −0.0096 (5)
C2 0.0607 (9) 0.0556 (9) 0.0460 (8) −0.0086 (7) −0.0143 (7) −0.0166 (6)
C3 0.0786 (12) 0.0623 (10) 0.0558 (9) −0.0085 (8) −0.0288 (9) −0.0248 (8)
C4 0.0684 (11) 0.0631 (10) 0.0709 (11) −0.0092 (8) −0.0375 (9) −0.0251 (8)
C5 0.0494 (8) 0.0540 (8) 0.0629 (9) −0.0071 (6) −0.0261 (7) −0.0203 (7)
C6 0.0437 (7) 0.0376 (6) 0.0472 (7) −0.0052 (5) −0.0191 (6) −0.0117 (5)
C7 0.0408 (6) 0.0364 (6) 0.0433 (7) −0.0082 (5) −0.0146 (5) −0.0087 (5)
C8 0.0411 (6) 0.0440 (7) 0.0442 (7) −0.0097 (5) −0.0151 (5) −0.0119 (5)
C9 0.0563 (9) 0.0464 (8) 0.0594 (9) −0.0154 (6) −0.0170 (7) −0.0090 (6)
C10 0.0627 (10) 0.0744 (11) 0.0509 (9) −0.0347 (9) −0.0119 (7) −0.0071 (8)
C11 0.0454 (8) 0.0894 (13) 0.0472 (8) −0.0166 (8) −0.0103 (6) −0.0190 (8)
C12 0.0497 (9) 0.0676 (10) 0.0589 (9) 0.0023 (7) −0.0163 (7) −0.0192 (8)
C13 0.0499 (8) 0.0455 (7) 0.0544 (8) −0.0070 (6) −0.0147 (6) −0.0086 (6)
C14 0.0442 (7) 0.0394 (6) 0.0405 (6) −0.0110 (5) −0.0151 (5) −0.0075 (5)
C15 0.0476 (7) 0.0471 (7) 0.0435 (7) −0.0142 (6) −0.0163 (6) −0.0089 (5)
C16 0.0854 (13) 0.0621 (10) 0.0558 (9) −0.0166 (9) −0.0259 (9) −0.0238 (8)
C17 0.0650 (11) 0.0801 (13) 0.0642 (11) −0.0162 (9) −0.0143 (9) −0.0266 (9)
C18 0.0433 (7) 0.0452 (7) 0.0439 (7) −0.0124 (5) −0.0162 (5) −0.0060 (5)
C19 0.0497 (8) 0.0728 (11) 0.0576 (9) −0.0221 (8) −0.0213 (7) −0.0115 (8)

Geometric parameters (Å, °)

C1—N1 1.3708 (19) C11—H11 0.93
C1—C6 1.415 (2) C12—C13 1.388 (2)
C1—C2 1.415 (2) C12—H12 0.93
C2—C3 1.365 (3) C13—H13 0.93
C2—H2 0.93 C14—C18 1.433 (2)
C3—C4 1.403 (3) C14—C15 1.5031 (19)
C3—H3 0.93 C15—O1 1.1841 (19)
C4—C5 1.371 (2) C15—O2 1.3132 (19)
C4—H4 0.93 C16—O2 1.457 (2)
C5—C6 1.417 (2) C16—C17 1.485 (3)
C5—H5 0.93 C16—H16A 0.97
C6—C7 1.4268 (19) C16—H16B 0.97
C7—C14 1.3775 (19) C17—H17A 0.96
C7—C8 1.4939 (19) C17—H17B 0.96
C8—C13 1.387 (2) C17—H17C 0.96
C8—C9 1.391 (2) C18—N1 1.311 (2)
C9—C10 1.390 (2) C18—C19 1.503 (2)
C9—H9 0.93 C19—H19A 0.96
C10—C11 1.373 (3) C19—H19B 0.96
C10—H10 0.93 C19—H19C 0.96
C11—C12 1.378 (3)
N1—C1—C6 123.08 (13) C11—C12—H12 120
N1—C1—C2 117.62 (14) C13—C12—H12 120
C6—C1—C2 119.30 (14) C8—C13—C12 120.70 (15)
C3—C2—C1 120.59 (16) C8—C13—H13 119.7
C3—C2—H2 119.7 C12—C13—H13 119.7
C1—C2—H2 119.7 C7—C14—C18 120.33 (13)
C2—C3—C4 120.20 (16) C7—C14—C15 120.08 (12)
C2—C3—H3 119.9 C18—C14—C15 119.58 (12)
C4—C3—H3 119.9 O1—C15—O2 124.63 (15)
C5—C4—C3 120.81 (15) O1—C15—C14 124.46 (14)
C5—C4—H4 119.6 O2—C15—C14 110.91 (12)
C3—C4—H4 119.6 O2—C16—C17 107.69 (15)
C4—C5—C6 120.21 (16) O2—C16—H16A 110.2
C4—C5—H5 119.9 C17—C16—H16A 110.2
C6—C5—H5 119.9 O2—C16—H16B 110.2
C1—C6—C5 118.89 (13) C17—C16—H16B 110.2
C1—C6—C7 117.77 (12) H16A—C16—H16B 108.5
C5—C6—C7 123.35 (13) C16—C17—H17A 109.5
C14—C7—C6 117.96 (12) C16—C17—H17B 109.5
C14—C7—C8 122.12 (12) H17A—C17—H17B 109.5
C6—C7—C8 119.89 (12) C16—C17—H17C 109.5
C13—C8—C9 118.59 (14) H17A—C17—H17C 109.5
C13—C8—C7 120.19 (13) H17B—C17—H17C 109.5
C9—C8—C7 121.21 (13) N1—C18—C14 122.27 (13)
C10—C9—C8 120.56 (16) N1—C18—C19 117.00 (14)
C10—C9—H9 119.7 C14—C18—C19 120.73 (13)
C8—C9—H9 119.7 C18—C19—H19A 109.5
C11—C10—C9 120.00 (16) C18—C19—H19B 109.5
C11—C10—H10 120 H19A—C19—H19B 109.5
C9—C10—H10 120 C18—C19—H19C 109.5
C10—C11—C12 120.20 (16) H19A—C19—H19C 109.5
C10—C11—H11 119.9 H19B—C19—H19C 109.5
C12—C11—H11 119.9 C18—N1—C1 118.58 (13)
C11—C12—C13 119.94 (16) C15—O2—C16 119.11 (13)
N1—C1—C2—C3 178.06 (15) C10—C11—C12—C13 −0.8 (3)
C6—C1—C2—C3 −1.1 (2) C9—C8—C13—C12 1.3 (2)
C1—C2—C3—C4 0.8 (3) C7—C8—C13—C12 −177.08 (15)
C2—C3—C4—C5 0.1 (3) C11—C12—C13—C8 −0.5 (3)
C3—C4—C5—C6 −0.6 (3) C6—C7—C14—C18 −0.5 (2)
N1—C1—C6—C5 −178.56 (13) C8—C7—C14—C18 177.58 (12)
C2—C1—C6—C5 0.6 (2) C6—C7—C14—C15 178.33 (11)
N1—C1—C6—C7 0.9 (2) C8—C7—C14—C15 −3.6 (2)
C2—C1—C6—C7 −179.97 (12) C7—C14—C15—O1 −76.8 (2)
C4—C5—C6—C1 0.3 (2) C18—C14—C15—O1 102.0 (2)
C4—C5—C6—C7 −179.12 (14) C7—C14—C15—O2 102.89 (16)
C1—C6—C7—C14 −0.56 (19) C18—C14—C15—O2 −78.24 (17)
C5—C6—C7—C14 178.85 (13) C7—C14—C18—N1 1.5 (2)
C1—C6—C7—C8 −178.70 (12) C15—C14—C18—N1 −177.41 (13)
C5—C6—C7—C8 0.7 (2) C7—C14—C18—C19 −177.80 (14)
C14—C7—C8—C13 −79.78 (18) C15—C14—C18—C19 3.3 (2)
C6—C7—C8—C13 98.29 (17) C14—C18—N1—C1 −1.1 (2)
C14—C7—C8—C9 101.92 (17) C19—C18—N1—C1 178.13 (13)
C6—C7—C8—C9 −80.01 (18) C6—C1—N1—C18 0.0 (2)
C13—C8—C9—C10 −0.8 (2) C2—C1—N1—C18 −179.18 (13)
C7—C8—C9—C10 177.53 (15) O1—C15—O2—C16 0.8 (3)
C8—C9—C10—C11 −0.4 (3) C14—C15—O2—C16 −178.93 (15)
C9—C10—C11—C12 1.2 (3) C17—C16—O2—C15 129.54 (19)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C16—H16A···O1 0.97 2.32 2.711 (3) 103
C19—H19B···O2i 0.96 2.52 3.374 (3) 147
C19—H19C···O2 0.96 2.59 3.212 (3) 122
C12—H12···Cg2ii 0.93 2.95 3.750 (3) 145
C17—H17C···Cg3iii 0.96 2.97 3.883 (3) 160

Symmetry codes: (i) −x+1, −y−2, −z+1; (ii) −x+2, −y, −z+1; (iii) −x+2, −y, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2681).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  3. Bruker (1998). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Doube, D., Blouin, M., Brideau, C., Chan, C., Desmarais, S., Eithier, D., Falgueyert, J. P., Freisen, R. W., Girrard, M., Girrard, J., Tagari, P. & Yang, R. N. (1998). Bioorg. Med. Chem. Lett.8, 1255–1260. [DOI] [PubMed]
  5. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  6. Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809018625/hk2681sup1.cif

e-65-o1382-sup1.cif (17.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809018625/hk2681Isup2.hkl

e-65-o1382-Isup2.hkl (191.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES