Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 May 23;65(Pt 6):m681. doi: 10.1107/S1600536809018339

Bis[μ-2-(2-carboxyl­atophen­yl)acetato]-κ3 O 1,O 1′:O 23 O 2:O 1,O 1′-bis­[aqua­(1,10-phenanthroline-κ2 N,N′)nickel(II)]

Feng Li a, Huifang Zeng a, Zhaowei Yan a, Taohai Li a,*
PMCID: PMC2969824  PMID: 21583040

Abstract

The title compound, [Ni2(C9H6O4)2(C12H8N2)2(H2O)2], is isostructural with the ZnII analogue. Each NiII atom is coordinated in a distorted octa­hedral geometry by three O atoms from two homophthalate anions, one aqua O atom and two 1,10-phenanthroline N atoms. The two NiII atoms are linked by two bridging homophthalate dianions into a centrosymmetric dinuclear unit. The dinuclear units are linked into one-dimensional ladder-like chains along [100] by O—H⋯O hydrogen bonds between the coordinated water mol­ecules and one of the O atoms of the carboxyl­atomethyl group.

Related literature

For the ZnII analogue, see: He et al. (2006); Sun (2006).graphic file with name e-65-0m681-scheme1.jpg

Experimental

Crystal data

  • [Ni2(C9H6O4)2(C12H8N2)2(H2O)2]

  • M r = 870.14

  • Monoclinic, Inline graphic

  • a = 8.819 (3) Å

  • b = 19.432 (6) Å

  • c = 12.898 (3) Å

  • β = 122.900 (17)°

  • V = 1855.8 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.08 mm−1

  • T = 173 K

  • 0.45 × 0.40 × 0.20 mm

Data collection

  • Rigaku Mercury70 CCD diffractometer

  • Absorption correction: multi-scan (CrystalClear; Molecular Structure Corporation & Rigaku, 2001) T min = 0.618, T max = 0.806

  • 14201 measured reflections

  • 4232 independent reflections

  • 3900 reflections with I > 2σ(I)

  • R int = 0.021

Refinement

  • R[F 2 > 2σ(F 2)] = 0.032

  • wR(F 2) = 0.083

  • S = 1.05

  • 4232 reflections

  • 262 parameters

  • H-atom parameters constrained

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.35 e Å−3

Data collection: CrystalClear (Molecular Structure Corporation & Rigaku, 2001); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809018339/bi2368sup1.cif

e-65-0m681-sup1.cif (23.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809018339/bi2368Isup2.hkl

e-65-0m681-Isup2.hkl (207.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1WA⋯O1i 0.84 1.87 2.653 (2) 155
O1W—H1WB⋯O4ii 0.83 1.88 2.7108 (17) 175

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

supplementary crystallographic information

Comment

The title compound is isostructural with its ZnII analogue (He et al., 2006; Sun, 2006). The asymmetric unit consitsts of one NiII atom, one 1,10-phenanthroline (phen) ligan, one homophthalate dianion (hpht2-) and a coordinated water molecule. The NiII atom is six-coordinated by two N atoms from phen and four O atoms, three from two hpht2- anions and one from coordinated H2O, in a distorted octahedron coordination geometry (Table 1). In the hpht2- ligand, the carboxylate group coordinates in a monodentate manner to NiII while the ethylcarboxylate group coordinates in a bidentate manner to another NiII atom. Two hpht2- ions link two NiII atoms to form a dinuclear complex across a centre of inversion. Such units are linked to form one-dimensional ladder-like chains along [100] by O—H···O hydrogen bonds from the coordinated water molecule to one of ethylcarboxyl O atoms. π–π interactions are formed between phen units in adjacent chains.

Experimental

Homophthalic acid (H2hpht; 0.0275 g, 0.15 mmol), 1,10-phenanthroline (phen; 0.030 g, 0.15 mmol) and Ni(NO3)2.6H2O (0.044 g, 0.15 mmol) were put in 10 ml distilled H2O and the pH was adjusted to about 4.2 by addind dilute NaOH aqueous solution. The mixture was sealed in a 25 ml Teflon-lined autoclave and heated to 433 K for 3 days, then slowly cooled to room temperature. Red prism crystals were collected and washed with distilled water (yield: 51%)

Refinement

H atoms bound to C atoms were placed in calculated positions (C—H = 0.95–0.99 Å) and allowed to ride during refinement with Uiso(H) = 1.2Ueq(C). The H atoms on the water molecule were located from difference Fourier maps and allowed to ride in their as-found positions with constrained Uiso values.

Figures

Fig. 1.

Fig. 1.

Molecular unit showing displacement ellipsoids drawn at the 30% probability level. H atoms are ommited. Symetry code: (A) -x, -y, 1 -z.

Fig. 2.

Fig. 2.

One-dimensional ladder-like chain formed along [100] by O—H···O hydrogen bonding (dashed lines). Part of the phen ligand and all H atoms that bonded to C atoms are omitted for clarity.

Crystal data

[Ni2(C9H6O4)2(C12H8N2)2(H2O)2] F(000) = 896
Mr = 870.14 Dx = 1.557 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 5071 reflections
a = 8.819 (3) Å θ = 3.1–27.5°
b = 19.432 (6) Å µ = 1.08 mm1
c = 12.898 (3) Å T = 173 K
β = 122.900 (17)° Prism, green
V = 1855.8 (10) Å3 0.45 × 0.40 × 0.20 mm
Z = 2

Data collection

Rigaku Mercury70 CCD diffractometer 4232 independent reflections
Radiation source: fine-focus sealed tube 3900 reflections with I > 2σ(I)
graphite Rint = 0.021
φ scans θmax = 27.5°, θmin = 3.1°
Absorption correction: multi-scan (CrystalClear; Molecular Structure Corporation & Rigaku, 2001) h = −11→10
Tmin = 0.618, Tmax = 0.806 k = −25→25
14201 measured reflections l = −8→16

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.083 H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0409P)2 + 0.7079P] where P = (Fo2 + 2Fc2)/3
4232 reflections (Δ/σ)max = 0.001
262 parameters Δρmax = 0.43 e Å3
0 restraints Δρmin = −0.35 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Ni1 0.44081 (3) −0.039291 (11) 0.673702 (19) 0.03024 (8)
O1 −0.33605 (19) 0.17448 (7) 0.51356 (14) 0.0502 (4)
N1 0.6408 (2) 0.03318 (7) 0.77780 (14) 0.0345 (3)
C1 −0.2231 (2) 0.15639 (8) 0.48860 (15) 0.0314 (3)
O2 −0.25662 (17) 0.11526 (7) 0.40350 (12) 0.0435 (3)
N2 0.52689 (19) −0.07298 (7) 0.84877 (13) 0.0340 (3)
C2 −0.0352 (2) 0.18683 (8) 0.56453 (15) 0.0304 (3)
O3 0.23654 (17) 0.03212 (6) 0.64245 (12) 0.0364 (3)
C3 −0.0064 (3) 0.23714 (9) 0.65075 (17) 0.0400 (4)
H3 −0.1037 0.2502 0.6584 0.048*
O4 0.31651 (16) 0.02133 (6) 0.50972 (11) 0.0348 (3)
C4 0.1591 (3) 0.26839 (10) 0.72498 (19) 0.0497 (5)
H4 0.1761 0.3015 0.7847 0.060*
C5 0.2996 (3) 0.25140 (11) 0.7122 (2) 0.0534 (5)
H5 0.4133 0.2736 0.7613 0.064*
C6 0.2739 (3) 0.20201 (11) 0.6275 (2) 0.0485 (5)
H6 0.3715 0.1908 0.6190 0.058*
C7 0.1087 (2) 0.16760 (9) 0.55342 (16) 0.0340 (4)
C8 0.1050 (2) 0.11111 (10) 0.47180 (16) 0.0389 (4)
H8A −0.0204 0.0944 0.4169 0.047*
H8B 0.1451 0.1299 0.4192 0.047*
C9 0.2252 (2) 0.05161 (9) 0.54613 (16) 0.0306 (3)
C10 0.6981 (3) 0.08452 (10) 0.74036 (19) 0.0448 (4)
H10 0.6441 0.0910 0.6542 0.054*
C11 0.8343 (3) 0.12948 (11) 0.8218 (2) 0.0521 (5)
H11 0.8714 0.1659 0.7913 0.062*
C12 0.9141 (3) 0.12072 (11) 0.9459 (2) 0.0483 (5)
H12 1.0071 0.1511 1.0024 0.058*
C13 0.8583 (2) 0.06661 (10) 0.99009 (17) 0.0390 (4)
C14 0.9333 (3) 0.05242 (11) 1.11804 (19) 0.0475 (5)
H14 1.0284 0.0806 1.1788 0.057*
C15 0.8722 (3) 0.00016 (11) 1.15414 (17) 0.0472 (5)
H15 0.9228 −0.0073 1.2397 0.057*
C16 0.7318 (3) −0.04433 (9) 1.06539 (17) 0.0386 (4)
C17 0.6650 (3) −0.10109 (11) 1.09668 (18) 0.0473 (5)
H17 0.7111 −0.1112 1.1808 0.057*
C18 0.5337 (3) −0.14141 (11) 1.00544 (19) 0.0496 (5)
H18 0.4877 −0.1798 1.0256 0.060*
C19 0.4669 (3) −0.12587 (10) 0.88166 (18) 0.0428 (4)
H19 0.3752 −0.1543 0.8190 0.051*
C20 0.7199 (2) 0.02413 (9) 0.90086 (16) 0.0323 (3)
C21 0.6584 (2) −0.03289 (8) 0.94044 (16) 0.0320 (3)
O1W 0.60875 (16) −0.09246 (6) 0.63816 (12) 0.0362 (3)
H1WA 0.5459 −0.1231 0.5868 0.060*
H1WB 0.6287 −0.0686 0.5935 0.038*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Ni1 0.02846 (13) 0.03614 (13) 0.02636 (13) −0.00226 (8) 0.01504 (10) −0.00119 (8)
O1 0.0441 (8) 0.0540 (8) 0.0621 (9) −0.0049 (6) 0.0350 (7) −0.0166 (7)
N1 0.0306 (7) 0.0422 (8) 0.0293 (7) −0.0014 (6) 0.0153 (6) 0.0026 (6)
C1 0.0342 (8) 0.0300 (7) 0.0306 (8) −0.0002 (6) 0.0181 (7) 0.0024 (6)
O2 0.0400 (7) 0.0534 (8) 0.0438 (8) −0.0164 (6) 0.0272 (6) −0.0193 (6)
N2 0.0342 (7) 0.0387 (7) 0.0302 (7) −0.0011 (6) 0.0181 (6) 0.0004 (6)
C2 0.0357 (8) 0.0257 (7) 0.0281 (8) −0.0009 (6) 0.0162 (7) 0.0020 (6)
O3 0.0403 (7) 0.0432 (6) 0.0314 (6) 0.0010 (5) 0.0231 (6) −0.0005 (5)
C3 0.0523 (11) 0.0305 (8) 0.0396 (10) −0.0026 (7) 0.0265 (9) −0.0046 (7)
O4 0.0327 (6) 0.0443 (6) 0.0325 (6) 0.0047 (5) 0.0211 (5) 0.0013 (5)
C4 0.0623 (13) 0.0335 (9) 0.0437 (11) −0.0103 (9) 0.0226 (10) −0.0102 (8)
C5 0.0465 (11) 0.0453 (10) 0.0509 (12) −0.0151 (9) 0.0151 (10) −0.0049 (9)
C6 0.0356 (10) 0.0530 (11) 0.0516 (12) −0.0046 (8) 0.0203 (9) −0.0003 (10)
C7 0.0339 (8) 0.0347 (8) 0.0304 (8) 0.0009 (6) 0.0154 (7) 0.0032 (7)
C8 0.0343 (9) 0.0526 (10) 0.0292 (9) 0.0098 (8) 0.0169 (8) 0.0005 (8)
C9 0.0259 (8) 0.0381 (8) 0.0276 (8) −0.0046 (6) 0.0145 (7) −0.0063 (7)
C10 0.0437 (10) 0.0504 (10) 0.0389 (10) −0.0055 (8) 0.0214 (9) 0.0057 (8)
C11 0.0544 (12) 0.0495 (11) 0.0546 (13) −0.0147 (9) 0.0311 (11) −0.0018 (10)
C12 0.0457 (11) 0.0481 (11) 0.0502 (12) −0.0130 (9) 0.0254 (10) −0.0132 (9)
C13 0.0345 (9) 0.0448 (9) 0.0363 (10) −0.0027 (7) 0.0184 (8) −0.0095 (8)
C14 0.0440 (11) 0.0577 (12) 0.0330 (10) −0.0044 (9) 0.0158 (9) −0.0140 (9)
C15 0.0497 (11) 0.0617 (12) 0.0252 (9) 0.0009 (9) 0.0170 (8) −0.0058 (8)
C16 0.0401 (10) 0.0478 (10) 0.0302 (9) 0.0060 (8) 0.0206 (8) 0.0002 (7)
C17 0.0564 (12) 0.0577 (12) 0.0330 (10) 0.0054 (10) 0.0276 (10) 0.0077 (9)
C18 0.0598 (13) 0.0514 (11) 0.0442 (11) −0.0019 (9) 0.0325 (10) 0.0096 (9)
C19 0.0454 (10) 0.0456 (10) 0.0392 (10) −0.0060 (8) 0.0242 (9) 0.0023 (8)
C20 0.0274 (8) 0.0397 (8) 0.0289 (8) 0.0011 (6) 0.0148 (7) −0.0018 (7)
C21 0.0284 (8) 0.0374 (8) 0.0308 (9) 0.0036 (6) 0.0165 (7) −0.0021 (7)
O1W 0.0328 (6) 0.0400 (6) 0.0381 (7) 0.0055 (5) 0.0207 (6) 0.0077 (5)

Geometric parameters (Å, °)

Ni1—O2i 2.0130 (13) C7—C8 1.509 (2)
Ni1—O1W 2.0515 (13) C8—C9 1.508 (2)
Ni1—N2 2.0595 (15) C8—H8A 0.990
Ni1—N1 2.0794 (16) C8—H8B 0.990
Ni1—O4 2.1316 (13) C10—C11 1.393 (3)
Ni1—O3 2.1319 (14) C10—H10 0.950
O1—C1 1.252 (2) C11—C12 1.365 (3)
N1—C10 1.323 (2) C11—H11 0.950
N1—C20 1.354 (2) C12—C13 1.406 (3)
C1—O2 1.256 (2) C12—H12 0.950
C1—C2 1.514 (2) C13—C20 1.403 (2)
O2—Ni1i 2.0130 (13) C13—C14 1.432 (3)
N2—C19 1.327 (2) C14—C15 1.346 (3)
N2—C21 1.364 (2) C14—H14 0.950
C2—C3 1.397 (2) C15—C16 1.432 (3)
C2—C7 1.403 (2) C15—H15 0.950
O3—C9 1.250 (2) C16—C21 1.390 (3)
C3—C4 1.377 (3) C16—C17 1.409 (3)
C3—H3 0.950 C17—C18 1.363 (3)
O4—C9 1.275 (2) C17—H17 0.950
C4—C5 1.376 (3) C18—C19 1.402 (3)
C4—H4 0.950 C18—H18 0.950
C5—C6 1.377 (3) C19—H19 0.950
C5—H5 0.950 C20—C21 1.443 (2)
C6—C7 1.404 (3) O1W—H1WA 0.837
C6—H6 0.950 O1W—H1WB 0.828
O2i—Ni1—O1W 90.38 (6) C7—C8—H8A 109.2
O2i—Ni1—N2 91.55 (6) C9—C8—H8B 109.2
O1W—Ni1—N2 101.77 (6) C7—C8—H8B 109.2
O2i—Ni1—N1 171.71 (6) H8A—C8—H8B 107.9
O1W—Ni1—N1 91.33 (6) O3—C9—O4 120.04 (16)
N2—Ni1—N1 80.16 (6) O3—C9—C8 120.90 (15)
O2i—Ni1—O4 94.16 (6) O4—C9—C8 119.06 (15)
O1W—Ni1—O4 95.81 (5) N1—C10—C11 122.82 (19)
N2—Ni1—O4 161.47 (5) N1—C10—H10 118.6
N1—Ni1—O4 93.73 (6) C11—C10—H10 118.6
O2i—Ni1—O3 90.68 (6) C12—C11—C10 119.36 (19)
O1W—Ni1—O3 157.53 (5) C12—C11—H11 120.3
N2—Ni1—O3 100.64 (5) C10—C11—H11 120.3
N1—Ni1—O3 90.83 (6) C11—C12—C13 119.84 (18)
O4—Ni1—O3 61.73 (5) C11—C12—H12 120.1
C10—N1—C20 118.06 (16) C13—C12—H12 120.1
C10—N1—Ni1 129.31 (13) C20—C13—C12 116.59 (17)
C20—N1—Ni1 112.64 (11) C20—C13—C14 118.91 (18)
O1—C1—O2 124.09 (16) C12—C13—C14 124.50 (18)
O1—C1—C2 117.91 (15) C15—C14—C13 121.51 (18)
O2—C1—C2 118.00 (15) C15—C14—H14 119.2
C1—O2—Ni1i 129.98 (11) C13—C14—H14 119.2
C19—N2—C21 117.66 (16) C14—C15—C16 120.91 (18)
C19—N2—Ni1 128.56 (13) C14—C15—H15 119.5
C21—N2—Ni1 113.73 (11) C16—C15—H15 119.5
C3—C2—C7 118.98 (16) C21—C16—C17 116.94 (18)
C3—C2—C1 116.77 (15) C21—C16—C15 119.12 (17)
C7—C2—C1 124.25 (15) C17—C16—C15 123.92 (18)
C9—O3—Ni1 89.34 (10) C18—C17—C16 119.59 (18)
C4—C3—C2 121.85 (18) C18—C17—H17 120.2
C4—C3—H3 119.1 C16—C17—H17 120.2
C2—C3—H3 119.1 C17—C18—C19 119.58 (19)
C9—O4—Ni1 88.68 (10) C17—C18—H18 120.2
C5—C4—C3 119.61 (19) C19—C18—H18 120.2
C5—C4—H4 120.2 N2—C19—C18 122.49 (18)
C3—C4—H4 120.2 N2—C19—H19 118.8
C4—C5—C6 119.43 (19) C18—C19—H19 118.8
C4—C5—H5 120.3 N1—C20—C13 123.33 (16)
C6—C5—H5 120.3 N1—C20—C21 117.46 (15)
C5—C6—C7 122.33 (19) C13—C20—C21 119.21 (16)
C5—C6—H6 118.8 N2—C21—C16 123.73 (16)
C7—C6—H6 118.8 N2—C21—C20 115.96 (15)
C2—C7—C6 117.74 (17) C16—C21—C20 120.31 (16)
C2—C7—C8 125.94 (16) Ni1—O1W—H1WA 106.6
C6—C7—C8 116.28 (16) Ni1—O1W—H1WB 109.0
C9—C8—C7 111.88 (14) H1WA—O1W—H1WB 98.5
C9—C8—H8A 109.2
O1W—Ni1—N1—C10 76.39 (17) C2—C7—C8—C9 −112.08 (19)
N2—Ni1—N1—C10 178.11 (18) C6—C7—C8—C9 65.6 (2)
O4—Ni1—N1—C10 −19.52 (17) Ni1—O3—C9—O4 4.62 (16)
O3—Ni1—N1—C10 −81.24 (17) Ni1—O3—C9—C8 −175.03 (14)
O1W—Ni1—N1—C20 −103.35 (12) Ni1—O4—C9—O3 −4.62 (16)
N2—Ni1—N1—C20 −1.63 (12) Ni1—O4—C9—C8 175.04 (14)
O4—Ni1—N1—C20 160.74 (12) C7—C8—C9—O3 38.4 (2)
O3—Ni1—N1—C20 99.02 (12) C7—C8—C9—O4 −141.28 (16)
O1—C1—O2—Ni1i −26.5 (3) C20—N1—C10—C11 −0.5 (3)
C2—C1—O2—Ni1i 154.47 (12) Ni1—N1—C10—C11 179.76 (15)
O2i—Ni1—N2—C19 −0.48 (16) N1—C10—C11—C12 0.3 (3)
O1W—Ni1—N2—C19 −91.19 (16) C10—C11—C12—C13 0.0 (3)
N1—Ni1—N2—C19 179.50 (17) C11—C12—C13—C20 −0.2 (3)
O4—Ni1—N2—C19 107.5 (2) C11—C12—C13—C14 179.5 (2)
O3—Ni1—N2—C19 90.51 (16) C20—C13—C14—C15 −1.0 (3)
O2i—Ni1—N2—C21 −177.86 (12) C12—C13—C14—C15 179.2 (2)
O1W—Ni1—N2—C21 91.43 (12) C13—C14—C15—C16 1.4 (3)
N1—Ni1—N2—C21 2.12 (11) C14—C15—C16—C21 −0.1 (3)
O4—Ni1—N2—C21 −69.8 (2) C14—C15—C16—C17 178.2 (2)
O3—Ni1—N2—C21 −86.87 (12) C21—C16—C17—C18 −0.2 (3)
O1—C1—C2—C3 −4.9 (2) C15—C16—C17—C18 −178.54 (19)
O2—C1—C2—C3 174.24 (16) C16—C17—C18—C19 0.0 (3)
O1—C1—C2—C7 175.03 (16) C21—N2—C19—C18 −0.1 (3)
O2—C1—C2—C7 −5.9 (2) Ni1—N2—C19—C18 −177.39 (15)
O2i—Ni1—O3—C9 −97.07 (10) C17—C18—C19—N2 0.2 (3)
O1W—Ni1—O3—C9 −4.43 (19) C10—N1—C20—C13 0.4 (3)
N2—Ni1—O3—C9 171.22 (10) Ni1—N1—C20—C13 −179.87 (13)
N1—Ni1—O3—C9 91.08 (11) C10—N1—C20—C21 −178.83 (16)
O4—Ni1—O3—C9 −2.71 (9) Ni1—N1—C20—C21 0.94 (19)
C7—C2—C3—C4 0.0 (3) C12—C13—C20—N1 0.0 (3)
C1—C2—C3—C4 179.96 (16) C14—C13—C20—N1 −179.76 (17)
O2i—Ni1—O4—C9 91.19 (10) C12—C13—C20—C21 179.15 (16)
O1W—Ni1—O4—C9 −178.00 (10) C14—C13—C20—C21 −0.6 (3)
N2—Ni1—O4—C9 −16.4 (2) C19—N2—C21—C16 −0.2 (3)
N1—Ni1—O4—C9 −86.27 (10) Ni1—N2—C21—C16 177.54 (13)
O3—Ni1—O4—C9 2.66 (9) C19—N2—C21—C20 −179.95 (15)
C2—C3—C4—C5 1.9 (3) Ni1—N2—C21—C20 −2.26 (18)
C3—C4—C5—C6 −1.7 (3) C17—C16—C21—N2 0.3 (3)
C4—C5—C6—C7 −0.4 (3) C15—C16—C21—N2 178.70 (17)
C3—C2—C7—C6 −2.1 (2) C17—C16—C21—C20 −179.90 (16)
C1—C2—C7—C6 178.01 (16) C15—C16—C21—C20 −1.5 (3)
C3—C2—C7—C8 175.58 (16) N1—C20—C21—N2 0.9 (2)
C1—C2—C7—C8 −4.3 (3) C13—C20—C21—N2 −178.35 (15)
C5—C6—C7—C2 2.3 (3) N1—C20—C21—C16 −178.93 (16)
C5—C6—C7—C8 −175.61 (19) C13—C20—C21—C16 1.8 (2)

Symmetry codes: (i) −x, −y, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1W—H1WA···O1i 0.84 1.87 2.653 (2) 155
O1W—H1WB···O4ii 0.83 1.88 2.7108 (17) 175

Symmetry codes: (i) −x, −y, −z+1; (ii) −x+1, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BI2368).

References

  1. He, J. R., Wang, Y. L., Bi, W. H. & Zhu, X. D. (2006). J. Mol. Struct.787, 63–68.
  2. Molecular Structure Corporation & Rigaku (2001). CrystalClear MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.
  3. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  4. Sun, J.-H. (2006). Acta Cryst. E62, m2799–m2801.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809018339/bi2368sup1.cif

e-65-0m681-sup1.cif (23.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809018339/bi2368Isup2.hkl

e-65-0m681-Isup2.hkl (207.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES