Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 May 23;65(Pt 6):o1377. doi: 10.1107/S1600536809018844

(±)-trans-6,7-Dimeth­oxy-1-oxo-3-(2-thien­yl)isochroman-4-carboxylic acid

Mehmet Akkurt a,*, Zeliha Baktır a, Milen G Bogdanov b, Ivan V Svinyarov b, Orhan Büyükgüngör c
PMCID: PMC2969835  PMID: 21583225

Abstract

The title compound, C16H14O6S, was synthesized by the reaction of 6,7-dimethoxy­homophthalic anhydride with thio­phene-2-carbaldehyde in the presence of 4-(dimethyl­amino)pyridine (DMAP) as a basic catalyst. The thio­phene ring of the title mol­ecule is disordered over two sites with occupancies of 0.877 (3) and 0.123 (3). The disorder corresponds to an approximate 180° rotation of the thio­phene ring with respect to the C—C bond linking it to the rest of the mol­ecule. The six-membered ring of the 3,4-dihydro­isochromanone ring system is not planar [puckering parameters Q T = 0.571 (2) Å, θ = 115.2 (2)° and ϕ = 99.1 (2)°]. The benzene ring of the 3,4-dihydro­isochromanone ring system makes dihedral angles of 75.0 (2) and 77.2 (5)° with the disordered thio­phene rings. Inter­molecular O—H⋯O and C—H⋯O hydrogen bonds, as well as C—H⋯π inter­actions, lead to the observed supra­molecular structure.

Related literature

For details of the synthesis of the title compound, see: Bogdanov & Palamareva (2004). For the synthesis of new dihydro­isocoumarins, see: Bogdanov et al. (2007a ,b ). For ring-puckering parameters, see: Cremer & Pople (1975).graphic file with name e-65-o1377-scheme1.jpg

Experimental

Crystal data

  • C16H14O6S

  • M r = 334.34

  • Triclinic, Inline graphic

  • a = 8.3369 (6) Å

  • b = 8.4587 (6) Å

  • c = 11.9143 (9) Å

  • α = 76.441 (6)°

  • β = 81.127 (6)°

  • γ = 72.958 (6)°

  • V = 777.6 (1) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 296 K

  • 0.53 × 0.41 × 0.21 mm

Data collection

  • Stoe IPDS II diffractometer

  • Absorption correction: integration (X-RED32; Stoe & Cie, 2002) T min = 0.885, T max = 0.952

  • 8329 measured reflections

  • 3229 independent reflections

  • 2663 reflections with I > 2σ(I)

  • R int = 0.030

Refinement

  • R[F 2 > 2σ(F 2)] = 0.044

  • wR(F 2) = 0.113

  • S = 1.07

  • 3229 reflections

  • 219 parameters

  • 13 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.31 e Å−3

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809018844/im2117sup1.cif

e-65-o1377-sup1.cif (24.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809018844/im2117Isup2.hkl

e-65-o1377-Isup2.hkl (155.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O6—H6⋯O3i 0.86 (3) 1.84 (2) 2.658 (2) 159 (3)
C2—H2⋯O5ii 0.93 2.54 3.465 (2) 172
C10—H10⋯O6iii 0.98 2.54 3.475 (2) 159
C11—H11⋯Cg4iv 0.98 2.61 3.525 (2) 156

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic. Cg4 is the centroid of the C1–C6 ring.

Acknowledgments

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS2 diffractometer (purchased under grant F.279 of the University Research Fund).

supplementary crystallographic information

Comment

The title compound (I) was obtained as a part of a research project aimed at the synthesis of new dihydroisocoumarins with potential pharmacological activities (Bogdanov et al., 2007a,b). (I) was synthesized by a one-pot reaction of 6,7-dimethoxyhomophthalic anhydride with thiophene-2-carboxaldehyde in the presence of DMAP as a basic catalyst (Bogdanov & Palamareva, 2004). The structure of (I) was determined by spectral methods (1H NMR & IR) and microanalysis. In this paper, we report the X-ray crystallographic study of (I).

In the title molecule, (I), the thiophene ring is disordered over two sites and the major component of the disorder labelled with suffix A is shown in Fig. 1. The disorder corresponds to an approximate 180° rotation with respect to the C10—C13 bond. The six-membered ring (O4/C1/C6/C9–C11) of the 3,4-dihydroisochromanone ring system is not planar, showing the puckering parameters: QT = 0.571 (2) Å, θ = 115.2 (2)° and φ = 99.1 (2)° (Cremer & Pople, 1975). The benzene ring (C1–C6) of the 3,4-dihydroisochromanone ring system encloses dihedral angles of 75.0 (2)° and 77.2 (5)° with the thiophene rings A(C13/C14A/C15/C16/S1A) and B (C13/C14B/C15/C16/S1B), respectively.

The crystal structure is realized by intermolecular O—H···O and C—H···O hydrogen bonds and C—H···π interactions (Table 1, Fig. 2).

Experimental

Compound (I) was synthesized by the reaction of 6,7-dimethoxyhomophthalic anhydride (1) with thiophene-2-carbaldehyde (2) in the presence of DMAP as a basic catalyst (Bogdanov & Palamareva, 2004). To a mixture of 1 (0.33 g, 1.5 mmol) and 2 (0.15 ml, 1.65 mmol) in dry chloroform (5 ml) DMAP (0.18 g, 1.5 mmol) was added. The mixture was stirred at room temperature for 1 h. At the end of the reaction (monitored by TLC), the reaction mixture was extracted with 10% sodium hydrogen carbonate. The aqueous layer was further acidified (pH = 3) with 10% hydrochloric acid and extracted with ethyl acetate. The organic layer was dried (sodium sulfate), filtered and the solvent was then evaporated under reduced pressure giving (0.49 g, 98%) of a diastereomeric mixture of cis- and trans-(±)-6,7-dimethoxy-1-oxo-3-(thiophen-2-yl)isochroman-4-carboxylic acids, in a 30:70 ratio, favoring the trans diastereomer. Pure trans-diastereomer (I) was obtained by fractional crystallization of the residue from ethyl acetate. The product was characterized by 1H NMR, IR spectra and elemental analysis. Single crystals were obtained by slow evaporation of a chloroform–ethyl acetate (3:1) solution of (I) at room temperature (m.p. 465–467 K). Analysis, calculated for C16H14O6S (334.34): C 57.48, H 4.22, O 28.71, S 9.59 (%); found: C 57.74, H 3.97, O 28.71, S 9.91 (%). IR (KBr) 1693 cm-1 (C═O), 1741 cm-1 (C═O). The 1H NMR spectrum of (I) was obtained on a Bruker DRX-250 spectrometer at 250.13 MHz. Chemical shifts (δ) are expressed in parts per million (p.p.m.). 1H NMR (250 MHz, DMSO-d6) δ = 3.82 (3H, s, –O—CH3), 3.85 (3H, s, –O—CH3), 4.43 (1H, d, J = 3 Hz, H-4), 6.29 (1H, d, J = 3 Hz, H-3), 6.96 (1H, dd, J = 3.6 and 5 Hz, Th—H), 7.08 (1H, s, Ph—H), 7.13 (1H, d, J = 3.5 Hz, Th—H), 7.37 (1H, s, Ph—H), 7.44 (1H, dd, J = 1 and 5 Hz, Th—H).

Refinement

The H atom of the hydroxyl group was found from a difference Fourier map and refined freely [O6—H6 = 0.864 (3) Å]. H atoms bonded to C atoms were placed at calculated positions with the C—H distances in a range of 0.93–0.98 Å, and were included in the refinement in the riding-model approximation, with Uiso(H) = 1.2 or 1.5Ueq(C). The ratio of the refined site occupancies for the major and minor components of the disordered thiophene ring is 0.877 (3):0.123 (3). Similarity restraints were applied to the displacement parameters of the disordered atoms, and there were also geometrical restraints.

Figures

Fig. 1.

Fig. 1.

The title molecule of (I) with the atom-labelling scheme and displacement ellipsoids drawn at the 30% probability level. The minor component of the disorder has been omitted.

Fig. 2.

Fig. 2.

Perspective view of the intermolecular hdrogen bonding interactions in the structure of (I). H atoms not involved in hydrogen bonding and the minor component of the disordered thiophene ring have been omitted for clarity.

Crystal data

C16H14O6S Z = 2
Mr = 334.34 F(000) = 348
Triclinic, P1 Dx = 1.428 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 8.3369 (6) Å Cell parameters from 16761 reflections
b = 8.4587 (6) Å θ = 2.6–28.0°
c = 11.9143 (9) Å µ = 0.24 mm1
α = 76.441 (6)° T = 296 K
β = 81.127 (6)° Prism, colourless
γ = 72.958 (6)° 0.53 × 0.41 × 0.21 mm
V = 777.6 (1) Å3

Data collection

Stoe IPDS II diffractometer 3229 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus 2663 reflections with I > 2σ(I)
plane graphite Rint = 0.030
Detector resolution: 6.67 pixels mm-1 θmax = 26.5°, θmin = 2.6°
ω scans h = −10→10
Absorption correction: integration (X-RED32; Stoe & Cie, 2002) k = −10→10
Tmin = 0.885, Tmax = 0.952 l = −14→14
8329 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113 H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0514P)2 + 0.2422P] where P = (Fo2 + 2Fc2)/3
3229 reflections (Δ/σ)max < 0.001
219 parameters Δρmax = 0.27 e Å3
13 restraints Δρmin = −0.31 e Å3

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
S1A 0.17140 (13) 0.63559 (11) 0.85712 (7) 0.0759 (3) 0.877 (3)
O1 0.5188 (2) 0.77377 (19) 0.14713 (12) 0.0557 (5)
O2 0.38518 (19) 0.54308 (18) 0.12791 (12) 0.0503 (5)
O3 0.15691 (17) 0.32562 (15) 0.54690 (12) 0.0445 (4)
O4 0.13106 (15) 0.53400 (15) 0.63275 (10) 0.0370 (4)
O5 0.42866 (19) 0.91589 (18) 0.62175 (13) 0.0515 (5)
O6 0.22136 (17) 1.01715 (16) 0.50460 (13) 0.0451 (4)
C1 0.33543 (19) 0.67769 (19) 0.44799 (14) 0.0304 (4)
C2 0.4244 (2) 0.7526 (2) 0.35183 (16) 0.0356 (5)
C3 0.4377 (2) 0.7065 (2) 0.24602 (16) 0.0384 (5)
C4 0.3637 (2) 0.5802 (2) 0.23513 (15) 0.0372 (5)
C5 0.2797 (2) 0.5039 (2) 0.33076 (16) 0.0359 (5)
C6 0.26476 (19) 0.55214 (19) 0.43731 (15) 0.0311 (5)
C7 0.6107 (4) 0.8880 (4) 0.1547 (2) 0.0869 (13)
C8 0.3476 (3) 0.3914 (3) 0.12059 (19) 0.0611 (8)
C9 0.1816 (2) 0.4620 (2) 0.53946 (15) 0.0330 (5)
C10 0.1347 (2) 0.7092 (2) 0.61942 (15) 0.0319 (5)
C11 0.31183 (19) 0.72133 (19) 0.56665 (14) 0.0305 (4)
C12 0.3300 (2) 0.8940 (2) 0.56779 (15) 0.0339 (5)
C13 0.0822 (2) 0.7555 (2) 0.73510 (16) 0.0385 (5)
C14A −0.0344 (8) 0.8941 (8) 0.7626 (6) 0.0585 (17) 0.877 (3)
C15 −0.0506 (4) 0.9063 (4) 0.8781 (2) 0.0802 (8)
C16 0.0534 (4) 0.7747 (4) 0.9384 (2) 0.0802 (8)
S1B −0.0621 (16) 0.9313 (15) 0.7433 (10) 0.058 (3) 0.123 (3)
C14B 0.144 (3) 0.692 (3) 0.8422 (15) 0.0802 (8) 0.123 (3)
H5 0.23240 0.41970 0.32480 0.0430*
H6 0.227 (3) 1.112 (3) 0.516 (2) 0.064 (7)*
H7A 0.69670 0.83190 0.20660 0.1050*
H7B 0.53550 0.98290 0.18340 0.1050*
H7C 0.66180 0.92640 0.07920 0.1050*
H8A 0.23190 0.39800 0.14800 0.0730*
H2 0.47510 0.83390 0.35870 0.0430*
H8C 0.36690 0.37790 0.04140 0.0730*
H10 0.05270 0.78130 0.56540 0.0380*
H11 0.39450 0.63610 0.61480 0.0370*
H14A −0.09870 0.97510 0.70800 0.0700* 0.877 (3)
H15 −0.12440 0.99480 0.90910 0.0960*
H16 0.06060 0.76040 1.01750 0.0960*
H8B 0.41900 0.29650 0.16740 0.0730*
H14B 0.23880 0.60080 0.85330 0.0960* 0.123 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1A 0.0947 (6) 0.0739 (6) 0.0417 (4) 0.0110 (4) −0.0144 (3) −0.0153 (3)
O1 0.0752 (10) 0.0589 (9) 0.0414 (8) −0.0358 (8) 0.0138 (7) −0.0161 (6)
O2 0.0680 (9) 0.0552 (8) 0.0366 (7) −0.0240 (7) −0.0013 (6) −0.0192 (6)
O3 0.0519 (7) 0.0311 (6) 0.0557 (8) −0.0171 (6) 0.0018 (6) −0.0156 (6)
O4 0.0425 (6) 0.0332 (6) 0.0399 (7) −0.0162 (5) 0.0033 (5) −0.0132 (5)
O5 0.0596 (8) 0.0501 (8) 0.0586 (9) −0.0260 (7) −0.0186 (7) −0.0145 (7)
O6 0.0488 (7) 0.0274 (6) 0.0646 (9) −0.0079 (5) −0.0164 (6) −0.0154 (6)
C1 0.0262 (7) 0.0273 (7) 0.0391 (9) −0.0044 (6) −0.0033 (6) −0.0128 (6)
C2 0.0346 (8) 0.0336 (8) 0.0430 (9) −0.0126 (7) 0.0006 (7) −0.0144 (7)
C3 0.0391 (9) 0.0362 (9) 0.0392 (9) −0.0089 (7) 0.0020 (7) −0.0112 (7)
C4 0.0379 (9) 0.0384 (9) 0.0370 (9) −0.0062 (7) −0.0049 (7) −0.0152 (7)
C5 0.0342 (8) 0.0349 (8) 0.0437 (10) −0.0099 (7) −0.0054 (7) −0.0157 (7)
C6 0.0264 (7) 0.0287 (8) 0.0395 (9) −0.0046 (6) −0.0035 (6) −0.0128 (7)
C7 0.129 (3) 0.100 (2) 0.0588 (15) −0.084 (2) 0.0344 (16) −0.0281 (15)
C8 0.0914 (17) 0.0613 (13) 0.0447 (12) −0.0308 (13) −0.0033 (11) −0.0266 (10)
C9 0.0298 (8) 0.0292 (8) 0.0422 (9) −0.0064 (6) −0.0041 (7) −0.0131 (7)
C10 0.0324 (8) 0.0282 (8) 0.0373 (9) −0.0086 (6) −0.0015 (7) −0.0113 (6)
C11 0.0296 (7) 0.0270 (7) 0.0365 (9) −0.0060 (6) −0.0041 (6) −0.0108 (6)
C12 0.0349 (8) 0.0357 (8) 0.0364 (9) −0.0137 (7) 0.0009 (7) −0.0150 (7)
C13 0.0384 (9) 0.0389 (9) 0.0404 (10) −0.0109 (7) 0.0015 (7) −0.0148 (7)
C14A 0.066 (3) 0.053 (3) 0.047 (3) 0.001 (2) −0.0090 (19) −0.011 (2)
C15 0.1059 (16) 0.0819 (14) 0.0539 (11) −0.0163 (11) 0.0061 (10) −0.0355 (10)
C16 0.1059 (16) 0.0819 (14) 0.0539 (11) −0.0163 (11) 0.0061 (10) −0.0355 (10)
S1B 0.065 (4) 0.054 (5) 0.041 (4) 0.015 (3) −0.008 (3) −0.020 (4)
C14B 0.1059 (16) 0.0819 (14) 0.0539 (11) −0.0163 (11) 0.0061 (10) −0.0355 (10)

Geometric parameters (Å, °)

S1A—C13 1.702 (2) C10—C13 1.487 (2)
S1A—C16 1.689 (3) C10—C11 1.536 (2)
S1B—C15 1.584 (12) C11—C12 1.515 (2)
S1B—C13 1.628 (13) C13—C14B 1.379 (19)
O1—C7 1.423 (4) C13—C14A 1.357 (7)
O1—C3 1.354 (2) C14A—C15 1.387 (7)
O2—C8 1.431 (3) C14B—C16 1.47 (2)
O2—C4 1.359 (2) C15—C16 1.326 (4)
O3—C9 1.211 (2) C2—H2 0.9300
O4—C9 1.344 (2) C5—H5 0.9300
O4—C10 1.462 (2) C7—H7A 0.9600
O5—C12 1.197 (2) C7—H7B 0.9600
O6—C12 1.327 (2) C7—H7C 0.9600
O6—H6 0.86 (3) C8—H8A 0.9600
C1—C11 1.513 (2) C8—H8B 0.9600
C1—C2 1.392 (2) C8—H8C 0.9600
C1—C6 1.394 (2) C10—H10 0.9800
C2—C3 1.384 (3) C11—H11 0.9800
C3—C4 1.419 (2) C14A—H14A 0.9300
C4—C5 1.371 (3) C14B—H14B 0.9300
C5—C6 1.399 (2) C15—H15 0.9300
C6—C9 1.469 (2) C16—H16 0.9300
S1A···O4 3.0857 (15) C3···H11viii 3.0300
S1A···C8i 3.589 (2) C4···H11viii 2.8300
S1B···O6ii 3.308 (12) C5···H8B 2.8100
S1B···O6 3.488 (13) C5···H11viii 2.7400
S1B···C12 3.571 (13) C5···H8A 2.6600
S1B···C2ii 3.530 (13) C6···H10 2.7900
S1B···C3ii 3.694 (13) C6···H11viii 2.8700
S1A···H8Ci 3.0000 C7···H2 2.5200
S1A···H11 3.1800 C8···H5 2.5100
O1···O2 2.581 (2) C9···H11 2.9600
O2···O1 2.581 (2) C9···H6iii 2.95 (2)
O3···O6iii 2.6575 (18) C12···H2 2.6900
O3···C6iv 3.350 (2) H2···O6 2.8500
O3···O4iv 3.2369 (19) H2···C7 2.5200
O3···C9iv 3.051 (2) H2···C12 2.6900
O4···O3iv 3.2369 (19) H2···H7A 2.3800
O4···S1A 3.0857 (15) H2···H7B 2.2400
O5···O6v 3.212 (2) H2···O5v 2.5400
O5···O5v 3.138 (2) H5···O3 2.6100
O5···C12v 3.244 (2) H5···C8 2.5100
O5···C7v 3.382 (3) H5···H8A 2.1600
O6···S1Bii 3.308 (12) H5···H8B 2.4700
O6···C2 3.150 (2) H5···O4iv 2.9200
O6···O3vi 2.6575 (18) H6···O3vi 1.84 (2)
O6···S1B 3.488 (13) H6···C9vi 2.95 (2)
O6···C13 3.385 (2) H6···H10ii 2.5000
O6···O5v 3.212 (2) H7A···C2 2.7800
O1···H8Cvii 2.7500 H7A···H2 2.3800
O2···H8Cvii 2.7700 H7B···C2 2.7100
O3···H6iii 1.84 (2) H7B···H2 2.2400
O3···H10iv 2.8100 H7B···H8Bvi 2.5200
O3···H5 2.6100 H7B···O5v 2.7400
O4···H5iv 2.9200 H7C···H15x 2.5600
O5···H2v 2.5400 H8A···C5 2.6600
O5···H7Bv 2.7400 H8A···H5 2.1600
O6···H14Aii 2.8500 H8B···C5 2.8100
O6···H10 2.6700 H8B···H5 2.4700
O6···H2 2.8500 H8B···H7Biii 2.5200
O6···H10ii 2.5400 H8C···S1Aix 3.0000
C1···C1viii 3.545 (2) H8C···O1vii 2.7500
C2···S1Bii 3.530 (13) H8C···O2vii 2.7700
C2···C9viii 3.532 (2) H10···O6 2.6700
C2···O6 3.150 (2) H10···C6 2.7900
C3···S1Bii 3.694 (13) H10···H14A 2.5700
C6···O3iv 3.350 (2) H10···O3iv 2.8100
C7···O5v 3.382 (3) H10···O6ii 2.5400
C8···S1Aix 3.589 (2) H10···H6ii 2.5000
C9···C9iv 3.150 (2) H11···S1A 3.1800
C9···C2viii 3.532 (2) H11···C9 2.9600
C9···O3iv 3.051 (2) H11···C1viii 3.1000
C12···O5v 3.244 (2) H11···C3viii 3.0300
C12···S1B 3.571 (13) H11···C4viii 2.8300
C12···C14A 3.527 (7) H11···C5viii 2.7400
C13···O6 3.385 (2) H11···C6viii 2.8700
C14A···C12 3.527 (7) H14A···H10 2.5700
C1···H11viii 3.1000 H14A···O6ii 2.8500
C2···H7B 2.7100 H14A···C2ii 3.0600
C2···H14Aii 3.0600 H15···H7Cxi 2.5600
C2···H7A 2.7800
C13—S1A—C16 91.85 (12) C13—C14A—C15 115.2 (5)
C13—S1B—C15 92.3 (7) C13—C14B—C16 117.2 (17)
C3—O1—C7 117.71 (16) C14A—C15—C16 110.8 (4)
C4—O2—C8 116.56 (15) S1B—C15—C16 123.5 (5)
C9—O4—C10 117.75 (13) S1A—C16—C15 113.17 (19)
C12—O6—H6 108.4 (17) C14B—C16—C15 98.8 (9)
C6—C1—C11 116.64 (14) C1—C2—H2 120.00
C2—C1—C6 119.26 (15) C3—C2—H2 120.00
C2—C1—C11 124.09 (15) C4—C5—H5 120.00
C1—C2—C3 120.20 (16) C6—C5—H5 120.00
O1—C3—C2 124.71 (16) O1—C7—H7A 110.00
C2—C3—C4 120.36 (16) O1—C7—H7B 109.00
O1—C3—C4 114.93 (16) O1—C7—H7C 109.00
C3—C4—C5 119.21 (16) H7A—C7—H7B 109.00
O2—C4—C5 125.01 (16) H7A—C7—H7C 109.00
O2—C4—C3 115.78 (16) H7B—C7—H7C 109.00
C4—C5—C6 120.31 (16) O2—C8—H8A 109.00
C5—C6—C9 118.97 (15) O2—C8—H8B 109.00
C1—C6—C5 120.64 (16) O2—C8—H8C 109.00
C1—C6—C9 120.30 (15) H8A—C8—H8B 109.00
O4—C9—C6 118.04 (14) H8A—C8—H8C 109.00
O3—C9—O4 117.07 (16) H8B—C8—H8C 109.00
O3—C9—C6 124.89 (16) O4—C10—H10 109.00
O4—C10—C13 107.21 (13) C11—C10—H10 109.00
O4—C10—C11 107.57 (13) C13—C10—H10 109.00
C11—C10—C13 115.54 (14) C1—C11—H11 108.00
C1—C11—C10 106.68 (13) C10—C11—H11 108.00
C10—C11—C12 109.46 (13) C12—C11—H11 108.00
C1—C11—C12 115.26 (14) C13—C14A—H14A 122.00
O6—C12—C11 112.16 (15) C15—C14A—H14A 122.00
O5—C12—C11 123.52 (16) C16—C14B—H14B 121.00
O5—C12—O6 124.30 (16) C13—C14B—H14B 121.00
C10—C13—C14A 128.5 (3) C16—C15—H15 125.00
S1A—C13—C10 122.57 (13) S1B—C15—H15 112.00
S1A—C13—C14A 109.0 (3) C14A—C15—H15 125.00
S1B—C13—C14B 107.5 (11) C14B—C16—H16 138.00
S1B—C13—C10 118.1 (4) S1A—C16—H16 123.00
C10—C13—C14B 133.8 (10) C15—C16—H16 123.00
C16—S1A—C13—C14A −0.8 (4) O1—C3—C4—C5 179.60 (16)
C13—S1A—C16—C15 0.5 (3) O2—C4—C5—C6 −179.91 (16)
C16—S1A—C13—C10 177.53 (18) C3—C4—C5—C6 1.1 (3)
C7—O1—C3—C2 6.4 (3) C4—C5—C6—C1 −0.3 (3)
C7—O1—C3—C4 −173.5 (2) C4—C5—C6—C9 −176.89 (16)
C8—O2—C4—C3 165.72 (18) C5—C6—C9—O4 −163.86 (15)
C8—O2—C4—C5 −13.3 (3) C5—C6—C9—O3 17.3 (3)
C10—O4—C9—C6 10.7 (2) C1—C6—C9—O4 19.5 (2)
C9—O4—C10—C13 −177.08 (14) C1—C6—C9—O3 −159.38 (18)
C9—O4—C10—C11 −52.23 (19) O4—C10—C11—C12 −171.59 (13)
C10—O4—C9—O3 −170.33 (15) O4—C10—C13—S1A 50.92 (19)
C2—C1—C11—C10 144.44 (16) C13—C10—C11—C1 −177.25 (14)
C2—C1—C6—C5 −1.3 (2) O4—C10—C11—C1 63.07 (16)
C6—C1—C11—C12 −158.42 (15) C11—C10—C13—C14A 109.1 (4)
C2—C1—C6—C9 175.27 (16) C13—C10—C11—C12 −51.91 (19)
C11—C1—C2—C3 −179.11 (16) O4—C10—C13—C14A −131.1 (4)
C11—C1—C6—C5 179.76 (15) C11—C10—C13—S1A −68.96 (19)
C11—C1—C6—C9 −3.7 (2) C1—C11—C12—O5 −123.00 (19)
C2—C1—C11—C12 22.7 (2) C1—C11—C12—O6 58.6 (2)
C6—C1—C11—C10 −36.70 (19) C10—C11—C12—O5 116.78 (19)
C6—C1—C2—C3 2.1 (3) C10—C11—C12—O6 −61.66 (18)
C1—C2—C3—C4 −1.3 (3) S1A—C13—C14A—C15 1.0 (6)
C1—C2—C3—O1 178.82 (17) C10—C13—C14A—C15 −177.2 (3)
C2—C3—C4—C5 −0.3 (3) C13—C14A—C15—C16 −0.7 (7)
C2—C3—C4—O2 −179.43 (16) C14A—C15—C16—S1A 0.1 (5)
O1—C3—C4—O2 0.5 (2)

Symmetry codes: (i) x, y, z+1; (ii) −x, −y+2, −z+1; (iii) x, y−1, z; (iv) −x, −y+1, −z+1; (v) −x+1, −y+2, −z+1; (vi) x, y+1, z; (vii) −x+1, −y+1, −z; (viii) −x+1, −y+1, −z+1; (ix) x, y, z−1; (x) x+1, y, z−1; (xi) x−1, y, z+1.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O6—H6···O3vi 0.86 (3) 1.84 (2) 2.658 (2) 159 (3)
C2—H2···O5v 0.93 2.54 3.465 (2) 172
C10—H10···O6ii 0.98 2.54 3.475 (2) 159
C11—H11···Cg4viii 0.98 2.61 3.525 (2) 156

Symmetry codes: (vi) x, y+1, z; (v) −x+1, −y+2, −z+1; (ii) −x, −y+2, −z+1; (viii) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IM2117).

References

  1. Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst.32, 115–119.
  2. Bogdanov, M. G., Gocheva, B. T., Dimitrova, D. B. & Palamreva, M. D. (2007a). J. Heterocycl. Chem.44, 673–677.
  3. Bogdanov, M. G., Kandinska, M. I., Dimitrova, D. B., Gocheva, B. T. & Palamareva, M. D. (2007b). Z. Naturforsch. Teil C, 62, 477–482. [DOI] [PubMed]
  4. Bogdanov, M. G. & Palamareva, M. D. (2004). Tetrahedron, 60, 2525–2530.
  5. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  6. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  7. Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Stoe & Cie (2002). X-AREA and X-RED32 Stoe & Cie, Darmstadt, Germany.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809018844/im2117sup1.cif

e-65-o1377-sup1.cif (24.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809018844/im2117Isup2.hkl

e-65-o1377-Isup2.hkl (155.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES